

Vassil VassilevVassil Vassilev

Cling – The LLVM-based Cling – The LLVM-based
InterpreterInterpreter

Why Do We Need Cling?

Cling's advantages:

 Full C++ support
 STL + templates

 Path to C++0x

 Planned massive reduction of dictionaries

 Easier and smoother transition between
interpreted and compiled code

 Easy maintenance

What Is Cling?

 An interpreter – looks like an interpreter and
behaves like an interpreter
Cling follows the read-evaluate-print-loop (repl) concept.

 More than interpreter – built on top of a compiler
(clang) and compiler framework (LLVM)
Contains interpreter parts and compiler parts. More of an interactive
compiler or an interactive compiler interface for clang

What Cling Depends On?

 LLVM
“The LLVM Project is a collection of modular and reusable compiler
and toolchain technologies...”

 More than 120 active contributors
Apple, ARM, Google, Qualcomm, QuIC, NVidia, AMD and more

 ~250 commits/week

 Clang
“The goal of the Clang project is to create a new C, C++, Objective C
and Objective C++ front-end for the LLVM compiler.“

 More than 100 active contributors
Apple, ARM, AMD and more

 ~150 commits/week

* Stats from last year until 14.10.2011

Cling's Codebase

LLVM – 430K SLOC*

Clang – 333K SLOC*

Cling – 7K SLOC*

* By 12.10.2011. No testsuites included. C and C++ only.
Credits: generated using David A. Wheeler's 'SLOCCount'

Cling's Codebase

LLVM
Clang
Cling

Other ROOT – 1400K SLOC*

CINT+Reflex – 230K SLOC*

Cling – 7K SLOC*

Cling's Codebase

ROOT
CINT
Cling

Additional Features

 Just-in-time compiler (JIT)

 Extra platform support

 World class performance and optimizations

 OpenCL

 Expressive diagnostics

 ...

Expressive Diagnostics

 Column numbers and caret diagnostics
CaretDiagnostics.C:4:13: warning: '.*' specified field precision is missing a
matching 'int' argument
printf("%.*d");
 ~~^~

 Range highlighting
RangeHighlight.C:14:39: error: invalid operands to binary expression ('int' and 'A')
return y + func(y ? ((SomeA.X + 40) + SomeA) / 42 + SomeA.X : SomeA.X);
                               ~~~~~~~~~~~~ ^ ~~~~~~~

 Fix-it hints
FixItHints.C:7:27: warning: use of GNU old-style field designator extension
struct point origin = { x: 0.0, y: 0.0 };
                                  ^~
                               .x = 



  

Improving Cling Step-By-Step

Cling prototype in 2010:

 Shortcomings of the existing prototype were 
analyzed
Source-to-source manipulations, variable initializers not managed 
correctly, redundant re-parsing, low efficiency, ...

 Redesign almost from scratch

 Resulted in complete rewrite



  

Advantages of the New Design

 Rely on the compiler libraries where possible 
instead of custom implementations
Reduces the maintenance load. If the implementation is not too 
specific and makes sense for a compiler we prefer putting it into the 
compiler codebase and delegate the maintenance...

 More language independent
The necessary code injections and rewrites are directly in the internal 
structures of the underlying compiler

 Stability
The new design enables the implementation of stable error recovery

 Better performance
Re-parsing only in very few cases



  

Challenges

 How to combine incompatible concepts like 
compilation and interpretation
Many tasks that are trivial for an interpreter become a nightmare for a 
compiler.

 How to make it user-friendly
First step should be to adopt the successful usability extensions from 
CINT. 



  

Challenges

How to make it user-friendly
First step should be to adopt the successful usability extensions from 
CINT. 

 Value printer
The interactive mode obeys the repl concept and there should be 
easy, interactive and user-extensible access to types and values

 Expressions and statements
CINT-specific C++ extension improving the user interaction with the 
interpreter from the terminal...

[cling]$ sin(1)
(double const) 0.841471

void wrapper() {
  sin(1);
}



  

[cling]$ 
[cling]$ 

int i = 12; printf("%d\n",i);
printf("%f\n",sin(i));

Expressions and Statements

 Wrap the input

 Scan for declarations

 Extract the declarations one level up, as global 
declarations

void wrapper1() {
  int i = 12;
  printf("%d\n",i);
}

void wrapper2() {
  printf("%f\n", sin(i));
}

int i = 12;



  

Challenges

How to combine incompatible concepts like 
compilation and interpretation
Many tasks that are trivial for an interpreter become a nightmare for a compiler.

 Initialization of global variables
Cling depends on global variables, which need to be initialized. However, 
the global variables continue to be added (potentially) with every input line...

 Error recovery
Even though the user has typed wrong input at the prompt cling must 
survive, i.e issue an error and continue to work...

 Late binding
Cling needs to provide a way for symbols unavailable at compile-time a 
second chance to be provided at runtime...



  

Error Recovery

 Filled input-by-input from the command line

 Incorrect inputs must be discarded as a whole



  

Late Binding

{
  TFile F;
  if (is_day_of_month_even())
    F.setName("even.root");
  else
    F.setName("odd.root");
  F.Open();
  hist->Draw();
  hist->Fill(1.5);
  hist->SetFillColor(46);
}
hist->Draw();

 Defined in the 
root file

 The root file is gone. 
Issue an error.

 Opens a dynamic scope. It 
tells the compiler that cling 
will take over the resolution 
of possible unknown 
symbols



  

Late Binding

 Tell the compiler the symbol will be resolved at 
runtime

 Wrap it into valid C++ code

 Partially recompile at runtime

{
  TFile F;
  if (is_day_of_month_even())
    F.setName("even.root");
  else
    F.setName("odd.root");
  F.Open();
  gCling->EvaluateT<void>("hist->Draw()", ...);
  ...
}
hist->Draw();



  

Challenges

 Error recovery
Even though the user has typed wrong input at the prompt cling must survive, i.e 
issue an error and continue to work...

 Initialization of global variables
Cling depends on global variables, which need to be initialized. However, the global 
variables continue to be added (potentially) with every input line...

 Late binding
Cling needs to provide a way for symbols unavailable at compile-time a second 
chance to be provided at runtime...

 Value printer
The interactive mode obeys the repl concept and there should be way of easy print 
value and type of expression in a user-extensible way...

 Expressions and statements
CINT-specific C++ extension improving the user interaction with the interpreter from 
the terminal...



  

Dictionaries

 No reflection information in C++
There is no way a C++ interpreter could know what are the detailed 
contents of a compiled program

 CINT and Reflex dictionaries:
 Take large fraction 

of libraries

 Multiple copies of 
the dictionary
data in the memory



  

Dictionaries in Cling

 Now the compiler is an interpreter as well!

 JIT enables native calls into libraries

 Query the reflection data from compiler libraries

 Compiled dictionaries should be no longer 
needed
 Middle term: Everything but ClassDef goes away!

 Long term: No dictionaries at all



  

Library Calls in Cling

 Load the lib

 #include the header containing the function 
definition

 Make the call

Can we repackage a 
library's headers?

Can we avoid re-
parsing again and 

again?



  

Cling @ the LLVM Community

 On 25.07.2011 cling was announced on clang's 
mailing list as a working C++ interpreter

 People were thrilled and enthusiastic about it

 Lots of excellent comment and suggestions 



  

The Road Ahead



  

Integration into ROOT

Ongoing and continuous process that needs: 

Experience with ROOT

Knowledge about cling and clang 
interfaces



  

Future: Code Unloading

[cling]$ 
[cling]$ 
[cling]$ 
[cling]$ 
[cling]$ 
[cling]$ 
[cling]$ 
[cling]$ 
[cling]$ 

.L Calculator.h
Calculator calc;
calc.Add(3, 1)
2
.U Calculator.h
.L Calculator.h
Calculator calc;
calc.Add(3, 1)
4

// Calculator.h
class Calculator {
  int Add(int a, int b) {
    return a + b;
  }
...
};

// Calculator.h
class Calculator {
  int Add(int a, int b) {
    return a - b;
  }
...
};



  

Future: Code Unloading

 Fundamental requirement for ROOT
This is what drives the rapid development in ROOT...

 Extremely difficult for a compiler
Teaching an elephant to dance... 

 Requires in-depth knowledge of clang internals
Different phases in the compiler, advanced AST manipulations, inter-
procedural analysis, knowledge about LLVM intermediate representation 
(bitcode), JIT internals, bitcode recompilation... 

 Thinking out-of-the-box
Not often seen problem needs novel way of understanding the compiler 
libraries... 

 We know how to do it!
Watermarks, dependency analysis, annotation of the corresponding 
bitcode, generated for the high-level internal structures,... 



  

Cling in ROOT

Lots of interest from experiments and 
physicists

The prototype will be included in the 
source package of ROOT (the November 
release)

The prototype will be an optional 
interpreter for ROOT



 

Demo:Demo:

C        N GC        N G



 

Thank you!Thank you!



 

Backup slidesBackup slides



  

Pre-Compiled Headers

Carefully crafted data structures designed to 
improve translator's performance:

 Reduce lexical, syntax and semantic analysis

 Loaded “lazily” on demand



  

Pre-Compiled Headers

Design advantages:

 Loading PCH is significantly faster 
than re-parsing

 Minimize the cost of reading

 Read times don't depend on PCH
size

 Cost of generating PCH isn't large


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

