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Why Do We Need Cling?

Cling's advantages:

 Full C++ support
 STL + templates

 Path to C++0x

 Planned massive reduction of dictionaries

 Easier and smoother transition between 
interpreted and compiled code

 Easy maintenance



  

What Is Cling?

 An interpreter – looks like an interpreter and 
behaves like an interpreter
Cling follows the read-evaluate-print-loop (repl) concept. 

 More than interpreter – built on top of a compiler 
(clang) and compiler framework (LLVM)
Contains interpreter parts and compiler parts. More of an interactive 
compiler or an interactive compiler interface for clang



  

What Cling Depends On?

 LLVM 
“The LLVM Project is a collection of modular and reusable compiler 
and toolchain technologies...”

 More than 120 active contributors
Apple, ARM, Google, Qualcomm, QuIC, NVidia, AMD and more

 ~250 commits/week

 Clang
“The goal of the Clang project is to create a new C, C++, Objective C 
and Objective C++ front-end for the LLVM compiler.“

 More than 100 active contributors
Apple, ARM, AMD and more

 ~150 commits/week

* Stats from last year until 14.10.2011



  

Cling's Codebase

LLVM – 430K SLOC*

Clang – 333K SLOC*

Cling – 7K SLOC*

* By 12.10.2011. No testsuites included. C and C++ only.
Credits: generated using David A. Wheeler's 'SLOCCount'

Cling's Codebase

LLVM
Clang
Cling

Other ROOT – 1400K SLOC*

CINT+Reflex – 230K SLOC*

Cling – 7K SLOC*

Cling's Codebase

ROOT
CINT
Cling



  

Additional Features

 Just-in-time compiler (JIT)

 Extra platform support

 World class performance and optimizations

 OpenCL

 Expressive diagnostics

 ...



  

Expressive Diagnostics

 Column numbers and caret diagnostics
CaretDiagnostics.C:4:13: warning: '.*' specified field precision is missing a 
matching 'int' argument
printf("%.*d");
          ~~^~

 Range highlighting
RangeHighlight.C:14:39: error: invalid operands to binary expression ('int' and 'A')
return y + func(y ? ((SomeA.X + 40) + SomeA) / 42 + SomeA.X : SomeA.X);
                               ~~~~~~~~~~~~ ^ ~~~~~~~

 Fix-it hints
FixItHints.C:7:27: warning: use of GNU old-style field designator extension
struct point origin = { x: 0.0, y: 0.0 };
                                  ^~
                               .x = 



  

Improving Cling Step-By-Step

Cling prototype in 2010:

 Shortcomings of the existing prototype were 
analyzed
Source-to-source manipulations, variable initializers not managed 
correctly, redundant re-parsing, low efficiency, ...

 Redesign almost from scratch

 Resulted in complete rewrite



  

Advantages of the New Design

 Rely on the compiler libraries where possible 
instead of custom implementations
Reduces the maintenance load. If the implementation is not too 
specific and makes sense for a compiler we prefer putting it into the 
compiler codebase and delegate the maintenance...

 More language independent
The necessary code injections and rewrites are directly in the internal 
structures of the underlying compiler

 Stability
The new design enables the implementation of stable error recovery

 Better performance
Re-parsing only in very few cases



  

Challenges

 How to combine incompatible concepts like 
compilation and interpretation
Many tasks that are trivial for an interpreter become a nightmare for a 
compiler.

 How to make it user-friendly
First step should be to adopt the successful usability extensions from 
CINT. 



  

Challenges

How to make it user-friendly
First step should be to adopt the successful usability extensions from 
CINT. 

 Value printer
The interactive mode obeys the repl concept and there should be 
easy, interactive and user-extensible access to types and values

 Expressions and statements
CINT-specific C++ extension improving the user interaction with the 
interpreter from the terminal...

[cling]$ sin(1)
(double const) 0.841471

void wrapper() {
  sin(1);
}



  

[cling]$ 
[cling]$ 

int i = 12; printf("%d\n",i);
printf("%f\n",sin(i));

Expressions and Statements

 Wrap the input

 Scan for declarations

 Extract the declarations one level up, as global 
declarations

void wrapper1() {
  int i = 12;
  printf("%d\n",i);
}

void wrapper2() {
  printf("%f\n", sin(i));
}

int i = 12;



  

Challenges

How to combine incompatible concepts like 
compilation and interpretation
Many tasks that are trivial for an interpreter become a nightmare for a compiler.

 Initialization of global variables
Cling depends on global variables, which need to be initialized. However, 
the global variables continue to be added (potentially) with every input line...

 Error recovery
Even though the user has typed wrong input at the prompt cling must 
survive, i.e issue an error and continue to work...

 Late binding
Cling needs to provide a way for symbols unavailable at compile-time a 
second chance to be provided at runtime...



  

Error Recovery

 Filled input-by-input from the command line

 Incorrect inputs must be discarded as a whole



  

Late Binding

{
  TFile F;
  if (is_day_of_month_even())
    F.setName("even.root");
  else
    F.setName("odd.root");
  F.Open();
  hist->Draw();
  hist->Fill(1.5);
  hist->SetFillColor(46);
}
hist->Draw();

 Defined in the 
root file

 The root file is gone. 
Issue an error.

 Opens a dynamic scope. It 
tells the compiler that cling 
will take over the resolution 
of possible unknown 
symbols



  

Late Binding

 Tell the compiler the symbol will be resolved at 
runtime

 Wrap it into valid C++ code

 Partially recompile at runtime

{
  TFile F;
  if (is_day_of_month_even())
    F.setName("even.root");
  else
    F.setName("odd.root");
  F.Open();
  gCling->EvaluateT<void>("hist->Draw()", ...);
  ...
}
hist->Draw();



  

Challenges

 Error recovery
Even though the user has typed wrong input at the prompt cling must survive, i.e 
issue an error and continue to work...

 Initialization of global variables
Cling depends on global variables, which need to be initialized. However, the global 
variables continue to be added (potentially) with every input line...

 Late binding
Cling needs to provide a way for symbols unavailable at compile-time a second 
chance to be provided at runtime...

 Value printer
The interactive mode obeys the repl concept and there should be way of easy print 
value and type of expression in a user-extensible way...

 Expressions and statements
CINT-specific C++ extension improving the user interaction with the interpreter from 
the terminal...



  

Dictionaries

 No reflection information in C++
There is no way a C++ interpreter could know what are the detailed 
contents of a compiled program

 CINT and Reflex dictionaries:
 Take large fraction 

of libraries

 Multiple copies of 
the dictionary
data in the memory



  

Dictionaries in Cling

 Now the compiler is an interpreter as well!

 JIT enables native calls into libraries

 Query the reflection data from compiler libraries

 Compiled dictionaries should be no longer 
needed
 Middle term: Everything but ClassDef goes away!

 Long term: No dictionaries at all



  

Library Calls in Cling

 Load the lib

 #include the header containing the function 
definition

 Make the call

Can we repackage a 
library's headers?

Can we avoid re-
parsing again and 

again?



  

Cling @ the LLVM Community

 On 25.07.2011 cling was announced on clang's 
mailing list as a working C++ interpreter

 People were thrilled and enthusiastic about it

 Lots of excellent comment and suggestions 



  

The Road Ahead



  

Integration into ROOT

Ongoing and continuous process that needs: 

Experience with ROOT

Knowledge about cling and clang 
interfaces



  

Future: Code Unloading

[cling]$ 
[cling]$ 
[cling]$ 
[cling]$ 
[cling]$ 
[cling]$ 
[cling]$ 
[cling]$ 
[cling]$ 

.L Calculator.h
Calculator calc;
calc.Add(3, 1)
2
.U Calculator.h
.L Calculator.h
Calculator calc;
calc.Add(3, 1)
4

// Calculator.h
class Calculator {
  int Add(int a, int b) {
    return a + b;
  }
...
};

// Calculator.h
class Calculator {
  int Add(int a, int b) {
    return a - b;
  }
...
};



  

Future: Code Unloading

 Fundamental requirement for ROOT
This is what drives the rapid development in ROOT...

 Extremely difficult for a compiler
Teaching an elephant to dance... 

 Requires in-depth knowledge of clang internals
Different phases in the compiler, advanced AST manipulations, inter-
procedural analysis, knowledge about LLVM intermediate representation 
(bitcode), JIT internals, bitcode recompilation... 

 Thinking out-of-the-box
Not often seen problem needs novel way of understanding the compiler 
libraries... 

 We know how to do it!
Watermarks, dependency analysis, annotation of the corresponding 
bitcode, generated for the high-level internal structures,... 



  

Cling in ROOT

Lots of interest from experiments and 
physicists

The prototype will be included in the 
source package of ROOT (the November 
release)

The prototype will be an optional 
interpreter for ROOT



 

Demo:Demo:

C        N GC        N G



 

Thank you!Thank you!



 

Backup slidesBackup slides



  

Pre-Compiled Headers

Carefully crafted data structures designed to 
improve translator's performance:

 Reduce lexical, syntax and semantic analysis

 Loaded “lazily” on demand



  

Pre-Compiled Headers

Design advantages:

 Loading PCH is significantly faster 
than re-parsing

 Minimize the cost of reading

 Read times don't depend on PCH
size

 Cost of generating PCH isn't large
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