How to Find Peaks in Histograms ?
This example illustrates the peak finder (class TSpectrum).
It generates a random number of gaussian peaks on top of a linear background. The position of the peaks is found via TSpectrum and injected as initial values of parameters to make a global fit
To execute this example, do
root > .x peaks.C (generate 10 peaks by default) root > .x peaks.C++ (use the compiler) root > .x peaks.C++(30) (generates 30 peaks)
#include "TCanvas.h" #include "TH1.h" #include "TF1.h" #include "TRandom.h" #include "TSpectrum.h" #include "TVirtualFitter.h" Int_t npeaks = 30; Double_t fpeaks(Double_t *x, Double_t *par) { Double_t result = par[0] + par[1]*x[0]; for (Int_t p=0;p<npeaks;p++) { Double_t norm = par[3*p+2]; Double_t mean = par[3*p+3]; Double_t sigma = par[3*p+4]; result += norm*TMath::Gaus(x[0],mean,sigma); } return result; } void peaks(Int_t np=10) { npeaks = np; TH1F *h = new TH1F("h","test",500,0,1000); //generate n peaks at random Double_t par[3000]; par[0] = 0.8; par[1] = -0.6/1000; Int_t p; for (p=0;p<npeaks;p++) { par[3*p+2] = 1; par[3*p+3] = 10+gRandom->Rndm()*980; par[3*p+4] = 3+2*gRandom->Rndm(); } TF1 *f = new TF1("f",fpeaks,0,1000,2+3*npeaks); f->SetNpx(1000); f->SetParameters(par); TCanvas *c1 = new TCanvas("c1","c1",10,10,1000,900); c1->Divide(1,2); c1->cd(1); h->FillRandom("f",200000); h->Draw(); TH1F *h2 = (TH1F*)h->Clone("h2"); //Use TSpectrum to find the peak candidates TSpectrum *s = new TSpectrum(2*npeaks); Int_t nfound = s->Search(h,1,"new"); printf("Found %d candidate peaks to fitn",nfound); c1->Update(); c1->cd(2); //estimate linear background TF1 *fline = new TF1("fline","pol1",0,1000); h->Fit("fline","qn"); //Loop on all found peaks. Eliminate peaks at the background level par[0] = fline->GetParameter(0); par[1] = fline->GetParameter(1); npeaks = 0; Float_t *xpeaks = s->GetPositionX(); for (p=0;p<nfound;p++) { Float_t xp = xpeaks[p]; Int_t bin = h->GetXaxis()->FindBin(xp); Float_t yp = h->GetBinContent(bin); if (yp-TMath::Sqrt(yp) < fline->Eval(xp)) continue; par[3*npeaks+2] = yp; par[3*npeaks+3] = xp; par[3*npeaks+4] = 3; npeaks++; } printf("Found %d useful peaks to fitn",npeaks); printf("Now fitting: Be patientn"); TF1 *fit = new TF1("fit",fpeaks,0,1000,2+3*npeaks); TVirtualFitter::Fitter(h2,10+3*npeaks); //we may have more than the default 25 parameters fit->SetParameters(par); fit->SetNpx(1000); h2->Fit("fit"); }