~Random<ROOT::Math::GSLRngTaus>() | |

unsigned int | Binomial(unsigned int ntot, double prob) |

double | BreitWigner(double mean = 0., double gamma = 1) |

double | ChiSquare(double nu) |

void | Circle(double& x, double& y, double r = 1) |

unsigned int | EngineSize() const |

double | Exp(double tau) |

double | FDist(double nu1, double nu2) |

double | Gamma(double a, double b) |

double | Gaus(double mean = 0, double sigma = 1) |

double | GausBM(double mean = 0, double sigma = 1) |

double | GausR(double mean = 0, double sigma = 1) |

void | Gaussian2D(double sigmaX, double sigmaY, double rho, double& x, double& y) |

double | GaussianTail(double a, double sigma = 1) |

double | Landau(double mean = 0, double sigma = 1) |

double | LogNormal(double zeta, double sigma) |

vector<unsigned int> | Multinomial(unsigned int ntot, const vector<double>& p) |

unsigned int | NegativeBinomial(double n, double prob) |

ROOT::Math::Random<ROOT::Math::GSLRngTaus>& | operator=(const ROOT::Math::Random<ROOT::Math::GSLRngTaus>&) |

unsigned int | Poisson(double mu) |

ROOT::Math::Random<ROOT::Math::GSLRngTaus> | Random<ROOT::Math::GSLRngTaus>() |

ROOT::Math::Random<ROOT::Math::GSLRngTaus> | Random<ROOT::Math::GSLRngTaus>(unsigned int seed) |

ROOT::Math::Random<ROOT::Math::GSLRngTaus> | Random<ROOT::Math::GSLRngTaus>(const ROOT::Math::GSLRngTaus& e) |

ROOT::Math::Random<ROOT::Math::GSLRngTaus> | Random<ROOT::Math::GSLRngTaus>(const ROOT::Math::Random<ROOT::Math::GSLRngTaus>&) |

double | Rndm() |

void | RndmArray(int n, double* array) |

void | SetSeed(unsigned int seed) |

void | Sphere(double& x, double& y, double& z, double r = 1) |

double | tDist(double nu) |

string | Type() const |

double | Uniform(double x = 1.) |

ROOT::Math::GSLRngTaus | fEngine |

double Rndm()

Generate random numbers between ]0,1] 0 is excluded and 1 is included Function to preserve ROOT Trandom compatibility

void RndmArray(int n, double* array)

Generate an array of random numbers between ]0,1] 0 is excluded and 1 is included Function to preserve ROOT Trandom compatibility

double Gaus(double mean = 0, double sigma = 1)

void Gaussian2D(double sigmaX, double sigmaY, double rho, double& x, double& y)

Bivariate Gaussian distribution with correlation

void Sphere(double& x, double& y, double& z, double r = 1)

generate random numbers in a 3D sphere of radious 1

unsigned int NegativeBinomial(double n, double prob)

std::vector<unsigned int> Multinomial(unsigned int ntot, const vector<double>& p)

Multinomial distribution