// @(#)root/mathmore:$Id$
// Authors: B. List 29.4.2010

/**********************************************************************
*                                                                    *
* Copyright (c) 2004 ROOT Foundation,  CERN/PH-SFT                   *
*                                                                    *
* This library is free software; you can redistribute it and/or      *
* modify it under the terms of the GNU General Public License        *
* as published by the Free Software Foundation; either version 2     *
* of the License, or (at your option) any later version.             *
*                                                                    *
* This library is distributed in the hope that it will be useful,    *
* but WITHOUT ANY WARRANTY; without even the implied warranty of     *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU   *
* General Public License for more details.                           *
*                                                                    *
* You should have received a copy of the GNU General Public License  *
* along with this library (see file COPYING); if not, write          *
* to the Free Software Foundation, Inc., 59 Temple Place, Suite      *
* 330, Boston, MA 02111-1307 USA, or contact the author.             *
*                                                                    *
**********************************************************************/

// Header file for class VavilovAccuratePdf
//
// Created by: blist  at Thu Apr 29 11:19:00 2010
//
// Last update: Thu Apr 29 11:19:00 2010
//
#ifndef ROOT_Math_VavilovAccuratePdf
#define ROOT_Math_VavilovAccuratePdf

#include "Math/IParamFunction.h"
#include "Math/VavilovAccurate.h"

namespace ROOT {
namespace Math {

//____________________________________________________________________________
/**
Class describing the Vavilov pdf.

The probability density function of the Vavilov distribution
is given by:
\f[ p(\lambda; \kappa, \beta^2) =
\frac{1}{2 \pi i}\int_{c-i\infty}^{c+i\infty} \phi(s) e^{\lambda s} ds\f]
where \f$\phi(s) = e^{C} e^{\psi(s)}\f$
with  \f$C = \kappa (1+\beta^2 \gamma )\f$
and \f$\psi(s)&=& s \ln \kappa + (s+\beta^2 \kappa) \cdot \left ( \int \limits_{0}^{1} \frac{1 - e^{\frac{-st}{\kappa}}}{t} \,\der t- \gamma \right ) - \kappa \, e^{\frac{-s}{\kappa}}\f$.
\f$\gamma = 0.5772156649\dots\f$ is Euler's constant.

The parameters are:
- 0: Norm: Normalization constant
- 1: x0:   Location parameter
- 2: xi:   Width parameter
- 3: kappa: Parameter \f$\kappa\f$ of the Vavilov distribution
- 4: beta2: Parameter \f$\beta^2\f$ of the Vavilov distribution

Benno List, June 2010

@ingroup StatFunc
*/

class VavilovAccuratePdf: public IParametricFunctionOneDim {
public:

/**
Default constructor
*/
VavilovAccuratePdf();

/**
Constructor with parameter values
@param p vector of doubles containing the parameter values (Norm, x0, xi, kappa, beta2).
*/
VavilovAccuratePdf (const double *p);

/**
Destructor
*/
virtual ~VavilovAccuratePdf ();

/**
Access the parameter values
*/
virtual const double * Parameters() const;

/**
Set the parameter values

@param p vector of doubles containing the parameter values (Norm, x0, xi, kappa, beta2).

*/
virtual void SetParameters(const double * p );

/**
Return the number of Parameters
*/
virtual unsigned int NPar() const;

/**
Return the name of the i-th parameter (starting from zero)
*/
virtual std::string ParameterName(unsigned int i) const;

/**
Evaluate the function

@param x The Landau parameter \f$x = \lambda_L\f$
*/
virtual double DoEval(double x) const;

/**
Evaluate the function, using parameters p

@param x The Landau parameter \f$x = \lambda_L\f$
@param p vector of doubles containing the parameter values (Norm, x0, xi, kappa, beta2).
*/
virtual double DoEvalPar(double x, const double * p) const;

/**
Return a clone of the object
*/
virtual IBaseFunctionOneDim  * Clone() const;

private:
double fP[5];

};

} // namespace Math
} // namespace ROOT

#endif /* ROOT_Math_VavilovAccuratePdf */

VavilovAccuratePdf.h:1
VavilovAccuratePdf.h:2
VavilovAccuratePdf.h:3
VavilovAccuratePdf.h:4
VavilovAccuratePdf.h:5
VavilovAccuratePdf.h:6
VavilovAccuratePdf.h:7
VavilovAccuratePdf.h:8
VavilovAccuratePdf.h:9
VavilovAccuratePdf.h:10
VavilovAccuratePdf.h:11
VavilovAccuratePdf.h:12
VavilovAccuratePdf.h:13
VavilovAccuratePdf.h:14
VavilovAccuratePdf.h:15
VavilovAccuratePdf.h:16
VavilovAccuratePdf.h:17
VavilovAccuratePdf.h:18
VavilovAccuratePdf.h:19
VavilovAccuratePdf.h:20
VavilovAccuratePdf.h:21
VavilovAccuratePdf.h:22
VavilovAccuratePdf.h:23
VavilovAccuratePdf.h:24
VavilovAccuratePdf.h:25
VavilovAccuratePdf.h:26
VavilovAccuratePdf.h:27
VavilovAccuratePdf.h:28
VavilovAccuratePdf.h:29
VavilovAccuratePdf.h:30
VavilovAccuratePdf.h:31
VavilovAccuratePdf.h:32
VavilovAccuratePdf.h:33
VavilovAccuratePdf.h:34
VavilovAccuratePdf.h:35
VavilovAccuratePdf.h:36
VavilovAccuratePdf.h:37
VavilovAccuratePdf.h:38
VavilovAccuratePdf.h:39
VavilovAccuratePdf.h:40
VavilovAccuratePdf.h:41
VavilovAccuratePdf.h:42
VavilovAccuratePdf.h:43
VavilovAccuratePdf.h:44
VavilovAccuratePdf.h:45
VavilovAccuratePdf.h:46
VavilovAccuratePdf.h:47
VavilovAccuratePdf.h:48
VavilovAccuratePdf.h:49
VavilovAccuratePdf.h:50
VavilovAccuratePdf.h:51
VavilovAccuratePdf.h:52
VavilovAccuratePdf.h:53
VavilovAccuratePdf.h:54
VavilovAccuratePdf.h:55
VavilovAccuratePdf.h:56
VavilovAccuratePdf.h:57
VavilovAccuratePdf.h:58
VavilovAccuratePdf.h:59
VavilovAccuratePdf.h:60
VavilovAccuratePdf.h:61
VavilovAccuratePdf.h:62
VavilovAccuratePdf.h:63
VavilovAccuratePdf.h:64
VavilovAccuratePdf.h:65
VavilovAccuratePdf.h:66
VavilovAccuratePdf.h:67
VavilovAccuratePdf.h:68
VavilovAccuratePdf.h:69
VavilovAccuratePdf.h:70
VavilovAccuratePdf.h:71
VavilovAccuratePdf.h:72
VavilovAccuratePdf.h:73
VavilovAccuratePdf.h:74
VavilovAccuratePdf.h:75
VavilovAccuratePdf.h:76
VavilovAccuratePdf.h:77
VavilovAccuratePdf.h:78
VavilovAccuratePdf.h:79
VavilovAccuratePdf.h:80
VavilovAccuratePdf.h:81
VavilovAccuratePdf.h:82
VavilovAccuratePdf.h:83
VavilovAccuratePdf.h:84
VavilovAccuratePdf.h:85
VavilovAccuratePdf.h:86
VavilovAccuratePdf.h:87
VavilovAccuratePdf.h:88
VavilovAccuratePdf.h:89
VavilovAccuratePdf.h:90
VavilovAccuratePdf.h:91
VavilovAccuratePdf.h:92
VavilovAccuratePdf.h:93
VavilovAccuratePdf.h:94
VavilovAccuratePdf.h:95
VavilovAccuratePdf.h:96
VavilovAccuratePdf.h:97
VavilovAccuratePdf.h:98
VavilovAccuratePdf.h:99
VavilovAccuratePdf.h:100
VavilovAccuratePdf.h:101
VavilovAccuratePdf.h:102
VavilovAccuratePdf.h:103
VavilovAccuratePdf.h:104
VavilovAccuratePdf.h:105
VavilovAccuratePdf.h:106
VavilovAccuratePdf.h:107
VavilovAccuratePdf.h:108
VavilovAccuratePdf.h:109
VavilovAccuratePdf.h:110
VavilovAccuratePdf.h:111
VavilovAccuratePdf.h:112
VavilovAccuratePdf.h:113
VavilovAccuratePdf.h:114
VavilovAccuratePdf.h:115
VavilovAccuratePdf.h:116
VavilovAccuratePdf.h:117
VavilovAccuratePdf.h:118
VavilovAccuratePdf.h:119
VavilovAccuratePdf.h:120
VavilovAccuratePdf.h:121
VavilovAccuratePdf.h:122
VavilovAccuratePdf.h:123
VavilovAccuratePdf.h:124
VavilovAccuratePdf.h:125
VavilovAccuratePdf.h:126
VavilovAccuratePdf.h:127
VavilovAccuratePdf.h:128
VavilovAccuratePdf.h:129
VavilovAccuratePdf.h:130
VavilovAccuratePdf.h:131
VavilovAccuratePdf.h:132
VavilovAccuratePdf.h:133
VavilovAccuratePdf.h:134
VavilovAccuratePdf.h:135
VavilovAccuratePdf.h:136
VavilovAccuratePdf.h:137
VavilovAccuratePdf.h:138
VavilovAccuratePdf.h:139
VavilovAccuratePdf.h:140
VavilovAccuratePdf.h:141