// @(#)root/minuit2:$Id$
// Authors: M. Winkler, F. James, L. Moneta, A. Zsenei   2003-2005

 *                                                                    *
 * Copyright (c) 2005 LCG ROOT Math team,  CERN/PH-SFT                *
 *                                                                    *

#ifndef ROOT_Minuit2_FumiliFCNBase
#define ROOT_Minuit2_FumiliFCNBase

#include "Minuit2/FCNBase.h"
#include <cassert>

namespace ROOT {

   namespace Minuit2 {


Extension of the FCNBase for the Fumili method. Fumili applies only to
minimization problems used for fitting. The method is based on a
linearization of the model function negleting second derivatives.
User needs to provide the model function. The figure-of-merit describing
the difference between the model function and the actual measurements
has to be implemented by the user in a subclass of FumiliFCNBase.
For an example see the FumiliChi2FCN and FumiliStandardChi2FCN classes.

@author  Andras Zsenei and Lorenzo Moneta, Creation date: 23 Aug 2004

@see <A HREF="http://www.cern.ch/winkler/minuit/tutorial/mntutorial.pdf">MINUIT Tutorial</A> on function minimization, section 5

@see FumiliChi2FCN

@see FumiliStandardChi2FCN

@ingroup Minuit


class FumiliFCNBase : public FCNBase {


      Default Constructor. Need in this case to create when implementing EvaluateAll the Gradient and Hessian vectors with the right size

   FumiliFCNBase()  :


      Constructor which initializes the class with the function provided by the
      user for modeling the data.

      @param npar the number of parameters


   FumiliFCNBase(unsigned int npar) :
      fHessian(std::vector<double>(static_cast<int>( 0.5*npar*(npar+1) )) )

//   FumiliFCNBase(const ParametricFunction& modelFCN) { fModelFunction = &modelFCN; }

   virtual ~FumiliFCNBase() {}


      Evaluate function Value, Gradient and Hessian using Fumili approximation, for values of parameters p
      The resul is cached inside and is return from the FumiliFCNBase::Value ,  FumiliFCNBase::Gradient and
      FumiliFCNBase::Hessian methods

      @param par vector of parameters


   virtual  void EvaluateAll( const std::vector<double> & par ) = 0;

      Return cached Value of objective function estimated previously using the  FumiliFCNBase::EvaluateAll method


   virtual double Value() const { return fValue; }

      Return cached Value of function Gradient estimated previously using the  FumiliFCNBase::EvaluateAll method

   virtual const std::vector<double> & Gradient() const { return fGradient; }

      Return Value of the i-th j-th element of the Hessian matrix estimated previously using the  FumiliFCNBase::EvaluateAll method
      @param row row Index of the matrix
      @param col col Index of the matrix

   virtual double Hessian(unsigned int row, unsigned int col) const {
      assert( row < fGradient.size() && col < fGradient.size() );
      if(row > col)
         return fHessian[col+row*(row+1)/2];
         return fHessian[row+col*(col+1)/2];

      return number of function variable (parameters) , i.e. function dimension

   virtual unsigned int Dimension() { return fNumberOfParameters; }

protected :

      initialize and reset values of gradien and Hessian

   virtual void InitAndReset(unsigned int npar) {
      fNumberOfParameters = npar;
      fGradient = std::vector<double>(npar);
      fHessian = std::vector<double>(static_cast<int>( 0.5*npar*(npar+1) ));

   // methods to be used by the derived classes to set the values
   void SetFCNValue(double value) { fValue = value; }

   std::vector<double> & Gradient() { return fGradient; }

   std::vector<double> & Hessian() { return fHessian; }


   unsigned int fNumberOfParameters;
   double fValue;
   std::vector<double> fGradient;
   std::vector<double> fHessian;


  }  // namespace Minuit2

}  // namespace ROOT

#endif  // ROOT_Minuit2_FumiliFCNBase