```/*****************************************************************************
* Project: RooFit                                                           *
* Package: RooFitCore                                                       *
* @(#)root/roofitcore:\$Id\$
* Authors:                                                                  *
*   WV, Wouter Verkerke, UC Santa Barbara, verkerke@slac.stanford.edu       *
*   DK, David Kirkby,    UC Irvine,         dkirkby@uci.edu                 *
*                                                                           *
* Copyright (c) 2000-2005, Regents of the University of California          *
*                                                                           *
* Redistribution and use in source and binary forms,                        *
* with or without modification, are permitted according to the terms        *
*****************************************************************************/

//////////////////////////////////////////////////////////////////////////////
//
// BEGIN_HTML
// RooGaussKronrodIntegrator1D implements the Gauss-Kronrod integration algorithm.
//
// An Gaussian quadrature method for numerical integration in which
// error is estimation based on evaluation at special points known as
// "Kronrod points."  By suitably picking these points, abscissas from
// previous iterations can be reused as part of the new set of points,
// whereas usual Gaussian quadrature would require recomputation of
// all abscissas at each iteration.
//
// This class automatically handles (-inf,+inf) integrals by dividing
// the integration in three regions (-inf,-1), (-1,1), (1,inf) and
// calculating the 1st and 3rd term using a x -> 1/x coordinate
// transformation
//
// This class embeds the Gauss-Kronrod integrator from the GNU
// Scientific Library version 1.5 and applies the 10-, 21-, 43- and
// 87-point rule in succession until the required target precision is
// reached
// END_HTML
//

#include "RooFit.h"

#include <assert.h>
#include <math.h>
#include <float.h>
#include <stdlib.h>
#include "Riostream.h"
#include "TMath.h"
#include "RooGaussKronrodIntegrator1D.h"
#include "RooArgSet.h"
#include "RooRealVar.h"
#include "RooNumber.h"
#include "RooNumIntFactory.h"
#include "RooIntegratorBinding.h"
#include "RooMsgService.h"

using namespace std;

ClassImp(RooGaussKronrodIntegrator1D)
;

// --- From GSL_MATH.h -------------------------------------------
struct gsl_function_struct
{
double (* function) (double x, void * params);
void * params;
};
typedef struct gsl_function_struct gsl_function ;
#define GSL_FN_EVAL(F,x) (*((F)->function))(x,(F)->params)
//----From GSL_INTEGRATION.h ---------------------------------------
int gsl_integration_qng (const gsl_function * f,
double a, double b,
double epsabs, double epsrel,
double *result, double *abserr,
size_t * neval);
//-------------------------------------------------------------------

//_____________________________________________________________________________
void RooGaussKronrodIntegrator1D::registerIntegrator(RooNumIntFactory& fact)
{
// Register RooGaussKronrodIntegrator1D, its parameters and capabilities with RooNumIntConfig

fact.storeProtoIntegrator(new RooGaussKronrodIntegrator1D(),RooArgSet()) ;
}

//_____________________________________________________________________________
RooGaussKronrodIntegrator1D::RooGaussKronrodIntegrator1D() : _x(0)
{
// coverity[UNINIT_CTOR]
// Default constructor
}

//_____________________________________________________________________________
RooGaussKronrodIntegrator1D::RooGaussKronrodIntegrator1D(const RooAbsFunc& function, const RooNumIntConfig& config) :
RooAbsIntegrator(function),
_epsAbs(config.epsRel()),
_epsRel(config.epsAbs())
{
// Construct integral on 'function' using given configuration object. The integration
// range is taken from the definition in the function binding

_useIntegrandLimits= kTRUE;
_valid= initialize();
}

//_____________________________________________________________________________
RooGaussKronrodIntegrator1D::RooGaussKronrodIntegrator1D(const RooAbsFunc& function,
Double_t xmin, Double_t xmax, const RooNumIntConfig& config) :
RooAbsIntegrator(function),
_epsAbs(config.epsRel()),
_epsRel(config.epsAbs()),
_xmin(xmin),
_xmax(xmax)
{
// Construct integral on 'function' using given configuration object in the given range

_useIntegrandLimits= kFALSE;
_valid= initialize();
}

//_____________________________________________________________________________
RooAbsIntegrator* RooGaussKronrodIntegrator1D::clone(const RooAbsFunc& function, const RooNumIntConfig& config) const
{
// Clone integrator with given function and configuration. Needed for RooNumIntFactory

return new RooGaussKronrodIntegrator1D(function,config) ;
}

//_____________________________________________________________________________
Bool_t RooGaussKronrodIntegrator1D::initialize()
{
// Perform one-time initialization of integrator

// Allocate coordinate buffer size after number of function dimensions
_x = new Double_t[_function->getDimension()] ;

return checkLimits();
}

//_____________________________________________________________________________
RooGaussKronrodIntegrator1D::~RooGaussKronrodIntegrator1D()
{
// Destructor

if (_x) {
delete[] _x ;
}
}

//_____________________________________________________________________________
Bool_t RooGaussKronrodIntegrator1D::setLimits(Double_t* xmin, Double_t* xmax)
{
// Change our integration limits. Return kTRUE if the new limits are
// ok, or otherwise kFALSE. Always returns kFALSE and does nothing
// if this object was constructed to always use our integrand's limits.

if(_useIntegrandLimits) {
oocoutE((TObject*)0,Eval) << "RooGaussKronrodIntegrator1D::setLimits: cannot override integrand's limits" << endl;
return kFALSE;
}
_xmin= *xmin;
_xmax= *xmax;
return checkLimits();
}

//_____________________________________________________________________________
Bool_t RooGaussKronrodIntegrator1D::checkLimits() const
{
// Check that our integration range is finite and otherwise return kFALSE.
// Update the limits from the integrand if requested.

if(_useIntegrandLimits) {
assert(0 != integrand() && integrand()->isValid());
_xmin= integrand()->getMinLimit(0);
_xmax= integrand()->getMaxLimit(0);
}
return kTRUE ;
}

double RooGaussKronrodIntegrator1D_GSL_GlueFunction(double x, void *data)
{
RooGaussKronrodIntegrator1D* instance = (RooGaussKronrodIntegrator1D*) data ;
return instance->integrand(instance->xvec(x)) ;
}

//_____________________________________________________________________________
Double_t RooGaussKronrodIntegrator1D::integral(const Double_t *yvec)
{
// Calculate and return integral

assert(isValid());

// Copy yvec to xvec if provided
if (yvec) {
UInt_t i ; for (i=0 ; i<_function->getDimension()-1 ; i++) {
_x[i+1] = yvec[i] ;
}
}

// Setup glue function
gsl_function F;
F.function = &RooGaussKronrodIntegrator1D_GSL_GlueFunction ;
F.params = this ;

// Return values
double result, error;
size_t neval = 0 ;

// Call GSL implementation of integeator
gsl_integration_qng (&F, _xmin, _xmax, _epsAbs, _epsRel, &result, &error, &neval);

return result;
}

// ----------------------------------------------------------------------------
// ---------- Code below imported from GSL version 1.5 ------------------------
// ----------------------------------------------------------------------------

/*
*
* Copyright (C) 1996, 1997, 1998, 1999, 2000 Brian Gough
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/

#define GSL_SUCCESS 0
#define GSL_EBADTOL 13  /* user specified an invalid tolerance */
#define GSL_ETOL    14  /* failed to reach the specified tolerance */
#define GSL_ERROR(a,b) oocoutE((TObject*)0,Eval) << "RooGaussKronrodIntegrator1D::integral() ERROR: " << a << endl ; return b ;
#define GSL_DBL_MIN        2.2250738585072014e-308
#define GSL_DBL_EPSILON    2.2204460492503131e-16

// INCLUDED BELOW #include "qng.c"

int gsl_integration_qng (const gsl_function * f,
double a, double b,
double epsabs, double epsrel,
double *result, double *abserr,
size_t * neval);

// INCLUDED BELOW #include "err.c"
static double rescale_error (double err, const double result_abs, const double result_asc) ;

static double
rescale_error (double err, const double result_abs, const double result_asc)
{
err = fabs(err) ;

if (result_asc != 0 && err != 0)
{
double scale = TMath::Power((200 * err / result_asc), 1.5) ;

if (scale < 1)
{
err = result_asc * scale ;
}
else
{
err = result_asc ;
}
}
if (result_abs > GSL_DBL_MIN / (50 * GSL_DBL_EPSILON))
{
double min_err = 50 * GSL_DBL_EPSILON * result_abs ;

if (min_err > err)
{
err = min_err ;
}
}

return err ;
}

// INCLUDED BELOW #include "qng.h"
/* Gauss-Kronrod-Patterson quadrature coefficients for use in
quadpack routine qng. These coefficients were calculated with
101 decimal digit arithmetic by L. W. Fullerton, Bell Labs, Nov
1981. */

/* x1, abscissae common to the 10-, 21-, 43- and 87-point rule */
static const double x1[5] = {
0.973906528517171720077964012084452,
0.865063366688984510732096688423493,
0.679409568299024406234327365114874,
0.433395394129247190799265943165784,
0.148874338981631210884826001129720
} ;

/* w10, weights of the 10-point formula */
static const double w10[5] = {
0.066671344308688137593568809893332,
0.149451349150580593145776339657697,
0.219086362515982043995534934228163,
0.269266719309996355091226921569469,
0.295524224714752870173892994651338
} ;

/* x2, abscissae common to the 21-, 43- and 87-point rule */
static const double x2[5] = {
0.995657163025808080735527280689003,
0.930157491355708226001207180059508,
0.780817726586416897063717578345042,
0.562757134668604683339000099272694,
0.294392862701460198131126603103866
} ;

/* w21a, weights of the 21-point formula for abscissae x1 */
static const double w21a[5] = {
0.032558162307964727478818972459390,
0.075039674810919952767043140916190,
0.109387158802297641899210590325805,
0.134709217311473325928054001771707,
0.147739104901338491374841515972068
} ;

/* w21b, weights of the 21-point formula for abscissae x2 */
static const double w21b[6] = {
0.011694638867371874278064396062192,
0.054755896574351996031381300244580,
0.093125454583697605535065465083366,
0.123491976262065851077958109831074,
0.142775938577060080797094273138717,
0.149445554002916905664936468389821
} ;

/* x3, abscissae common to the 43- and 87-point rule */
static const double x3[11] = {
0.999333360901932081394099323919911,
0.987433402908088869795961478381209,
0.954807934814266299257919200290473,
0.900148695748328293625099494069092,
0.825198314983114150847066732588520,
0.732148388989304982612354848755461,
0.622847970537725238641159120344323,
0.499479574071056499952214885499755,
0.364901661346580768043989548502644,
0.222254919776601296498260928066212,
0.074650617461383322043914435796506
} ;

/* w43a, weights of the 43-point formula for abscissae x1, x3 */
static const double w43a[10] = {
0.016296734289666564924281974617663,
0.037522876120869501461613795898115,
0.054694902058255442147212685465005,
0.067355414609478086075553166302174,
0.073870199632393953432140695251367,
0.005768556059769796184184327908655,
0.027371890593248842081276069289151,
0.046560826910428830743339154433824,
0.061744995201442564496240336030883,
0.071387267268693397768559114425516
} ;

/* w43b, weights of the 43-point formula for abscissae x3 */
static const double w43b[12] = {
0.001844477640212414100389106552965,
0.010798689585891651740465406741293,
0.021895363867795428102523123075149,
0.032597463975345689443882222526137,
0.042163137935191811847627924327955,
0.050741939600184577780189020092084,
0.058379395542619248375475369330206,
0.064746404951445885544689259517511,
0.069566197912356484528633315038405,
0.072824441471833208150939535192842,
0.074507751014175118273571813842889,
0.074722147517403005594425168280423
} ;

/* x4, abscissae of the 87-point rule */
static const double x4[22] = {
0.999902977262729234490529830591582,
0.997989895986678745427496322365960,
0.992175497860687222808523352251425,
0.981358163572712773571916941623894,
0.965057623858384619128284110607926,
0.943167613133670596816416634507426,
0.915806414685507209591826430720050,
0.883221657771316501372117548744163,
0.845710748462415666605902011504855,
0.803557658035230982788739474980964,
0.757005730685495558328942793432020,
0.706273209787321819824094274740840,
0.651589466501177922534422205016736,
0.593223374057961088875273770349144,
0.531493605970831932285268948562671,
0.466763623042022844871966781659270,
0.399424847859218804732101665817923,
0.329874877106188288265053371824597,
0.258503559202161551802280975429025,
0.185695396568346652015917141167606,
0.111842213179907468172398359241362,
0.037352123394619870814998165437704
} ;

/* w87a, weights of the 87-point formula for abscissae x1, x2, x3 */
static const double w87a[21] = {
0.008148377384149172900002878448190,
0.018761438201562822243935059003794,
0.027347451050052286161582829741283,
0.033677707311637930046581056957588,
0.036935099820427907614589586742499,
0.002884872430211530501334156248695,
0.013685946022712701888950035273128,
0.023280413502888311123409291030404,
0.030872497611713358675466394126442,
0.035693633639418770719351355457044,
0.000915283345202241360843392549948,
0.005399280219300471367738743391053,
0.010947679601118931134327826856808,
0.016298731696787335262665703223280,
0.021081568889203835112433060188190,
0.025370969769253827243467999831710,
0.029189697756475752501446154084920,
0.032373202467202789685788194889595,
0.034783098950365142750781997949596,
0.036412220731351787562801163687577,
0.037253875503047708539592001191226
} ;

/* w87b, weights of the 87-point formula for abscissae x4    */
static const double w87b[23] = {
0.000274145563762072350016527092881,
0.001807124155057942948341311753254,
0.004096869282759164864458070683480,
0.006758290051847378699816577897424,
0.009549957672201646536053581325377,
0.012329447652244853694626639963780,
0.015010447346388952376697286041943,
0.017548967986243191099665352925900,
0.019938037786440888202278192730714,
0.022194935961012286796332102959499,
0.024339147126000805470360647041454,
0.026374505414839207241503786552615,
0.028286910788771200659968002987960,
0.030052581128092695322521110347341,
0.031646751371439929404586051078883,
0.033050413419978503290785944862689,
0.034255099704226061787082821046821,
0.035262412660156681033782717998428,
0.036076989622888701185500318003895,
0.036698604498456094498018047441094,
0.037120549269832576114119958413599,
0.037334228751935040321235449094698,
0.037361073762679023410321241766599
} ;

int
gsl_integration_qng (const gsl_function *f,
double a, double b,
double epsabs, double epsrel,
double * result, double * abserr, size_t * neval)
{
double fv1[5], fv2[5], fv3[5], fv4[5];
double savfun[21];  /* array of function values which have been computed */
double res10, res21, res43, res87;    /* 10, 21, 43 and 87 point results */
double result_kronrod, err ;
double resabs; /* approximation to the integral of abs(f) */
double resasc; /* approximation to the integral of abs(f-i/(b-a)) */

const double half_length =  0.5 * (b - a);
const double abs_half_length = fabs (half_length);
const double center = 0.5 * (b + a);
const double f_center = GSL_FN_EVAL(f, center);

int k ;

if (epsabs <= 0 && (epsrel < 50 * GSL_DBL_EPSILON || epsrel < 0.5e-28))
{
* result = 0;
* abserr = 0;
* neval = 0;
GSL_ERROR ("tolerance cannot be acheived with given epsabs and epsrel",
};

/* Compute the integral using the 10- and 21-point formula. */

res10 = 0;
res21 = w21b[5] * f_center;
resabs = w21b[5] * fabs (f_center);

for (k = 0; k < 5; k++)
{
const double abscissa = half_length * x1[k];
const double fval1 = GSL_FN_EVAL(f, center + abscissa);
const double fval2 = GSL_FN_EVAL(f, center - abscissa);
const double fval = fval1 + fval2;
res10 += w10[k] * fval;
res21 += w21a[k] * fval;
resabs += w21a[k] * (fabs (fval1) + fabs (fval2));
savfun[k] = fval;
fv1[k] = fval1;
fv2[k] = fval2;
}

for (k = 0; k < 5; k++)
{
const double abscissa = half_length * x2[k];
const double fval1 = GSL_FN_EVAL(f, center + abscissa);
const double fval2 = GSL_FN_EVAL(f, center - abscissa);
const double fval = fval1 + fval2;
res21 += w21b[k] * fval;
resabs += w21b[k] * (fabs (fval1) + fabs (fval2));
savfun[k + 5] = fval;
fv3[k] = fval1;
fv4[k] = fval2;
}

resabs *= abs_half_length ;

{
const double mean = 0.5 * res21;

resasc = w21b[5] * fabs (f_center - mean);

for (k = 0; k < 5; k++)
{
resasc +=
(w21a[k] * (fabs (fv1[k] - mean) + fabs (fv2[k] - mean))
+ w21b[k] * (fabs (fv3[k] - mean) + fabs (fv4[k] - mean)));
}
resasc *= abs_half_length ;
}

result_kronrod = res21 * half_length;

err = rescale_error ((res21 - res10) * half_length, resabs, resasc) ;

/*   test for convergence. */

if (err < epsabs || err < epsrel * fabs (result_kronrod))
{
* result = result_kronrod ;
* abserr = err ;
* neval = 21;
return GSL_SUCCESS;
}

/* compute the integral using the 43-point formula. */

res43 = w43b[11] * f_center;

for (k = 0; k < 10; k++)
{
res43 += savfun[k] * w43a[k];
}

for (k = 0; k < 11; k++)
{
const double abscissa = half_length * x3[k];
const double fval = (GSL_FN_EVAL(f, center + abscissa)
+ GSL_FN_EVAL(f, center - abscissa));
res43 += fval * w43b[k];
savfun[k + 10] = fval;
}

/*  test for convergence */

result_kronrod = res43 * half_length;
err = rescale_error ((res43 - res21) * half_length, resabs, resasc);

if (err < epsabs || err < epsrel * fabs (result_kronrod))
{
* result = result_kronrod ;
* abserr = err ;
* neval = 43;
return GSL_SUCCESS;
}

/* compute the integral using the 87-point formula. */

res87 = w87b[22] * f_center;

for (k = 0; k < 21; k++)
{
res87 += savfun[k] * w87a[k];
}

for (k = 0; k < 22; k++)
{
const double abscissa = half_length * x4[k];
res87 += w87b[k] * (GSL_FN_EVAL(f, center + abscissa)
+ GSL_FN_EVAL(f, center - abscissa));
}

/*  test for convergence */

result_kronrod = res87 * half_length ;

err = rescale_error ((res87 - res43) * half_length, resabs, resasc);

if (err < epsabs || err < epsrel * fabs (result_kronrod))
{
* result = result_kronrod ;
* abserr = err ;
* neval = 87;
return GSL_SUCCESS;
}

/* failed to converge */

* result = result_kronrod ;
* abserr = err ;
* neval = 87;

// GSL_ERROR("failed to reach tolerance with highest-order rule", GSL_ETOL) ;
return GSL_ETOL ;
}
```
RooGaussKronrodIntegrator1D.cxx:1
RooGaussKronrodIntegrator1D.cxx:2
RooGaussKronrodIntegrator1D.cxx:3
RooGaussKronrodIntegrator1D.cxx:4
RooGaussKronrodIntegrator1D.cxx:5
RooGaussKronrodIntegrator1D.cxx:6
RooGaussKronrodIntegrator1D.cxx:7
RooGaussKronrodIntegrator1D.cxx:8
RooGaussKronrodIntegrator1D.cxx:9
RooGaussKronrodIntegrator1D.cxx:10
RooGaussKronrodIntegrator1D.cxx:11
RooGaussKronrodIntegrator1D.cxx:12
RooGaussKronrodIntegrator1D.cxx:13
RooGaussKronrodIntegrator1D.cxx:14
RooGaussKronrodIntegrator1D.cxx:15
RooGaussKronrodIntegrator1D.cxx:16
RooGaussKronrodIntegrator1D.cxx:17
RooGaussKronrodIntegrator1D.cxx:18
RooGaussKronrodIntegrator1D.cxx:19
RooGaussKronrodIntegrator1D.cxx:20
RooGaussKronrodIntegrator1D.cxx:21
RooGaussKronrodIntegrator1D.cxx:22
RooGaussKronrodIntegrator1D.cxx:23
RooGaussKronrodIntegrator1D.cxx:24
RooGaussKronrodIntegrator1D.cxx:25
RooGaussKronrodIntegrator1D.cxx:26
RooGaussKronrodIntegrator1D.cxx:27
RooGaussKronrodIntegrator1D.cxx:28
RooGaussKronrodIntegrator1D.cxx:29
RooGaussKronrodIntegrator1D.cxx:30
RooGaussKronrodIntegrator1D.cxx:31
RooGaussKronrodIntegrator1D.cxx:32
RooGaussKronrodIntegrator1D.cxx:33
RooGaussKronrodIntegrator1D.cxx:34
RooGaussKronrodIntegrator1D.cxx:35
RooGaussKronrodIntegrator1D.cxx:36
RooGaussKronrodIntegrator1D.cxx:37
RooGaussKronrodIntegrator1D.cxx:38
RooGaussKronrodIntegrator1D.cxx:39
RooGaussKronrodIntegrator1D.cxx:40
RooGaussKronrodIntegrator1D.cxx:41
RooGaussKronrodIntegrator1D.cxx:42
RooGaussKronrodIntegrator1D.cxx:43
RooGaussKronrodIntegrator1D.cxx:44
RooGaussKronrodIntegrator1D.cxx:45
RooGaussKronrodIntegrator1D.cxx:46
RooGaussKronrodIntegrator1D.cxx:47
RooGaussKronrodIntegrator1D.cxx:48
RooGaussKronrodIntegrator1D.cxx:49
RooGaussKronrodIntegrator1D.cxx:50
RooGaussKronrodIntegrator1D.cxx:51
RooGaussKronrodIntegrator1D.cxx:52
RooGaussKronrodIntegrator1D.cxx:53
RooGaussKronrodIntegrator1D.cxx:54
RooGaussKronrodIntegrator1D.cxx:55
RooGaussKronrodIntegrator1D.cxx:56
RooGaussKronrodIntegrator1D.cxx:57
RooGaussKronrodIntegrator1D.cxx:58
RooGaussKronrodIntegrator1D.cxx:59
RooGaussKronrodIntegrator1D.cxx:60
RooGaussKronrodIntegrator1D.cxx:61
RooGaussKronrodIntegrator1D.cxx:62
RooGaussKronrodIntegrator1D.cxx:63
RooGaussKronrodIntegrator1D.cxx:64
RooGaussKronrodIntegrator1D.cxx:65
RooGaussKronrodIntegrator1D.cxx:66
RooGaussKronrodIntegrator1D.cxx:67
RooGaussKronrodIntegrator1D.cxx:68
RooGaussKronrodIntegrator1D.cxx:69
RooGaussKronrodIntegrator1D.cxx:70
RooGaussKronrodIntegrator1D.cxx:71
RooGaussKronrodIntegrator1D.cxx:72
RooGaussKronrodIntegrator1D.cxx:73
RooGaussKronrodIntegrator1D.cxx:74
RooGaussKronrodIntegrator1D.cxx:75
RooGaussKronrodIntegrator1D.cxx:76
RooGaussKronrodIntegrator1D.cxx:77
RooGaussKronrodIntegrator1D.cxx:78
RooGaussKronrodIntegrator1D.cxx:79
RooGaussKronrodIntegrator1D.cxx:80
RooGaussKronrodIntegrator1D.cxx:81
RooGaussKronrodIntegrator1D.cxx:82
RooGaussKronrodIntegrator1D.cxx:83
RooGaussKronrodIntegrator1D.cxx:84
RooGaussKronrodIntegrator1D.cxx:85
RooGaussKronrodIntegrator1D.cxx:86
RooGaussKronrodIntegrator1D.cxx:87
RooGaussKronrodIntegrator1D.cxx:88
RooGaussKronrodIntegrator1D.cxx:89
RooGaussKronrodIntegrator1D.cxx:90
RooGaussKronrodIntegrator1D.cxx:91
RooGaussKronrodIntegrator1D.cxx:92
RooGaussKronrodIntegrator1D.cxx:93
RooGaussKronrodIntegrator1D.cxx:94
RooGaussKronrodIntegrator1D.cxx:95
RooGaussKronrodIntegrator1D.cxx:96
RooGaussKronrodIntegrator1D.cxx:97
RooGaussKronrodIntegrator1D.cxx:98
RooGaussKronrodIntegrator1D.cxx:99
RooGaussKronrodIntegrator1D.cxx:100
RooGaussKronrodIntegrator1D.cxx:101
RooGaussKronrodIntegrator1D.cxx:102
RooGaussKronrodIntegrator1D.cxx:103
RooGaussKronrodIntegrator1D.cxx:104
RooGaussKronrodIntegrator1D.cxx:105
RooGaussKronrodIntegrator1D.cxx:106
RooGaussKronrodIntegrator1D.cxx:107
RooGaussKronrodIntegrator1D.cxx:108
RooGaussKronrodIntegrator1D.cxx:109
RooGaussKronrodIntegrator1D.cxx:110
RooGaussKronrodIntegrator1D.cxx:111
RooGaussKronrodIntegrator1D.cxx:112
RooGaussKronrodIntegrator1D.cxx:113
RooGaussKronrodIntegrator1D.cxx:114
RooGaussKronrodIntegrator1D.cxx:115
RooGaussKronrodIntegrator1D.cxx:116
RooGaussKronrodIntegrator1D.cxx:117
RooGaussKronrodIntegrator1D.cxx:118
RooGaussKronrodIntegrator1D.cxx:119
RooGaussKronrodIntegrator1D.cxx:120
RooGaussKronrodIntegrator1D.cxx:121
RooGaussKronrodIntegrator1D.cxx:122
RooGaussKronrodIntegrator1D.cxx:123
RooGaussKronrodIntegrator1D.cxx:124
RooGaussKronrodIntegrator1D.cxx:125
RooGaussKronrodIntegrator1D.cxx:126
RooGaussKronrodIntegrator1D.cxx:127
RooGaussKronrodIntegrator1D.cxx:128
RooGaussKronrodIntegrator1D.cxx:129
RooGaussKronrodIntegrator1D.cxx:130
RooGaussKronrodIntegrator1D.cxx:131
RooGaussKronrodIntegrator1D.cxx:132
RooGaussKronrodIntegrator1D.cxx:133
RooGaussKronrodIntegrator1D.cxx:134
RooGaussKronrodIntegrator1D.cxx:135
RooGaussKronrodIntegrator1D.cxx:136
RooGaussKronrodIntegrator1D.cxx:137
RooGaussKronrodIntegrator1D.cxx:138
RooGaussKronrodIntegrator1D.cxx:139
RooGaussKronrodIntegrator1D.cxx:140
RooGaussKronrodIntegrator1D.cxx:141
RooGaussKronrodIntegrator1D.cxx:142
RooGaussKronrodIntegrator1D.cxx:143
RooGaussKronrodIntegrator1D.cxx:144
RooGaussKronrodIntegrator1D.cxx:145
RooGaussKronrodIntegrator1D.cxx:146
RooGaussKronrodIntegrator1D.cxx:147
RooGaussKronrodIntegrator1D.cxx:148
RooGaussKronrodIntegrator1D.cxx:149
RooGaussKronrodIntegrator1D.cxx:150
RooGaussKronrodIntegrator1D.cxx:151
RooGaussKronrodIntegrator1D.cxx:152
RooGaussKronrodIntegrator1D.cxx:153
RooGaussKronrodIntegrator1D.cxx:154
RooGaussKronrodIntegrator1D.cxx:155
RooGaussKronrodIntegrator1D.cxx:156
RooGaussKronrodIntegrator1D.cxx:157
RooGaussKronrodIntegrator1D.cxx:158
RooGaussKronrodIntegrator1D.cxx:159
RooGaussKronrodIntegrator1D.cxx:160
RooGaussKronrodIntegrator1D.cxx:161
RooGaussKronrodIntegrator1D.cxx:162
RooGaussKronrodIntegrator1D.cxx:163
RooGaussKronrodIntegrator1D.cxx:164
RooGaussKronrodIntegrator1D.cxx:165
RooGaussKronrodIntegrator1D.cxx:166
RooGaussKronrodIntegrator1D.cxx:167
RooGaussKronrodIntegrator1D.cxx:168
RooGaussKronrodIntegrator1D.cxx:169
RooGaussKronrodIntegrator1D.cxx:170
RooGaussKronrodIntegrator1D.cxx:171
RooGaussKronrodIntegrator1D.cxx:172
RooGaussKronrodIntegrator1D.cxx:173
RooGaussKronrodIntegrator1D.cxx:174
RooGaussKronrodIntegrator1D.cxx:175
RooGaussKronrodIntegrator1D.cxx:176
RooGaussKronrodIntegrator1D.cxx:177
RooGaussKronrodIntegrator1D.cxx:178
RooGaussKronrodIntegrator1D.cxx:179
RooGaussKronrodIntegrator1D.cxx:180
RooGaussKronrodIntegrator1D.cxx:181
RooGaussKronrodIntegrator1D.cxx:182
RooGaussKronrodIntegrator1D.cxx:183
RooGaussKronrodIntegrator1D.cxx:184
RooGaussKronrodIntegrator1D.cxx:185
RooGaussKronrodIntegrator1D.cxx:186
RooGaussKronrodIntegrator1D.cxx:187
RooGaussKronrodIntegrator1D.cxx:188
RooGaussKronrodIntegrator1D.cxx:189
RooGaussKronrodIntegrator1D.cxx:190
RooGaussKronrodIntegrator1D.cxx:191
RooGaussKronrodIntegrator1D.cxx:192
RooGaussKronrodIntegrator1D.cxx:193
RooGaussKronrodIntegrator1D.cxx:194
RooGaussKronrodIntegrator1D.cxx:195
RooGaussKronrodIntegrator1D.cxx:196
RooGaussKronrodIntegrator1D.cxx:197
RooGaussKronrodIntegrator1D.cxx:198
RooGaussKronrodIntegrator1D.cxx:199
RooGaussKronrodIntegrator1D.cxx:200
RooGaussKronrodIntegrator1D.cxx:201
RooGaussKronrodIntegrator1D.cxx:202
RooGaussKronrodIntegrator1D.cxx:203
RooGaussKronrodIntegrator1D.cxx:204
RooGaussKronrodIntegrator1D.cxx:205
RooGaussKronrodIntegrator1D.cxx:206
RooGaussKronrodIntegrator1D.cxx:207
RooGaussKronrodIntegrator1D.cxx:208
RooGaussKronrodIntegrator1D.cxx:209
RooGaussKronrodIntegrator1D.cxx:210
RooGaussKronrodIntegrator1D.cxx:211
RooGaussKronrodIntegrator1D.cxx:212
RooGaussKronrodIntegrator1D.cxx:213
RooGaussKronrodIntegrator1D.cxx:214
RooGaussKronrodIntegrator1D.cxx:215
RooGaussKronrodIntegrator1D.cxx:216
RooGaussKronrodIntegrator1D.cxx:217
RooGaussKronrodIntegrator1D.cxx:218
RooGaussKronrodIntegrator1D.cxx:219
RooGaussKronrodIntegrator1D.cxx:220
RooGaussKronrodIntegrator1D.cxx:221
RooGaussKronrodIntegrator1D.cxx:222
RooGaussKronrodIntegrator1D.cxx:223
RooGaussKronrodIntegrator1D.cxx:224
RooGaussKronrodIntegrator1D.cxx:225
RooGaussKronrodIntegrator1D.cxx:226
RooGaussKronrodIntegrator1D.cxx:227
RooGaussKronrodIntegrator1D.cxx:228
RooGaussKronrodIntegrator1D.cxx:229
RooGaussKronrodIntegrator1D.cxx:230
RooGaussKronrodIntegrator1D.cxx:231
RooGaussKronrodIntegrator1D.cxx:232
RooGaussKronrodIntegrator1D.cxx:233
RooGaussKronrodIntegrator1D.cxx:234
RooGaussKronrodIntegrator1D.cxx:235
RooGaussKronrodIntegrator1D.cxx:236
RooGaussKronrodIntegrator1D.cxx:237
RooGaussKronrodIntegrator1D.cxx:238
RooGaussKronrodIntegrator1D.cxx:239
RooGaussKronrodIntegrator1D.cxx:240
RooGaussKronrodIntegrator1D.cxx:241
RooGaussKronrodIntegrator1D.cxx:242
RooGaussKronrodIntegrator1D.cxx:243
RooGaussKronrodIntegrator1D.cxx:244
RooGaussKronrodIntegrator1D.cxx:245
RooGaussKronrodIntegrator1D.cxx:246
RooGaussKronrodIntegrator1D.cxx:247
RooGaussKronrodIntegrator1D.cxx:248
RooGaussKronrodIntegrator1D.cxx:249
RooGaussKronrodIntegrator1D.cxx:250
RooGaussKronrodIntegrator1D.cxx:251
RooGaussKronrodIntegrator1D.cxx:252
RooGaussKronrodIntegrator1D.cxx:253
RooGaussKronrodIntegrator1D.cxx:254
RooGaussKronrodIntegrator1D.cxx:255
RooGaussKronrodIntegrator1D.cxx:256
RooGaussKronrodIntegrator1D.cxx:257
RooGaussKronrodIntegrator1D.cxx:258
RooGaussKronrodIntegrator1D.cxx:259
RooGaussKronrodIntegrator1D.cxx:260
RooGaussKronrodIntegrator1D.cxx:261
RooGaussKronrodIntegrator1D.cxx:262
RooGaussKronrodIntegrator1D.cxx:263
RooGaussKronrodIntegrator1D.cxx:264
RooGaussKronrodIntegrator1D.cxx:265
RooGaussKronrodIntegrator1D.cxx:266
RooGaussKronrodIntegrator1D.cxx:267
RooGaussKronrodIntegrator1D.cxx:268
RooGaussKronrodIntegrator1D.cxx:269
RooGaussKronrodIntegrator1D.cxx:270
RooGaussKronrodIntegrator1D.cxx:271
RooGaussKronrodIntegrator1D.cxx:272
RooGaussKronrodIntegrator1D.cxx:273
RooGaussKronrodIntegrator1D.cxx:274
RooGaussKronrodIntegrator1D.cxx:275
RooGaussKronrodIntegrator1D.cxx:276
RooGaussKronrodIntegrator1D.cxx:277
RooGaussKronrodIntegrator1D.cxx:278
RooGaussKronrodIntegrator1D.cxx:279
RooGaussKronrodIntegrator1D.cxx:280
RooGaussKronrodIntegrator1D.cxx:281
RooGaussKronrodIntegrator1D.cxx:282
RooGaussKronrodIntegrator1D.cxx:283
RooGaussKronrodIntegrator1D.cxx:284
RooGaussKronrodIntegrator1D.cxx:285
RooGaussKronrodIntegrator1D.cxx:286
RooGaussKronrodIntegrator1D.cxx:287
RooGaussKronrodIntegrator1D.cxx:288
RooGaussKronrodIntegrator1D.cxx:289
RooGaussKronrodIntegrator1D.cxx:290
RooGaussKronrodIntegrator1D.cxx:291
RooGaussKronrodIntegrator1D.cxx:292
RooGaussKronrodIntegrator1D.cxx:293
RooGaussKronrodIntegrator1D.cxx:294
RooGaussKronrodIntegrator1D.cxx:295
RooGaussKronrodIntegrator1D.cxx:296
RooGaussKronrodIntegrator1D.cxx:297
RooGaussKronrodIntegrator1D.cxx:298
RooGaussKronrodIntegrator1D.cxx:299
RooGaussKronrodIntegrator1D.cxx:300
RooGaussKronrodIntegrator1D.cxx:301
RooGaussKronrodIntegrator1D.cxx:302
RooGaussKronrodIntegrator1D.cxx:303
RooGaussKronrodIntegrator1D.cxx:304
RooGaussKronrodIntegrator1D.cxx:305
RooGaussKronrodIntegrator1D.cxx:306
RooGaussKronrodIntegrator1D.cxx:307
RooGaussKronrodIntegrator1D.cxx:308
RooGaussKronrodIntegrator1D.cxx:309
RooGaussKronrodIntegrator1D.cxx:310
RooGaussKronrodIntegrator1D.cxx:311
RooGaussKronrodIntegrator1D.cxx:312
RooGaussKronrodIntegrator1D.cxx:313
RooGaussKronrodIntegrator1D.cxx:314
RooGaussKronrodIntegrator1D.cxx:315
RooGaussKronrodIntegrator1D.cxx:316
RooGaussKronrodIntegrator1D.cxx:317
RooGaussKronrodIntegrator1D.cxx:318
RooGaussKronrodIntegrator1D.cxx:319
RooGaussKronrodIntegrator1D.cxx:320
RooGaussKronrodIntegrator1D.cxx:321
RooGaussKronrodIntegrator1D.cxx:322
RooGaussKronrodIntegrator1D.cxx:323
RooGaussKronrodIntegrator1D.cxx:324
RooGaussKronrodIntegrator1D.cxx:325
RooGaussKronrodIntegrator1D.cxx:326
RooGaussKronrodIntegrator1D.cxx:327
RooGaussKronrodIntegrator1D.cxx:328
RooGaussKronrodIntegrator1D.cxx:329
RooGaussKronrodIntegrator1D.cxx:330
RooGaussKronrodIntegrator1D.cxx:331
RooGaussKronrodIntegrator1D.cxx:332
RooGaussKronrodIntegrator1D.cxx:333
RooGaussKronrodIntegrator1D.cxx:334
RooGaussKronrodIntegrator1D.cxx:335
RooGaussKronrodIntegrator1D.cxx:336
RooGaussKronrodIntegrator1D.cxx:337
RooGaussKronrodIntegrator1D.cxx:338
RooGaussKronrodIntegrator1D.cxx:339
RooGaussKronrodIntegrator1D.cxx:340
RooGaussKronrodIntegrator1D.cxx:341
RooGaussKronrodIntegrator1D.cxx:342
RooGaussKronrodIntegrator1D.cxx:343
RooGaussKronrodIntegrator1D.cxx:344
RooGaussKronrodIntegrator1D.cxx:345
RooGaussKronrodIntegrator1D.cxx:346
RooGaussKronrodIntegrator1D.cxx:347
RooGaussKronrodIntegrator1D.cxx:348
RooGaussKronrodIntegrator1D.cxx:349
RooGaussKronrodIntegrator1D.cxx:350
RooGaussKronrodIntegrator1D.cxx:351
RooGaussKronrodIntegrator1D.cxx:352
RooGaussKronrodIntegrator1D.cxx:353
RooGaussKronrodIntegrator1D.cxx:354
RooGaussKronrodIntegrator1D.cxx:355
RooGaussKronrodIntegrator1D.cxx:356
RooGaussKronrodIntegrator1D.cxx:357
RooGaussKronrodIntegrator1D.cxx:358
RooGaussKronrodIntegrator1D.cxx:359
RooGaussKronrodIntegrator1D.cxx:360
RooGaussKronrodIntegrator1D.cxx:361
RooGaussKronrodIntegrator1D.cxx:362
RooGaussKronrodIntegrator1D.cxx:363
RooGaussKronrodIntegrator1D.cxx:364
RooGaussKronrodIntegrator1D.cxx:365
RooGaussKronrodIntegrator1D.cxx:366
RooGaussKronrodIntegrator1D.cxx:367
RooGaussKronrodIntegrator1D.cxx:368
RooGaussKronrodIntegrator1D.cxx:369
RooGaussKronrodIntegrator1D.cxx:370
RooGaussKronrodIntegrator1D.cxx:371
RooGaussKronrodIntegrator1D.cxx:372
RooGaussKronrodIntegrator1D.cxx:373
RooGaussKronrodIntegrator1D.cxx:374
RooGaussKronrodIntegrator1D.cxx:375
RooGaussKronrodIntegrator1D.cxx:376
RooGaussKronrodIntegrator1D.cxx:377
RooGaussKronrodIntegrator1D.cxx:378
RooGaussKronrodIntegrator1D.cxx:379
RooGaussKronrodIntegrator1D.cxx:380
RooGaussKronrodIntegrator1D.cxx:381
RooGaussKronrodIntegrator1D.cxx:382
RooGaussKronrodIntegrator1D.cxx:383
RooGaussKronrodIntegrator1D.cxx:384
RooGaussKronrodIntegrator1D.cxx:385
RooGaussKronrodIntegrator1D.cxx:386
RooGaussKronrodIntegrator1D.cxx:387
RooGaussKronrodIntegrator1D.cxx:388
RooGaussKronrodIntegrator1D.cxx:389
RooGaussKronrodIntegrator1D.cxx:390
RooGaussKronrodIntegrator1D.cxx:391
RooGaussKronrodIntegrator1D.cxx:392
RooGaussKronrodIntegrator1D.cxx:393
RooGaussKronrodIntegrator1D.cxx:394
RooGaussKronrodIntegrator1D.cxx:395
RooGaussKronrodIntegrator1D.cxx:396
RooGaussKronrodIntegrator1D.cxx:397
RooGaussKronrodIntegrator1D.cxx:398
RooGaussKronrodIntegrator1D.cxx:399
RooGaussKronrodIntegrator1D.cxx:400
RooGaussKronrodIntegrator1D.cxx:401
RooGaussKronrodIntegrator1D.cxx:402
RooGaussKronrodIntegrator1D.cxx:403
RooGaussKronrodIntegrator1D.cxx:404
RooGaussKronrodIntegrator1D.cxx:405
RooGaussKronrodIntegrator1D.cxx:406
RooGaussKronrodIntegrator1D.cxx:407
RooGaussKronrodIntegrator1D.cxx:408
RooGaussKronrodIntegrator1D.cxx:409
RooGaussKronrodIntegrator1D.cxx:410
RooGaussKronrodIntegrator1D.cxx:411
RooGaussKronrodIntegrator1D.cxx:412
RooGaussKronrodIntegrator1D.cxx:413
RooGaussKronrodIntegrator1D.cxx:414
RooGaussKronrodIntegrator1D.cxx:415
RooGaussKronrodIntegrator1D.cxx:416
RooGaussKronrodIntegrator1D.cxx:417
RooGaussKronrodIntegrator1D.cxx:418
RooGaussKronrodIntegrator1D.cxx:419
RooGaussKronrodIntegrator1D.cxx:420
RooGaussKronrodIntegrator1D.cxx:421
RooGaussKronrodIntegrator1D.cxx:422
RooGaussKronrodIntegrator1D.cxx:423
RooGaussKronrodIntegrator1D.cxx:424
RooGaussKronrodIntegrator1D.cxx:425
RooGaussKronrodIntegrator1D.cxx:426
RooGaussKronrodIntegrator1D.cxx:427
RooGaussKronrodIntegrator1D.cxx:428
RooGaussKronrodIntegrator1D.cxx:429
RooGaussKronrodIntegrator1D.cxx:430
RooGaussKronrodIntegrator1D.cxx:431
RooGaussKronrodIntegrator1D.cxx:432
RooGaussKronrodIntegrator1D.cxx:433
RooGaussKronrodIntegrator1D.cxx:434
RooGaussKronrodIntegrator1D.cxx:435
RooGaussKronrodIntegrator1D.cxx:436
RooGaussKronrodIntegrator1D.cxx:437
RooGaussKronrodIntegrator1D.cxx:438
RooGaussKronrodIntegrator1D.cxx:439
RooGaussKronrodIntegrator1D.cxx:440
RooGaussKronrodIntegrator1D.cxx:441
RooGaussKronrodIntegrator1D.cxx:442
RooGaussKronrodIntegrator1D.cxx:443
RooGaussKronrodIntegrator1D.cxx:444
RooGaussKronrodIntegrator1D.cxx:445
RooGaussKronrodIntegrator1D.cxx:446
RooGaussKronrodIntegrator1D.cxx:447
RooGaussKronrodIntegrator1D.cxx:448
RooGaussKronrodIntegrator1D.cxx:449
RooGaussKronrodIntegrator1D.cxx:450
RooGaussKronrodIntegrator1D.cxx:451
RooGaussKronrodIntegrator1D.cxx:452
RooGaussKronrodIntegrator1D.cxx:453
RooGaussKronrodIntegrator1D.cxx:454
RooGaussKronrodIntegrator1D.cxx:455
RooGaussKronrodIntegrator1D.cxx:456
RooGaussKronrodIntegrator1D.cxx:457
RooGaussKronrodIntegrator1D.cxx:458
RooGaussKronrodIntegrator1D.cxx:459
RooGaussKronrodIntegrator1D.cxx:460
RooGaussKronrodIntegrator1D.cxx:461
RooGaussKronrodIntegrator1D.cxx:462
RooGaussKronrodIntegrator1D.cxx:463
RooGaussKronrodIntegrator1D.cxx:464
RooGaussKronrodIntegrator1D.cxx:465
RooGaussKronrodIntegrator1D.cxx:466
RooGaussKronrodIntegrator1D.cxx:467
RooGaussKronrodIntegrator1D.cxx:468
RooGaussKronrodIntegrator1D.cxx:469
RooGaussKronrodIntegrator1D.cxx:470
RooGaussKronrodIntegrator1D.cxx:471
RooGaussKronrodIntegrator1D.cxx:472
RooGaussKronrodIntegrator1D.cxx:473
RooGaussKronrodIntegrator1D.cxx:474
RooGaussKronrodIntegrator1D.cxx:475
RooGaussKronrodIntegrator1D.cxx:476
RooGaussKronrodIntegrator1D.cxx:477
RooGaussKronrodIntegrator1D.cxx:478
RooGaussKronrodIntegrator1D.cxx:479
RooGaussKronrodIntegrator1D.cxx:480
RooGaussKronrodIntegrator1D.cxx:481
RooGaussKronrodIntegrator1D.cxx:482
RooGaussKronrodIntegrator1D.cxx:483
RooGaussKronrodIntegrator1D.cxx:484
RooGaussKronrodIntegrator1D.cxx:485
RooGaussKronrodIntegrator1D.cxx:486
RooGaussKronrodIntegrator1D.cxx:487
RooGaussKronrodIntegrator1D.cxx:488
RooGaussKronrodIntegrator1D.cxx:489
RooGaussKronrodIntegrator1D.cxx:490
RooGaussKronrodIntegrator1D.cxx:491
RooGaussKronrodIntegrator1D.cxx:492
RooGaussKronrodIntegrator1D.cxx:493
RooGaussKronrodIntegrator1D.cxx:494
RooGaussKronrodIntegrator1D.cxx:495
RooGaussKronrodIntegrator1D.cxx:496
RooGaussKronrodIntegrator1D.cxx:497
RooGaussKronrodIntegrator1D.cxx:498
RooGaussKronrodIntegrator1D.cxx:499
RooGaussKronrodIntegrator1D.cxx:500
RooGaussKronrodIntegrator1D.cxx:501
RooGaussKronrodIntegrator1D.cxx:502
RooGaussKronrodIntegrator1D.cxx:503
RooGaussKronrodIntegrator1D.cxx:504
RooGaussKronrodIntegrator1D.cxx:505
RooGaussKronrodIntegrator1D.cxx:506
RooGaussKronrodIntegrator1D.cxx:507
RooGaussKronrodIntegrator1D.cxx:508
RooGaussKronrodIntegrator1D.cxx:509
RooGaussKronrodIntegrator1D.cxx:510
RooGaussKronrodIntegrator1D.cxx:511
RooGaussKronrodIntegrator1D.cxx:512
RooGaussKronrodIntegrator1D.cxx:513
RooGaussKronrodIntegrator1D.cxx:514
RooGaussKronrodIntegrator1D.cxx:515
RooGaussKronrodIntegrator1D.cxx:516
RooGaussKronrodIntegrator1D.cxx:517
RooGaussKronrodIntegrator1D.cxx:518
RooGaussKronrodIntegrator1D.cxx:519
RooGaussKronrodIntegrator1D.cxx:520
RooGaussKronrodIntegrator1D.cxx:521
RooGaussKronrodIntegrator1D.cxx:522
RooGaussKronrodIntegrator1D.cxx:523
RooGaussKronrodIntegrator1D.cxx:524
RooGaussKronrodIntegrator1D.cxx:525
RooGaussKronrodIntegrator1D.cxx:526
RooGaussKronrodIntegrator1D.cxx:527
RooGaussKronrodIntegrator1D.cxx:528
RooGaussKronrodIntegrator1D.cxx:529
RooGaussKronrodIntegrator1D.cxx:530
RooGaussKronrodIntegrator1D.cxx:531
RooGaussKronrodIntegrator1D.cxx:532
RooGaussKronrodIntegrator1D.cxx:533
RooGaussKronrodIntegrator1D.cxx:534
RooGaussKronrodIntegrator1D.cxx:535
RooGaussKronrodIntegrator1D.cxx:536
RooGaussKronrodIntegrator1D.cxx:537
RooGaussKronrodIntegrator1D.cxx:538
RooGaussKronrodIntegrator1D.cxx:539
RooGaussKronrodIntegrator1D.cxx:540
RooGaussKronrodIntegrator1D.cxx:541
RooGaussKronrodIntegrator1D.cxx:542
RooGaussKronrodIntegrator1D.cxx:543
RooGaussKronrodIntegrator1D.cxx:544
RooGaussKronrodIntegrator1D.cxx:545
RooGaussKronrodIntegrator1D.cxx:546
RooGaussKronrodIntegrator1D.cxx:547
RooGaussKronrodIntegrator1D.cxx:548
RooGaussKronrodIntegrator1D.cxx:549
RooGaussKronrodIntegrator1D.cxx:550
RooGaussKronrodIntegrator1D.cxx:551
RooGaussKronrodIntegrator1D.cxx:552
RooGaussKronrodIntegrator1D.cxx:553
RooGaussKronrodIntegrator1D.cxx:554
RooGaussKronrodIntegrator1D.cxx:555
RooGaussKronrodIntegrator1D.cxx:556
RooGaussKronrodIntegrator1D.cxx:557
RooGaussKronrodIntegrator1D.cxx:558
RooGaussKronrodIntegrator1D.cxx:559
RooGaussKronrodIntegrator1D.cxx:560
RooGaussKronrodIntegrator1D.cxx:561
RooGaussKronrodIntegrator1D.cxx:562
RooGaussKronrodIntegrator1D.cxx:563
RooGaussKronrodIntegrator1D.cxx:564
RooGaussKronrodIntegrator1D.cxx:565
RooGaussKronrodIntegrator1D.cxx:566
RooGaussKronrodIntegrator1D.cxx:567
RooGaussKronrodIntegrator1D.cxx:568
RooGaussKronrodIntegrator1D.cxx:569
RooGaussKronrodIntegrator1D.cxx:570
RooGaussKronrodIntegrator1D.cxx:571
RooGaussKronrodIntegrator1D.cxx:572
RooGaussKronrodIntegrator1D.cxx:573
RooGaussKronrodIntegrator1D.cxx:574
RooGaussKronrodIntegrator1D.cxx:575
RooGaussKronrodIntegrator1D.cxx:576
RooGaussKronrodIntegrator1D.cxx:577
RooGaussKronrodIntegrator1D.cxx:578
RooGaussKronrodIntegrator1D.cxx:579
RooGaussKronrodIntegrator1D.cxx:580
RooGaussKronrodIntegrator1D.cxx:581
RooGaussKronrodIntegrator1D.cxx:582
RooGaussKronrodIntegrator1D.cxx:583
RooGaussKronrodIntegrator1D.cxx:584
RooGaussKronrodIntegrator1D.cxx:585
RooGaussKronrodIntegrator1D.cxx:586
RooGaussKronrodIntegrator1D.cxx:587
RooGaussKronrodIntegrator1D.cxx:588
RooGaussKronrodIntegrator1D.cxx:589
RooGaussKronrodIntegrator1D.cxx:590
RooGaussKronrodIntegrator1D.cxx:591
RooGaussKronrodIntegrator1D.cxx:592
RooGaussKronrodIntegrator1D.cxx:593
RooGaussKronrodIntegrator1D.cxx:594
RooGaussKronrodIntegrator1D.cxx:595
RooGaussKronrodIntegrator1D.cxx:596
RooGaussKronrodIntegrator1D.cxx:597
RooGaussKronrodIntegrator1D.cxx:598
RooGaussKronrodIntegrator1D.cxx:599
RooGaussKronrodIntegrator1D.cxx:600
RooGaussKronrodIntegrator1D.cxx:601
RooGaussKronrodIntegrator1D.cxx:602
RooGaussKronrodIntegrator1D.cxx:603
RooGaussKronrodIntegrator1D.cxx:604
RooGaussKronrodIntegrator1D.cxx:605
RooGaussKronrodIntegrator1D.cxx:606
RooGaussKronrodIntegrator1D.cxx:607
RooGaussKronrodIntegrator1D.cxx:608
RooGaussKronrodIntegrator1D.cxx:609
RooGaussKronrodIntegrator1D.cxx:610
RooGaussKronrodIntegrator1D.cxx:611
RooGaussKronrodIntegrator1D.cxx:612
RooGaussKronrodIntegrator1D.cxx:613
RooGaussKronrodIntegrator1D.cxx:614
RooGaussKronrodIntegrator1D.cxx:615
RooGaussKronrodIntegrator1D.cxx:616
RooGaussKronrodIntegrator1D.cxx:617
RooGaussKronrodIntegrator1D.cxx:618
RooGaussKronrodIntegrator1D.cxx:619
RooGaussKronrodIntegrator1D.cxx:620
RooGaussKronrodIntegrator1D.cxx:621
RooGaussKronrodIntegrator1D.cxx:622
RooGaussKronrodIntegrator1D.cxx:623
RooGaussKronrodIntegrator1D.cxx:624
RooGaussKronrodIntegrator1D.cxx:625
RooGaussKronrodIntegrator1D.cxx:626
RooGaussKronrodIntegrator1D.cxx:627
RooGaussKronrodIntegrator1D.cxx:628
RooGaussKronrodIntegrator1D.cxx:629
RooGaussKronrodIntegrator1D.cxx:630
RooGaussKronrodIntegrator1D.cxx:631
RooGaussKronrodIntegrator1D.cxx:632
RooGaussKronrodIntegrator1D.cxx:633
RooGaussKronrodIntegrator1D.cxx:634
RooGaussKronrodIntegrator1D.cxx:635
RooGaussKronrodIntegrator1D.cxx:636
RooGaussKronrodIntegrator1D.cxx:637
RooGaussKronrodIntegrator1D.cxx:638
RooGaussKronrodIntegrator1D.cxx:639
RooGaussKronrodIntegrator1D.cxx:640
RooGaussKronrodIntegrator1D.cxx:641
RooGaussKronrodIntegrator1D.cxx:642
RooGaussKronrodIntegrator1D.cxx:643
RooGaussKronrodIntegrator1D.cxx:644
RooGaussKronrodIntegrator1D.cxx:645
RooGaussKronrodIntegrator1D.cxx:646
RooGaussKronrodIntegrator1D.cxx:647
RooGaussKronrodIntegrator1D.cxx:648
RooGaussKronrodIntegrator1D.cxx:649
RooGaussKronrodIntegrator1D.cxx:650
RooGaussKronrodIntegrator1D.cxx:651
RooGaussKronrodIntegrator1D.cxx:652
RooGaussKronrodIntegrator1D.cxx:653
RooGaussKronrodIntegrator1D.cxx:654
RooGaussKronrodIntegrator1D.cxx:655