```/*****************************************************************************
* Project: RooFit                                                           *
* Package: RooFitCore                                                       *
* @(#)root/roofitcore:\$Id\$
* Authors:                                                                  *
*   WV, Wouter Verkerke, UC Santa Barbara, verkerke@slac.stanford.edu       *
*   DK, David Kirkby,    UC Irvine,         dkirkby@uci.edu                 *
*                                                                           *
* Copyright (c) 2000-2005, Regents of the University of California          *
*                                                                           *
* Redistribution and use in source and binary forms,                        *
* with or without modification, are permitted according to the terms        *
*****************************************************************************/

//////////////////////////////////////////////////////////////////////////////
//
// BEGIN_HTML
// Class RooPolyVar is a RooAbsReal implementing a polynomial in terms
// of a list of RooAbsReal coefficients
// <pre>
// f(x) = sum_i a_i * x
// </pre>
// Class RooPolyvar implements analytical integrals of all polynomials
// it can define.
// END_HTML
//

#include "RooFit.h"

#include "Riostream.h"
#include "Riostream.h"
#include <math.h>
#include "TMath.h"

#include "RooPolyVar.h"
#include "RooAbsReal.h"
#include "RooRealVar.h"
#include "RooArgList.h"
#include "RooMsgService.h"
#include "TMath.h"

#include "TError.h"

using namespace std;

ClassImp(RooPolyVar)
;

//_____________________________________________________________________________
RooPolyVar::RooPolyVar() : _lowestOrder(0)
{
// Default constructor
_coefIter = _coefList.createIterator() ;
}

//_____________________________________________________________________________
RooPolyVar::RooPolyVar(const char* name, const char* title,
RooAbsReal& x, const RooArgList& coefList, Int_t lowestOrder) :
RooAbsReal(name, title),
_x("x", "Dependent", this, x),
_coefList("coefList","List of coefficients",this),
_lowestOrder(lowestOrder)
{
// Construct polynomial in x with coefficients in coefList. If
// lowestOrder is not zero, then the first element in coefList is
// interpreted as as the 'lowestOrder' coefficients and all
// subsequent coeffient elements are shifted by a similar amount.

_coefIter = _coefList.createIterator() ;

// Check lowest order
if (_lowestOrder<0) {
coutE(InputArguments) << "RooPolyVar::ctor(" << GetName()
<< ") WARNING: lowestOrder must be >=0, setting value to 0" << endl ;
_lowestOrder=0 ;
}

TIterator* coefIter = coefList.createIterator() ;
RooAbsArg* coef ;
while((coef = (RooAbsArg*)coefIter->Next())) {
if (!dynamic_cast<RooAbsReal*>(coef)) {
coutE(InputArguments) << "RooPolyVar::ctor(" << GetName() << ") ERROR: coefficient " << coef->GetName()
<< " is not of type RooAbsReal" << endl ;
assert(0) ;
}
}
delete coefIter ;
}

//_____________________________________________________________________________
RooPolyVar::RooPolyVar(const char* name, const char* title,
RooAbsReal& x) :
RooAbsReal(name, title),
_x("x", "Dependent", this, x),
_coefList("coefList","List of coefficients",this),
_lowestOrder(1)
{
// Constructor of flat polynomial function

_coefIter = _coefList.createIterator() ;
}

//_____________________________________________________________________________
RooPolyVar::RooPolyVar(const RooPolyVar& other, const char* name) :
RooAbsReal(other, name),
_x("x", this, other._x),
_coefList("coefList",this,other._coefList),
_lowestOrder(other._lowestOrder)
{
// Copy constructor
_coefIter = _coefList.createIterator() ;
}

//_____________________________________________________________________________
RooPolyVar::~RooPolyVar()
{
// Destructor
delete _coefIter ;
}

//_____________________________________________________________________________
Double_t RooPolyVar::evaluate() const
{
// Calculate and return value of polynomial

Double_t sum(0) ;
Int_t order(_lowestOrder) ;
_coefIter->Reset() ;

RooAbsReal* coef ;
const RooArgSet* nset = _coefList.nset() ;
while((coef=(RooAbsReal*)_coefIter->Next())) {
sum += coef->getVal(nset)*TMath::Power(_x,order++) ;
}

return sum;
}

//_____________________________________________________________________________
Int_t RooPolyVar::getAnalyticalIntegral(RooArgSet& allVars, RooArgSet& analVars, const char* /*rangeName*/) const
{
// Advertise that we can internally integrate over x

if (matchArgs(allVars, analVars, _x)) return 1;
return 0;
}

//_____________________________________________________________________________
Double_t RooPolyVar::analyticalIntegral(Int_t code, const char* rangeName) const
{
// Calculate and return analytical integral over x

R__ASSERT(code==1) ;

Double_t sum(0) ;

const RooArgSet* nset = _coefList.nset() ;
Int_t order(_lowestOrder) ;
_coefIter->Reset() ;
RooAbsReal* coef ;

// Primitive = sum(k) coef_k * 1/(k+1) x^(k+1)
while((coef=(RooAbsReal*)_coefIter->Next())) {
sum += coef->getVal(nset)*(TMath::Power(_x.max(rangeName),order+1)-TMath::Power(_x.min(rangeName),order+1))/(order+1) ;
order++ ;
}

return sum;

}
```
RooPolyVar.cxx:1
RooPolyVar.cxx:2
RooPolyVar.cxx:3
RooPolyVar.cxx:4
RooPolyVar.cxx:5
RooPolyVar.cxx:6
RooPolyVar.cxx:7
RooPolyVar.cxx:8
RooPolyVar.cxx:9
RooPolyVar.cxx:10
RooPolyVar.cxx:11
RooPolyVar.cxx:12
RooPolyVar.cxx:13
RooPolyVar.cxx:14
RooPolyVar.cxx:15
RooPolyVar.cxx:16
RooPolyVar.cxx:17
RooPolyVar.cxx:18
RooPolyVar.cxx:19
RooPolyVar.cxx:20
RooPolyVar.cxx:21
RooPolyVar.cxx:22
RooPolyVar.cxx:23
RooPolyVar.cxx:24
RooPolyVar.cxx:25
RooPolyVar.cxx:26
RooPolyVar.cxx:27
RooPolyVar.cxx:28
RooPolyVar.cxx:29
RooPolyVar.cxx:30
RooPolyVar.cxx:31
RooPolyVar.cxx:32
RooPolyVar.cxx:33
RooPolyVar.cxx:34
RooPolyVar.cxx:35
RooPolyVar.cxx:36
RooPolyVar.cxx:37
RooPolyVar.cxx:38
RooPolyVar.cxx:39
RooPolyVar.cxx:40
RooPolyVar.cxx:41
RooPolyVar.cxx:42
RooPolyVar.cxx:43
RooPolyVar.cxx:44
RooPolyVar.cxx:45
RooPolyVar.cxx:46
RooPolyVar.cxx:47
RooPolyVar.cxx:48
RooPolyVar.cxx:49
RooPolyVar.cxx:50
RooPolyVar.cxx:51
RooPolyVar.cxx:52
RooPolyVar.cxx:53
RooPolyVar.cxx:54
RooPolyVar.cxx:55
RooPolyVar.cxx:56
RooPolyVar.cxx:57
RooPolyVar.cxx:58
RooPolyVar.cxx:59
RooPolyVar.cxx:60
RooPolyVar.cxx:61
RooPolyVar.cxx:62
RooPolyVar.cxx:63
RooPolyVar.cxx:64
RooPolyVar.cxx:65
RooPolyVar.cxx:66
RooPolyVar.cxx:67
RooPolyVar.cxx:68
RooPolyVar.cxx:69
RooPolyVar.cxx:70
RooPolyVar.cxx:71
RooPolyVar.cxx:72
RooPolyVar.cxx:73
RooPolyVar.cxx:74
RooPolyVar.cxx:75
RooPolyVar.cxx:76
RooPolyVar.cxx:77
RooPolyVar.cxx:78
RooPolyVar.cxx:79
RooPolyVar.cxx:80
RooPolyVar.cxx:81
RooPolyVar.cxx:82
RooPolyVar.cxx:83
RooPolyVar.cxx:84
RooPolyVar.cxx:85
RooPolyVar.cxx:86
RooPolyVar.cxx:87
RooPolyVar.cxx:88
RooPolyVar.cxx:89
RooPolyVar.cxx:90
RooPolyVar.cxx:91
RooPolyVar.cxx:92
RooPolyVar.cxx:93
RooPolyVar.cxx:94
RooPolyVar.cxx:95
RooPolyVar.cxx:96
RooPolyVar.cxx:97
RooPolyVar.cxx:98
RooPolyVar.cxx:99
RooPolyVar.cxx:100
RooPolyVar.cxx:101
RooPolyVar.cxx:102
RooPolyVar.cxx:103
RooPolyVar.cxx:104
RooPolyVar.cxx:105
RooPolyVar.cxx:106
RooPolyVar.cxx:107
RooPolyVar.cxx:108
RooPolyVar.cxx:109
RooPolyVar.cxx:110
RooPolyVar.cxx:111
RooPolyVar.cxx:112
RooPolyVar.cxx:113
RooPolyVar.cxx:114
RooPolyVar.cxx:115
RooPolyVar.cxx:116
RooPolyVar.cxx:117
RooPolyVar.cxx:118
RooPolyVar.cxx:119
RooPolyVar.cxx:120
RooPolyVar.cxx:121
RooPolyVar.cxx:122
RooPolyVar.cxx:123
RooPolyVar.cxx:124
RooPolyVar.cxx:125
RooPolyVar.cxx:126
RooPolyVar.cxx:127
RooPolyVar.cxx:128
RooPolyVar.cxx:129
RooPolyVar.cxx:130
RooPolyVar.cxx:131
RooPolyVar.cxx:132
RooPolyVar.cxx:133
RooPolyVar.cxx:134
RooPolyVar.cxx:135
RooPolyVar.cxx:136
RooPolyVar.cxx:137
RooPolyVar.cxx:138
RooPolyVar.cxx:139
RooPolyVar.cxx:140
RooPolyVar.cxx:141
RooPolyVar.cxx:142
RooPolyVar.cxx:143
RooPolyVar.cxx:144
RooPolyVar.cxx:145
RooPolyVar.cxx:146
RooPolyVar.cxx:147
RooPolyVar.cxx:148
RooPolyVar.cxx:149
RooPolyVar.cxx:150
RooPolyVar.cxx:151
RooPolyVar.cxx:152
RooPolyVar.cxx:153
RooPolyVar.cxx:154
RooPolyVar.cxx:155
RooPolyVar.cxx:156
RooPolyVar.cxx:157
RooPolyVar.cxx:158
RooPolyVar.cxx:159
RooPolyVar.cxx:160
RooPolyVar.cxx:161
RooPolyVar.cxx:162
RooPolyVar.cxx:163
RooPolyVar.cxx:164
RooPolyVar.cxx:165
RooPolyVar.cxx:166
RooPolyVar.cxx:167
RooPolyVar.cxx:168
RooPolyVar.cxx:169
RooPolyVar.cxx:170
RooPolyVar.cxx:171
RooPolyVar.cxx:172
RooPolyVar.cxx:173
RooPolyVar.cxx:174
RooPolyVar.cxx:175
RooPolyVar.cxx:176
RooPolyVar.cxx:177
RooPolyVar.cxx:178
RooPolyVar.cxx:179
RooPolyVar.cxx:180
RooPolyVar.cxx:181
RooPolyVar.cxx:182
RooPolyVar.cxx:183
RooPolyVar.cxx:184
RooPolyVar.cxx:185
RooPolyVar.cxx:186
RooPolyVar.cxx:187
RooPolyVar.cxx:188
RooPolyVar.cxx:189
RooPolyVar.cxx:190