library: libHist
#include "TProfile3D.h"

TProfile3D


class description - header file - source file - inheritance tree (.pdf)

class TProfile3D : public TH3D

Inheritance Chart:
TObject
<-
TNamed
TAttLine
TAttFill
TAttMarker
<-
TH1
TAtt3D
<-
TH3
TArray
<-
TArrayD
<-
TH3D
<-
TProfile3D
    private:
Double_t* GetB() Double_t* GetW() Double_t* GetW2() protected:
virtual Int_t BufferFill(Double_t, Double_t) virtual Int_t BufferFill(Double_t, Double_t, Double_t) virtual Int_t BufferFill(Double_t, Double_t, Double_t, Double_t) virtual Int_t BufferFill(Double_t x, Double_t y, Double_t z, Double_t t, Double_t w) public:
TProfile3D() TProfile3D(const char* name, const char* title, Int_t nbinsx, Double_t xlow, Double_t xup, Int_t nbinsy, Double_t ylow, Double_t yup, Int_t nbinsz, Double_t zlow, Double_t zup, Option_t* option = "") TProfile3D(const char* name, const char* title, Int_t nbinsx, const Double_t* xbins, Int_t nbinsy, const Double_t* ybins, Int_t nbinsz, const Double_t* zbins, Option_t* option = "") TProfile3D(const TProfile3D& profile) virtual ~TProfile3D() virtual void Add(TF1* h1, Double_t c1 = 1, Option_t* option = "") virtual void Add(const TH1* h1, Double_t c1 = 1) virtual void Add(const TH1* h1, const TH1* h2, Double_t c1 = 1, Double_t c2 = 1) static void Approximate(Bool_t approx = kTRUE) virtual Int_t BufferEmpty(Int_t action = 0) void BuildOptions(Double_t tmin, Double_t tmax, Option_t* option) static TClass* Class() virtual void Copy(TObject& hnew) const virtual void Divide(TF1* h1, Double_t c1 = 1) virtual void Divide(const TH1* h1) virtual void Divide(const TH1* h1, const TH1* h2, Double_t c1 = 1, Double_t c2 = 1, Option_t* option = "") virtual TH1* DrawCopy(Option_t* option = "") const virtual Int_t Fill(Double_t) virtual Int_t Fill(const char*, Double_t) virtual Int_t Fill(Double_t, Double_t) virtual Int_t Fill(Double_t, Double_t, Double_t) virtual Int_t Fill(const char*, const char*, const char*, Double_t) virtual Int_t Fill(const char*, Double_t, const char*, Double_t) virtual Int_t Fill(const char*, const char*, Double_t, Double_t) virtual Int_t Fill(Double_t, const char*, const char*, Double_t) virtual Int_t Fill(Double_t, const char*, Double_t, Double_t) virtual Int_t Fill(Double_t, Double_t, const char*, Double_t) virtual Int_t Fill(Double_t x, Double_t y, Double_t z, Double_t t) virtual Int_t Fill(Double_t x, Double_t y, Double_t z, Double_t t, Double_t w) virtual Double_t GetBinContent(Int_t bin) const virtual Double_t GetBinContent(Int_t, Int_t) const virtual Double_t GetBinContent(Int_t binx, Int_t biny, Int_t binz) const virtual Double_t GetBinEntries(Int_t bin) const virtual Double_t GetBinError(Int_t bin) const virtual Double_t GetBinError(Int_t, Int_t) const virtual Double_t GetBinError(Int_t binx, Int_t biny, Int_t binz) const Option_t* GetErrorOption() const virtual void GetStats(Double_t* stats) const virtual Double_t GetTmax() const virtual Double_t GetTmin() const virtual TClass* IsA() const virtual Long64_t Merge(TCollection* list) virtual void Multiply(TF1* h1, Double_t c1 = 1) virtual void Multiply(const TH1* h1) virtual void Multiply(const TH1* h1, const TH1* h2, Double_t c1 = 1, Double_t c2 = 1, Option_t* option = "") TH3D* ProjectionXYZ(const char* name = "_pxyz", Option_t* option = "e") const virtual void PutStats(Double_t* stats) virtual void RebinAxis(Double_t x, const char* ax) virtual void Reset(Option_t* option = "") virtual void SavePrimitive(ostream& out, Option_t* option = "") virtual void Scale(Double_t c1 = 1) virtual void SetBinEntries(Int_t bin, Double_t w) virtual void SetBins(Int_t, Double_t, Double_t) virtual void SetBins(Int_t, const Double_t*) virtual void SetBins(Int_t, Double_t, Double_t, Int_t, Double_t, Double_t) virtual void SetBins(Int_t nbinsx, Double_t xmin, Double_t xmax, Int_t nbinsy, Double_t ymin, Double_t ymax, Int_t nbinsz, Double_t zmin, Double_t zmax) virtual void SetBins(Int_t, const Double_t*, Int_t, const Double_t*) virtual void SetBuffer(Int_t buffersize, Option_t* opt = "") virtual void SetErrorOption(Option_t* option = "") virtual void ShowMembers(TMemberInspector& insp, char* parent) virtual void Streamer(TBuffer& b) void StreamerNVirtual(TBuffer& b)

Data Members


    protected:
TArrayD fBinEntries number of entries per bin EErrorType fErrorMode Option to compute errors Double_t fTmin Lower limit in T (if set) Double_t fTmax Upper limit in T (if set) Bool_t fScaling !True when TProfile3D::Scale is called Double_t fTsumwt Total Sum of weight*T Double_t fTsumwt2 Total Sum of weight*T*T static Bool_t fgApproximate bin error approximation option

Class Description

______________________________________________________________________________

  Profile3D histograms are used to display the mean
  value of T and its RMS for each cell in X,Y,Z.
  Profile3D histograms are in many cases an
  The inter-relation of three measured quantities X, Y, Z and T can always
  be visualized by a four-dimensional histogram or scatter-plot;
  its representation on the line-printer is not particularly
  satisfactory, except for sparse data. If T is an unknown (but single-valued)
  approximate function of X,Y,Z this function is displayed by a profile3D histogram with
  much better precision than by a scatter-plot.

  The following formulae show the cumulated contents (capital letters) and the values
  displayed by the printing or plotting routines (small letters) of the elements for cell I, J.

                                                                2
      H(I,J,K)  =  sum T                      E(I,J,K)  =  sum T
      l(I,J,K)  =  sum l                      L(I,J,K)  =  sum l
      h(I,J,K)  =  H(I,J,K)/L(I,J,K)          s(I,J,K)  =  sqrt(E(I,J,K)/L(I,J,K)- h(I,J,K)**2)
      e(I,J,K)  =  s(I,J,K)/sqrt(L(I,J,K))

  In the special case where s(I,J,K) is zero (eg, case of 1 entry only in one cell)
  e(I,J,K) is computed from the average of the s(I,J,K) for all cells.
  This simple/crude approximation was suggested in order to keep the cell
  during a fit operation.

           Example of a profile3D histogram
{
  TCanvas *c1 = new TCanvas("c1","Profile histogram example",200,10,700,500);
  hprof3d  = new TProfile3D("hprof3d","Profile of pt versus px, py and pz",40,-4,4,40,-4,4,40,0,20);
  Double_t px, py, pz, pt;
  TRandom3 r(0);
  for ( Int_t i=0; i<25000; i++) {
     r.Rannor(px,py);
     pz = px*px + py*py;
     pt = r.Landau(0,1);
     hprof3d->Fill(px,py,pz,pt,1);
  }
  hprof3d->Draw();
}

 NOTE: A TProfile3D is drawn as it was a simple TH3
TProfile3D()
*-*-*-*-*-*Default constructor for Profile3D histograms*-*-*-*-*-*-*-*-*
*-*        ============================================
~TProfile3D()
*-*-*-*-*-*Default destructor for Profile3D histograms*-*-*-*-*-*-*-*-*
*-*        ===========================================
TProfile3D(const char *name,const char *title,Int_t nx,Double_t xlow,Double_t xup,Int_t ny,Double_t ylow,Double_t yup,Int_t nz, Double_t zlow,Double_t zup,Option_t *option)
*-*-*-*-*-*Normal Constructor for Profile histograms*-*-*-*-*-*-*-*-*-*
*-*        ==========================================

  The first eleven parameters are similar to TH3D::TH3D.
  All values of t are accepted at filling time.
  To fill a profile3D histogram, one must use TProfile3D::Fill function.

  Note that when filling the profile histogram the function Fill
  checks if the variable t is betyween fTmin and fTmax.
  If a minimum or maximum value is set for the T scale before filling,
  then all values below tmin or above tmax will be discarded.
  Setting the minimum or maximum value for the T scale before filling
  has the same effect as calling the special TProfile3D constructor below
  where tmin and tmax are specified.

  H(I,J,K) is printed as the cell contents. The errors computed are s(I,J,K) if CHOPT='S'
  (spread option), or e(I,J,K) if CHOPT=' ' (error on mean).

        See TProfile3D::BuildOptions for explanation of parameters

   see other constructors below with all possible combinations of
   fix and variable bin size like in TH3D.
TProfile3D(const char *name,const char *title,Int_t nx,const Double_t *xbins,Int_t ny,const Double_t *ybins,Int_t nz,const Double_t *zbins,Option_t *option)
  Create a 3-D Profile with variable bins in X , Y and Z
void BuildOptions(Double_t tmin, Double_t tmax, Option_t *option)
*-*-*-*-*-*-*Set Profile3D histogram structure and options*-*-*-*-*-*-*-*-*
*-*          =============================================

    If a cell has N data points all with the same value T (especially
    possible when dealing with integers), the spread in T for that cell
    is zero, and the uncertainty assigned is also zero, and the cell is
    ignored in making subsequent fits. If SQRT(T) was the correct error
    in the case above, then SQRT(T)/SQRT(N) would be the correct error here.
    In fact, any cell with non-zero number of entries N but with zero spread
    should have an uncertainty SQRT(T)/SQRT(N).

    Now, is SQRT(T)/SQRT(N) really the correct uncertainty?
    that it is only in the case where the T variable is some sort
    of counting statistics, following a Poisson distribution. This should
    probably be set as the default case. However, T can be any variable
    from an original NTUPLE, not necessarily distributed "Poissonly".
    The computation of errors is based on the parameter option:
    option:
     ' '  (Default) Errors are Spread/SQRT(N) for Spread.ne.0. ,
                      "     "  SQRT(T)/SQRT(N) for Spread.eq.0,N.gt.0 ,
                      "     "  0.  for N.eq.0
     's'            Errors are Spread  for Spread.ne.0. ,
                      "     "  SQRT(T)  for Spread.eq.0,N.gt.0 ,
                      "     "  0.  for N.eq.0
     'i'            Errors are Spread/SQRT(N) for Spread.ne.0. ,
                      "     "  1./SQRT(12.*N) for Spread.eq.0,N.gt.0 ,
                      "     "  0.  for N.eq.0

    The third case above corresponds to Integer T values for which the
    uncertainty is +-0.5, with the assumption that the probability that T
    takes any value between T-0.5 and T+0.5 is uniform (the same argument
    goes for T uniformly distributed between T and T+1); this would be
    useful if T is an ADC measurement, for example. Other, fancier options
    would be possible, at the cost of adding one more parameter to the PROFILE2D
    For example, if all T variables are distributed according to some
    known Gaussian of standard deviation Sigma, then:
     'G'            Errors are Spread/SQRT(N) for Spread.ne.0. ,
                      "     "  Sigma/SQRT(N) for Spread.eq.0,N.gt.0 ,
                      "     "  0.  for N.eq.0
    For example, this would be useful when all T's are experimental quantities
    measured with the same instrument with precision Sigma.


TProfile3D(const TProfile3D &profile)
copy constructor
void Add(TF1 *, Double_t , Option_t*)
 Performs the operation: this = this + c1*f1
void Add(const TH1 *h1, Double_t c1)
 Performs the operation: this = this + c1*h1
void Add(const TH1 *h1, const TH1 *h2, Double_t c1, Double_t c2)
*-*-*-*-*Replace contents of this profile3D by the addition of h1 and h2*-*-*
*-*      ===============================================================

   this = c1*h1 + c2*h2

void Approximate(Bool_t approx)
     static function
 set the fgApproximate flag. When the flag is true, the function GetBinError
 will approximate the bin error with the average profile error on all bins
 in the following situation only
  - the number of bins in the profile3D is less than 10404 (eg 100x100x100)
  - the bin number of entries is small ( <5)
  - the estimated bin error is extremely small compared to the bin content
  (see TProfile3D::GetBinError)
Int_t BufferEmpty(Int_t action)
 Fill histogram with all entries in the buffer.
 action = -1 histogram is reset and refilled from the buffer (called by THistPainter::Paint)
 action =  0 histogram is filled from the buffer
 action =  1 histogram is filled and buffer is deleted
             The buffer is automatically deleted when the number of entries
             in the buffer is greater than the number of entries in the histogram
Int_t BufferFill(Double_t x, Double_t y, Double_t z, Double_t t, Double_t w)
 accumulate arguments in buffer. When buffer is full, empty the buffer
 fBuffer[0] = number of entries in buffer
 fBuffer[1] = w of first entry
 fBuffer[2] = x of first entry
 fBuffer[3] = y of first entry
 fBuffer[4] = z of first entry
 fBuffer[5] = t of first entry
void Copy(TObject &obj)
*-*-*-*-*-*-*-*Copy a Profile3D histogram to a new profile2D histogram*-*-*-*
*-*            =======================================================
void Divide(TF1 *, Double_t )
 Performs the operation: this = this/(c1*f1)
void Divide(const TH1 *h1)
*-*-*-*-*-*-*-*-*-*-*Divide this profile2D by h1*-*-*-*-*-*-*-*-*-*-*-*-*
*-*                  ===========================

   this = this/h1

void Divide(const TH1 *h1, const TH1 *h2, Double_t c1, Double_t c2, Option_t *option)
*-*-*-*-*Replace contents of this profile2D by the division of h1 by h2*-*-*
*-*      ==============================================================

   this = c1*h1/(c2*h2)

TH1 * DrawCopy(Option_t *option)
*-*-*-*-*-*-*-*Draw a copy of this profile3D histogram*-*-*-*-*-*-*-*-*-*-*
*-*            =======================================
Int_t Fill(Double_t x, Double_t y, Double_t z, Double_t t)
*-*-*-*-*-*-*-*-*-*-*Fill a Profile3D histogram (no weights)*-*-*-*-*-*-*-*
*-*                  =======================================
Int_t Fill(Double_t x, Double_t y, Double_t z, Double_t t, Double_t w)
*-*-*-*-*-*-*-*-*-*-*Fill a Profile3D histogram with weights*-*-*-*-*-*-*-*
*-*                  =======================================
Double_t GetBinContent(Int_t bin)
*-*-*-*-*-*-*Return bin content of a Profile3D histogram*-*-*-*-*-*-*-*-*
*-*          ===========================================
Double_t GetBinEntries(Int_t bin)
*-*-*-*-*-*-*Return bin entries of a Profile3D histogram*-*-*-*-*-*-*-*-*
*-*          ===========================================
Double_t GetBinError(Int_t bin)
*-*-*-*-*-*-*Return bin error of a Profile3D histogram*-*-*-*-*-*-*-*-*

 Computing errors: A moving field
 =================================
 The computation of errors for a TProfile3D has evolved with the versions
 of ROOT. The difficulty is in computing errors for bins with low statistics.
 - prior to version 3.10, we had no special treatment of low statistic bins.
   As a result, these bins had huge errors. The reason is that the
   expression eprim2 is very close to 0 (rounding problems) or 0.
 - The algorithm is modified/protected for the case
   when a TProfile3D is projected (ProjectionX). The previous algorithm
   generated a N^2 problem when projecting a TProfile3D with a large number of
   bins (eg 100000).
 - in version 3.10/02, a new static function TProfile::Approximate
   is introduced to enable or disable (default) the approximation.
   (see also comments in TProfile::GetBinError)
Option_t * GetErrorOption()
*-*-*-*-*-*-*-*-*-*Return option to compute profile2D errors*-*-*-*-*-*-*-*
*-*                =========================================
void GetStats(Double_t *stats)
 fill the array stats from the contents of this profile
 The array stats must be correctly dimensionned in the calling program.
 stats[0] = sumw
 stats[1] = sumw2
 stats[2] = sumwx
 stats[3] = sumwx2
 stats[4] = sumwy
 stats[5] = sumwy2
 stats[6] = sumwxy
 stats[7] = sumwz
 stats[8] = sumwz2
 stats[9] = sumwxz
 stats[10]= sumwyz
 stats[11]= sumwt
 stats[12]= sumwt2

 If no axis-subrange is specified (via TAxis::SetRange), the array stats
 is simply a copy of the statistics quantities computed at filling time.
 If a sub-range is specified, the function recomputes these quantities
 from the bin contents in the current axis range.
Long64_t Merge(TCollection *li)
Merge all histograms in the collection in this histogram.
This function computes the min/max for the axes,
compute a new number of bins, if necessary,
add bin contents, errors and statistics.
If overflows are present and limits are different the function will fail.
The function returns the total number of entries in the result histogram
if the merge is successfull, -1 otherwise.

IMPORTANT remark. The 2 axis x and y may have different number
of bins and different limits, BUT the largest bin width must be
a multiple of the smallest bin width and the upper limit must also
be a multiple of the bin width.
void Multiply(TF1 *, Double_t )
 Performs the operation: this = this*c1*f1
void Multiply(const TH1 *)
*-*-*-*-*-*-*-*-*-*-*Multiply this profile2D by h1*-*-*-*-*-*-*-*-*-*-*-*
*-*                  =============================

   this = this*h1

void Multiply(const TH1 *, const TH1 *, Double_t, Double_t, Option_t *)
*-*-*-*-*Replace contents of this profile2D by multiplication of h1 by h2*-*
*-*      ================================================================

   this = (c1*h1)*(c2*h2)

TH3D * ProjectionXYZ(const char *name, Option_t *option)
*-*-*-*-*Project this profile3D into a 3-D histogram along X,Y,Z*-*-*-*-*-*-*
*-*      =====================================================

   The projection is always of the type TH3D.

   if option "E" is specified, the errors are computed. (default)
   if option "B" is specified, the content of bin of the returned histogram
      will be equal to the GetBinEntries(bin) of the profile,
   if option "C=E" the bin contents of the projection are set to the
       bin errors of the profile

void PutStats(Double_t *stats)
 Replace current statistics with the values in array stats
void Reset(Option_t *option)
*-*-*-*-*-*-*-*-*-*Reset contents of a Profile3D histogram*-*-*-*-*-*-*-*
*-*                =======================================
void RebinAxis(Double_t x, const char* ax)
 Profile histogram is resized along ax such that x is in the axis range.
 The new axis limits are recomputed by doubling iteratively
 the current axis range until the specified value x is within the limits.
 The algorithm makes a copy of the histogram, then loops on all bins
 of the old histogram to fill the rebinned histogram.
 Takes into account errors (Sumw2) if any.
 The bit kCanRebin must be set before invoking this function.
  Ex:  h->SetBit(TH1::kCanRebin);
void SavePrimitive(ostream &out, Option_t *option /*= ""*/)
 Save primitive as a C++ statement(s) on output stream out
void Scale(Double_t c1)
*-*-*-*-*Multiply this profile2D by a constant c1*-*-*-*-*-*-*-*-*
*-*      ========================================

   this = c1*this

 This function uses the services of TProfile3D::Add

void SetBinEntries(Int_t bin, Double_t w)
*-*-*-*-*-*-*-*-*Set the number of entries in bin*-*-*-*-*-*-*-*-*-*-*-*
*-*              ================================
void SetBins(Int_t nx, Double_t xmin, Double_t xmax, Int_t ny, Double_t ymin, Double_t ymax, Int_t nz, Double_t zmin, Double_t zmax)
*-*-*-*-*-*-*-*-*Redefine  x axis parameters*-*-*-*-*-*-*-*-*-*-*-*
*-*              ===========================
void SetBuffer(Int_t buffersize, Option_t *)
 set the buffer size in units of 8 bytes (double)
void SetErrorOption(Option_t *option)
*-*-*-*-*-*-*-*-*-*Set option to compute profile2D errors*-*-*-*-*-*-*-*
*-*                =======================================

    The computation of errors is based on the parameter option:
    option:
     ' '  (Default) Errors are Spread/SQRT(N) for Spread.ne.0. ,
                      "     "  SQRT(T)/SQRT(N) for Spread.eq.0,N.gt.0 ,
                      "     "  0.  for N.eq.0
     's'            Errors are Spread  for Spread.ne.0. ,
                      "     "  SQRT(T)  for Spread.eq.0,N.gt.0 ,
                      "     "  0.  for N.eq.0
     'i'            Errors are Spread/SQRT(N) for Spread.ne.0. ,
                      "     "  1./SQRT(12.*N) for Spread.eq.0,N.gt.0 ,
                      "     "  0.  for N.eq.0
   See TProfile3D::BuildOptions for explanation of all options
Int_t BufferFill(Double_t, Double_t)
Int_t BufferFill(Double_t, Double_t, Double_t)
Int_t BufferFill(Double_t, Double_t, Double_t, Double_t)
Int_t Fill(Double_t)
Int_t Fill(const char*, Double_t)
Int_t Fill(Double_t, Double_t)
Int_t Fill(Double_t, Double_t,Double_t)
Int_t Fill(const char *, const char *, const char *, Double_t)
Int_t Fill(const char *, Double_t , const char *, Double_t)
Int_t Fill(const char *, const char *, Double_t, Double_t)
Int_t Fill(Double_t, const char *, const char *, Double_t)
Int_t Fill(Double_t, const char *, Double_t, Double_t)
Int_t Fill(Double_t, Double_t, const char *, Double_t)
Double_t GetBinContent(Int_t bin)
Double_t GetBinContent(Int_t,Int_t)
Double_t GetBinError(Int_t bin)
Double_t GetBinError(Int_t,Int_t)
Double_t GetTmin()
Double_t GetTmax()
void SetBins(Int_t, Double_t, Double_t)
void SetBins(Int_t, const Double_t*)
void SetBins(Int_t, Double_t, Double_t, Int_t, Double_t, Double_t)
void SetBins(Int_t nbinsx, Double_t xmin, Double_t xmax, Int_t nbinsy, Double_t ymin, Double_t ymax, Int_t nbinsz, Double_t zmin, Double_t zmax)

Author: Rene Brun 17/05/2006
Last update: root/hist:$Name: $:$Id: TProfile3D.cxx,v 1.4 2006/07/03 16:10:46 brun Exp $
Copyright (C) 1995-2000, Rene Brun and Fons Rademakers. *


ROOT page - Class index - Class Hierarchy - Top of the page

This page has been automatically generated. If you have any comments or suggestions about the page layout send a mail to ROOT support, or contact the developers with any questions or problems regarding ROOT.