
Contents

HTTP Server 3

1 HTTP server in ROOT 5

1.1 Starting the HTTP server . 5

1.2 Registering objects . 6

1.3 Command interface . 6

1.4 Configuring user access . 6

1.5 Using FastCGI interface . 7

1.5.1 Configure fastcgi with Apcahe2 . 7

1.5.2 Configure fastcgi with lighttpd . 8

1.6 Integration with existing applications . 8

1.6.1 Asynchronous timer . 8

1.6.2 Regular calls of THttpServer::ProcessRequests() method . 8

1.7 Data access from command shell . 9

1.7.1 Objects data access in JSON format . 9

1.7.2 Generating images out of objects . 10

1.7.3 Methods execution . 10

1.7.4 Commands execution . 11

1.7.5 Performing multiple requests at once . 11

1

2 CONTENTS

HTTP Server

*** Sergey Linev GSI, Darmstadt ***

3

4 CONTENTS

Chapter 1

HTTP server in ROOT

The idea of THttpServer is to provide remote http access to running ROOT application and enable HTML/JavaScript
user interface. Any registered object can be requested and displayed in the web browser. There are many benefits of
such approach:

• standard http interface to ROOT application
• no any temporary ROOT files to access data
• user interface running in all browsers

1.1 Starting the HTTP server

To start the http server, at any time, create an instance of the THttpServer class like:

serv = new THttpServer("http:8080");

This will start a civetweb-based http server on the port 8080. Then one should be able to open the address
“http://localhost:8080” in any modern browser (IE9, Firefox, Chrome, Opera) and browse objects created in application.
By default, the server can access files, canvases, and histograms via the gROOT pointer. All those objects can be
displayed with JSROOT graphics.

There is a snapshot (frozen copy) of such server, running in tutorials/http/httpserver.C macro from ROOT tutorial.

<iframe width=“800” height=“500” src=“https://root.cern.ch/js/3.6/httpserver.C/?layout=simple&item=Canvases/c1”>

One could specify several options when creating http server. They could be add as additional URL parameters to the
constructor arguments like:

serv = new THttpServer("http:8080?loopback&thrds=2");

Following parameters are supported:

• thrds=N - number of threads used by the civetweb (default is 5)
• top=name - configure top name, visible in the web browser
• auth_file=filename - authentication file name, created with htdigets utility
• auth_domain=domain - authentication domain
• loopback - bind specified port to loopback 127.0.0.1 address
• debug - enable debug mode, server always returns html page with request info

If necessary, one could bind http server to specific IP address like:

new THttpServer("http:192.168.1.17:8080")

5

https://root.cern.ch/root/html/THttpServer.html
https://github.com/bel2125/civetweb
https://root.cern.ch/js/3.6/httpserver.C/
https://root.cern.ch/gitweb?p=root.git;a=blob_plain;f=tutorials/http/httpserver.C;hb=HEAD

6 CHAPTER 1. HTTP SERVER IN ROOT

1.2 Registering objects

At any time, one could register other objects with the command:

TGraph* gr = new TGraph(10);
gr->SetName("gr1");
serv->Register("graphs/subfolder", gr);

One should specify sub-folder name, where objects will be registered. If sub-folder name does not starts with slash /,
than top-name folder /Objects/ will be prepended. At any time one could unregister objects:

serv->Unregister(gr);

THttpServer does not take ownership over registered objects - they should be deleted by user.

If the objects content is changing in the application, one could enable monitoring flag in the browser - then objects
view will be regularly updated.

1.3 Command interface

THttpServer class provide simple interface to invoke command from web browser. One just register command like:

serv->RegisterCommand("/DoSomething","SomeFunction()");

Element with name DoSomething will appear in the web browser and can be clicked. It will result in
gROOT->ProcessLineSync("SomeFunction()") call. When registering command, one could specify icon name which
will be displayed with the command.

serv->RegisterCommand("/DoSomething","SomeFunction()", "/rootsys/icons/ed_execute.png");

In example usage of images from $ROOTSYS/icons directory is shown. One could prepend button; string to the icon
name to let browser show command as extra button. In last case one could hide command element from elements list:

serv->Hide("/DoSomething");

One can find example of command interface usage in tutorials/http/httpcontrol.C macro.

1.4 Configuring user access

By default, the http server is open for anonymous access. One could restrict the access to the server for authenticated
users only. First of all, one should create a password file, using the htdigest utility.

[shell] htdigest -c .htdigest domain_name user_name

It is recommended not to use special symbols in domain or user names. Several users can be add to the “.htdigetst” file.
When starting the server, the following arguments should be specified:

root [0] new THttpServer("http:8080?auth_file=.htdigest&auth_domain=domain_name");

After that, the web browser will automatically request to input a name/password for the domain “domain_name”

Based on authorized accounts, one could restrict or enable access to some elements in the server objects hierarchy,
using THttpServer::Restrict() method.

For instance, one could hide complete folder from ‘guest’ account:

root [6] serv->Restrict("/Folder", "hidden=guest");

https://root.cern.ch/gitweb?p=root.git;a=blob_plain;f=tutorials/http/httpcontrol.C;hb=HEAD

1.5. USING FASTCGI INTERFACE 7

Or one could hide from all but ‘admin’ account:

root [7] serv->Restrict("/Folder", "visible=admin");

Hidden folders or objects can not be accessed via http protocol.

By default server runs in readonly mode and do not allow methods execution via ‘exe.json’ or ‘exe.bin’ requests. To
allow such action, one could either grant generic access for all or one could allow to execute only special method:

root [8] serv->Restrict("/Folder/histo1", "allow=all");
root [9] serv->Restrict("/Folder/histo1", "allow_method=GetTitle");

One could provide several options for the same item, separating them with ‘&’ sign:

root [10] serv->Restrict("/Folder/histo1", "allow_method=GetTitle&hide=guest");

Complete list of supported options could be found in TRootSniffer:Restrict() method documentation.

1.5 Using FastCGI interface

FastCGI is a protocol for interfacing interactive programs with a web server like Apache, lighttpd, Microsoft ISS and
many others.

When starting THttpServer, one could specify:

serv = new THttpServer("fastcgi:9000");

In fact, the FastCGI interface can run in parallel to http server. One can just call:

serv = new THttpServer("http:8080");
serv->CreateEngine("fastcgi:9000");

One could specify a debug parameter to be able to adjust the FastCGI configuration on the web server:

serv->CreateEngine("fastcgi:9000?debug=1");

All user access will be ruled by the main web server - for the moment one cannot restrict access with fastcgi engine.

1.5.1 Configure fastcgi with Apcahe2

First of all, one should compile and install mod_fastcgi module. Then mod_fastcgi should be specified in httpd.conf to
load it when Apache server is started. Finally in host configuration file one should have following lines:

<IfModule mod_fastcgi.c>
FastCgiExternalServer "/srv/www/htdocs/root.app" -host rootapp_host_name:9000

</IfModule>

Here is supposed that directory “/srv/www/htdocs” is root directory for web server. Than one should be able to open
address:

http://apache_host_name/root.app/

https://root.cern.ch/root/html/TRootSniffer.html#TRootSniffer:Restrict
http://en.wikipedia.org/wiki/FastCGI
http://www.fastcgi.com

8 CHAPTER 1. HTTP SERVER IN ROOT

1.5.2 Configure fastcgi with lighttpd

An example of configuration file for lighttpd server is:

server.modules += ("mod_fastcgi")
fastcgi.server = (

"/root.app" =>
(("host" => "192.168.1.11",

"port" => 9000,
"check-local" => "disable",
"docroot" => "/"

))
)

Be aware, that with lighttpd one should specify IP address of the host, where ROOT application is running. Address of
the ROOT application will be following:

http://lighttpd_host_name/root.app/

1.6 Integration with existing applications

In many practical cases no change of existing code is required. Opened files (and all objects inside), existing canvas
and histograms are automatically scanned by the server and will be available to the users. If necessary, any object can
be registered directly to the server with a THttpServer::Register() call.

Central point of integration - when and how THttpServer get access to data from a running application. By default it
is done during the gSystem->ProcessEvents() call - THttpServer uses a synchronous timer which is activated every 100
ms. Such approach works perfectly when running macros in an interactive ROOT session.

If an application runs in compiled code and does not contain gSystem->ProcessEvents() calls, two method are available.

1.6.1 Asynchronous timer

The first method is to configure an asynchronous timer for the server, like for example:

serv->SetTimer(100, kFALSE);

Then, the timer will be activated even without any gSystem->ProcessEvents() method call. The main advantage of
such method is that the application code can be used without any modifications. But there is no control when access
to the application data is performed. It could happen just in-between of TH1::Fill() calls and an histogram object
may be incomplete. Therefore such method is not recommended.

1.6.2 Regular calls of THttpServer::ProcessRequests() method

The second method is preferable - one just inserts in the application regular calls of the THttpServer::ProcessRequests()
method, like:

serv->ProcessRequests();

In such case, one can fully disable the timer of the server:

serv->SetTimer(0, kTRUE);

1.7. DATA ACCESS FROM COMMAND SHELL 9

1.7 Data access from command shell

The big advantage of the http protocol is that it is not only supported in web browsers, but also in many other
applications. One could use http requests to directly access ROOT objects and data members from any kind of scripts.
If one starts a server and register an object like for example:

root [1] serv = new THttpServer("http:8080");
root [2] TNamed* n1 = new TNamed("obj", "title");
root [3] serv->Register("subfolder", n1);

One could request a JSON representation of such object with the command:

[shell] wget http://localhost:8080/Objects/subfolder/obj/root.json

Then, its representation will look like:

{
"_typename" : "TNamed",
"fUniqueID" : 0,
"fBits" : 50331656,
"fName" : "obj",
"fTitle" : "title"

}

The following requests can be performed:

• root.bin - binary data produced by object streaming with TBufferFile
• root.json - ROOT JSON representation for object and objects members
• root.xml - ROOT XML representation
• root.png - PNG image (if object drawing implemented)
• root.gif - GIF image
• root.jpeg - JPEG image
• exe.json - method execution in the object
• exe.bin - method execution, return result in binary form
• cmd.json - command execution
• item.json - item (object) properties, specified on the server
• multi.json - perform several requests at once
• multi.bin - perform several requests at once, return result in binary form

All data will be automatically zipped if ‘.gz’ extension is appended. Like:

[shell] wget http://localhost:8080/Objects/subfolder/obj/root.json.gz

If the access to the server is restricted with htdigest, it is recommended to use the curl program since only curl correctly
implements such authentication method. The command will look like:

[shell] curl --user "accout:password" http://localhost:8080/Objects/subfolder/obj/root.json --digest -o root.json

1.7.1 Objects data access in JSON format

Request root.json implemented with TBufferJSON class. TBufferJSON generates such object representation, which
could be directly used in JSROOT for drawing. root.json request returns either complete object or just object
member like:

[shell] wget http://localhost:8080/Objects/subfolder/obj/fTitle/root.json

The result will be: “title”.
For the root.json request one could specify the ‘compact’ parameter, which allow to reduce the number of spaces and
new lines without data lost. This parameter can have values from ‘0’ (no compression) till ‘3’ (no spaces and new lines
at all).
Usage of root.json request is about as efficient as binary root.bin request. Comparison of different request methods
with TH1 object shown in the table:

https://root.cern.ch/root/html/TBufferJSON.html
https://root.cern.ch/js/

10 CHAPTER 1. HTTP SERVER IN ROOT

Request Size
root.bin 1658 bytes
root.bin.gz 782 bytes
root.json 7555 bytes
root.json?compact=3 5381 bytes
root.json.gz?compact=3 1207 bytes

One should remember that JSON representation always includes names of the data fields which are not present in the
binary representation. Even then the size difference is negligible.

root.json used in JSROOT to request objects from THttpServer.

1.7.2 Generating images out of objects

For the ROOT classes which are implementing Draw method (like TH1 or TGraph) one could produce images with
requests: root.png, root.gif, root.jpeg. For example:

wget "http://localhost:8080/Files/hsimple.root/hpx/root.png?w=500&h=500&opt=lego1" -O lego1.png

For all such requests one could specify following parameters:

• h - image height
• w - image width
• opt - draw options

1.7.3 Methods execution

By default THttpServer starts in monitoring (read-only) mode and therefore forbid any methods execution. One could
specify read-write mode when server is started:

serv = new THttpServer("http:8080;rw");

Or one could disable read-only mode with the call:

serv->SetReadOnly(kFALSE);

Or one could allow access to the folder, object or specific object methods with:

serv->Restrict("/Histograms", "allow=admin"); // allow full access for user with 'admin' accout
serv->Restrict("/Histograms/hist1", "allow=all"); // allow full access for all users
serv->Restrict("/Histograms/hist1", "allow_method=Rebin"); // allow only Rebin method

‘exe.json’ accepts following parameters: - method - name of method to execute - prototype - method prototype
(see TClass::GetMethodWithPrototype for details) - compact - compact parameter, used to compress return value -
_ret_object_ - name of the object which should be returned as result of method execution (used together with remote
TTree::Draw call)

Example of retrieving object title:

[shell] wget 'http://localhost:8080/Objects/subfolder/obj/exe.json?method=GetTitle' -O title.json

Example of TTree::Draw method execution:

[shell] wget 'http://localhost:8080/Files/job1.root/ntuple/exe.json?method=Draw&prototype="Option_t*"&opt="px:py>>h1"&_ret_object_=h1' -O exe.json

One also used exe.bin method - in this case results of method execution will be returned in binary format. In case
when method returns temporary object, which should be delete at the end of command execution, one should specify
_destroy_result_ parameter in the URL string:

https://root.cern.ch/root/html/TH1.html
https://root.cern.ch/root/html/TGraph.html
https://root.cern.ch/root/html/TClass.html#TClass:GetMethodWithPrototype

1.7. DATA ACCESS FROM COMMAND SHELL 11

[shell] wget 'http://localhost:8080/Objects/subfolder/obj/exe.json?method=Clone&_destroy_result_' -O clone.json

If method required object as argument, it could be posted in binary or XML format as POST request. If binary form
is used, one should specify following parameters:

[shell] wget 'http://localhost:8080/hist/exe.json?method=Add&h1=_post_object_&_post_class_=TH1I&c1=10' --post-file=h.bin -O res.json

Here is important to specify post object class, which is not stored in the binary buffer. When used XML form (produced
with TBufferXML::ConvertToXML) method, only string with XML code could be specified:

[shell] wget 'http://localhost:8080/hist/exe.json?method=Add&h1=_post_object_xml_&c1=10' --post-file=h.xml -O res.json

To get debug information about command execution, one could submit exe.txt request with same arguments.

1.7.4 Commands execution

If command registered to the server:

serv->RegisterCommand("/Folder/Start", "DoSomthing()");

It can be invoked with cmd.json request like:

[shell] wget http://localhost:8080/Folder/Start/cmd.json -O result.txt

If command fails, false will be returned, otherwise result of gROOT->ProcessLineSync() execution.

1.7.5 Performing multiple requests at once

To minimize traffic between sever and client, one could submit several requests at once. This is especially useful when
big number of small objects should be requestsed simultaneosely. For this purposes multi.bin or multi.json requests
could be used. Both require string as POST data which format as:

subfolder/item1/root.json\n
subfolder/item2/root.json\n
subfolder/item1/exe.json?method=GetTitle\n

If such requests saved in ‘req.txt’ file, one could submit it with command:

[shell] wget http://localhost:8080/multi.json?number=3 --post-file=req.txt -O result.json

For multi.json request one could use only requests, returning JSON format (like root.json or exe.json). Result
will be JSON array. For multi.bin any kind of requests can be used. It returns binary buffer with following content:

[size1 (little endian), 4 bytes] + [request1 result, size1 bytes]
[size2 (little endian), 4 bytes] + [request2 result, size2 bytes]
[size3 (little endian), 4 bytes] + [request3 result, size3 bytes]

While POST data in request used to transfer list of multiple reqeusts, it is not possible to submit such kind of requests,
which themselvs require data from POST block.

https://root.cern.ch/root/html/TBufferXML.html#TBufferXML:ConvertToXML

	HTTP Server
	HTTP server in ROOT
	Starting the HTTP server
	Registering objects
	Command interface
	Configuring user access
	Using FastCGI interface
	Configure fastcgi with Apcahe2
	Configure fastcgi with lighttpd

	Integration with existing applications
	Asynchronous timer
	Regular calls of THttpServer::ProcessRequests() method

	Data access from command shell
	Objects data access in JSON format
	Generating images out of objects
	Methods execution
	Commands execution
	Performing multiple requests at once

