
Contents

Processing and Visualization Functions 3

1 BACKGROUND ELIMINATION 5

1.1 1-DIMENSIONAL SPECTRA . 5

1.2 2-DIMENSIONAL SPECTRA . 8

2 SMOOTHING 21

2.1 2-DIMENSIONAL SPECTRA . 21

3 PEAK SEARCHING 25

3.1 1-DIMENSIONAL SPECTRA . 25

3.2 2-DIMENSIONAL SPECTRA . 30

4 DECONVOLUTION - UNFOLDING 33

4.1 1-DIMENSIONAL SPECTRA . 33

4.2 Gold deconvolution algorithm . 33

4.3 2-DIMENSIONAL SPECTRA . 37

5 FITTING 45

5.1 1-DIMENSIONAL SPECTRA . 45

5.2 2-DIMENSIONAL SPECTRA . 51

6 TRANSFORMS 57

6.1 1-DIMENSIONAL SPECTRA . 57

6.2 2-DIMENSIONAL SPECTRA . 62

7 VISUALIZATION 67

7.1 1-DIMENSIONAL SPECTRA . 67

7.2 2-DIMENSIONAL SPECTRA . 71

References 79

1

2 CONTENTS

Processing and Visualization Functions

*** Miroslav Morháč *** 12

** E-mail : morhac@savba.sk **

1Institute of Physics, Slovak Academy of Sciences, Bratislava, Slovakia
2Flerov Laboratory of Nuclear Reactions, JINR, Dubna, Russia

3

4 CONTENTS

Chapter 1

BACKGROUND ELIMINATION

1.1 1-DIMENSIONAL SPECTRA

This function calculates background spectrum from source spectrum. The result is placed in the vector pointed by
spectrum pointer. On successful completion it returns 0. On error it returns pointer to the string describing error.

char *Background1(float *spectrum,
int size,
int number_of_iterations);

Function parameters:

• spectrum pointer to the vector of source spectrum
• size length of spectrum
• number_of_iterations or width of the clipping window

The function allows to separate useless spectrum information (continuous background) from peaks, based on Sensitive
Nonlinear Iterative Peak Clipping Algorithm. In fact it represents second order difference filter (-1,2,-1). The basic
algorithm is described in detail in [1], [2].

vp(i) = min

{
vp−1,

[vp−1(i+ p) + vp−1(i− p)]
2

}
where p can be changed

a. from 1 up to a given parameter value w by incrementing it in each iteration step by 1-INCREASING CLIPPING
WINDOW

b. from a given value w by decrementing it in each iteration step by 1- DECREASING CLIPPING WINDOW

An example of the original spectrum and estimated background (INCREASING CLIPPING WINDOW) is given in the
Figure 1.1 .

One can notice that on the edges of the peaks the estimated background goes under the peaks. An alternative approach
is to decrease the clipping window from a given value to the value of one (DECREASING CLIPPING WINDOW).
Then the result obtained is given in the Figure 1.2.

The estimated background is smoother. The method does not deform the shape of peaks.

However sometimes the shape of the background is very complicated. The second order filter is insufficient. Let us
illustrate such a case in the Figure 1.3. The forth order background estimation filter gives better estimate of complicated
background (the clipping window w=10).

4-th order algorithm ignores linear as well as cubic component of the background. In this case the filter is (1,-4,6,-4,1).
In general the allowed values for the order of the filter are 2, 4, 6, 8. An example of the same spectrum estimated with
the clipping window w=40 and with filters of the orders 2, 4, 6, 8 is given in the Figure 1.4.

Sometimes it is necessary to include also the Compton edges into the estimate of the background. In Figure 1.5 we
present the example of the synthetic spectrum with Compton edges. The background was estimated using the 8-th

5

6 CHAPTER 1. BACKGROUND ELIMINATION

Figure 1.1: Example of the original spectrum and estimated background (INCREASING CLIPPING WINDOW)

Figure 1.2: An alternative approach is to decrease the clipping window from a given value to the value of one
(DECREASING CLIPPING WINDOW)

1.1. 1-DIMENSIONAL SPECTRA 7

Figure 1.3: The forth order background estimation filter gives better estimate of complicated background

Figure 1.4: The same spectrum estimated with the clipping window w=40 and with filters of the orders 2, 4, 6, 8

8 CHAPTER 1. BACKGROUND ELIMINATION

Figure 1.5: Synthetic spectrum with Compton edges

order filter with the estimation of the Compton edges and decreasing clipping window. In the lower part of the Figure
we present the background, which was added to the synthetic spectrum. One can observe good coincidence with the
estimated background. The method of the estimation of Compton edge is described in detail in [3].

The generalized form of the algorithm is implemented in the function.

char *Background1General(float *spectrum,
int size,
int number_of_iterations,
int direction,
int filter_order,
bool compton);

The meaning of the parameters is as follows:

• spectrum pointer to the vector of source spectrum
• size length of spectrum vector
• number_of_iterations maximal width of clipping window,
• direction direction of change of clipping window. Possible values:

– BACK1_INCREASING_WINDOW
– BACK1_DECREASING_WINDOW

• filter_order order of clipping filter. Possible values:
– BACK1_ORDER2
– BACK1_ORDER4
– BACK1_ORDER6
– BACK1_ORDER8

• compton logical variable whether the estimation of Compton edge will be included. Possible values:
– BACK1_EXCLUDE_COMPTON
– BACK1_INCLUDE_COMPTON

1.2 2-DIMENSIONAL SPECTRA

This basic background estimation function allows to separate useless spectrum information (2D-continuous background
and coincidences of peaks with background in both dimensions) from peaks. It calculates background spectrum from
source spectrum. The result is placed in the array pointed by spectrum pointer. On successful completion it returns 0.
On error it returns pointer to the string describing error.

1.2. 2-DIMENSIONAL SPECTRA 9

char *Background2(float **spectrum,
int sizex,
int sizey,
int number_of_iterations);

Function parameters:

• spectrum pointer to the array of source spectrum
• sizex x length of spectrum
• sizey y length of spectrum
• number_of_iterations width of the clipping window

In Figure 1.6 we present an example of 2-dimensional spectrum before background elimination.

Figure 1.6: 2-dimensional spectrum before background elimination

Estimated background is shown in Figure 1.7. After subtraction we get pure 2-dimensional peaks.

Analogously to 1-dimensional case we have generalized also the function for 2-dimensional background estimation.
Sometimes the width of peaks in both dimensions are different. As an example we can introduce n-gamma 2-dimensional
spectra. Then it is necessary to set different widths of clipping window in both dimensions. In Figure 1.8 we give an
example of such a spectrum.

Spectrum after background estimation (clipping window 10 for x-direction, 20 for y- direction) and subtraction is given
in Figure 1.9.

Background estimation can be carried out using the algorithm of successive comparisons [1] or .based on one-step
filtering algorithm given by formula:

vp(i) = min


vp−1(i),

 −vp−1(i+ p, j + p) + 2 ∗ vp−1(i+ p, j) − vp−1(i+ p, j − p)
+2 ∗ vp−1(i, j + p) + 2 ∗ vp−1(i, j − p)

−vp−1(i− p, j + p) + 2 ∗ vp−1(i− p, j) − vp−1(i− p, j − p)


4


Illustrating example is given in the following 3 Figures. In Figure 1.10 we present original (synthetic) 2-dimensional
spectrum. In the Figure 1.11. we have spectrum after background elimination using successive comparisons algorithm
and in Figure 1.12 after elimination using one-step filtering algorithm.

10 CHAPTER 1. BACKGROUND ELIMINATION

Figure 1.7: Estimated background

Figure 1.8: It is necessary to set different widths of clipping window in both dimensions

1.2. 2-DIMENSIONAL SPECTRA 11

Figure 1.9: Spectrum after background estimation (clipping window 10 for x-direction, 20 for y- direction) and
subtraction

Figure 1.10: Original (synthetic) 2-dimensional spectrum

12 CHAPTER 1. BACKGROUND ELIMINATION

Figure 1.11: Spectrum after background elimination using successive comparisons algorithm

Figure 1.12: Spectrum after elimination using one-step filtering algorithm

1.2. 2-DIMENSIONAL SPECTRA 13

One can notice artificial ridges in the spectrum in Figure 1.11. In the estimation using filtration algorithm this effect
disappears. The general function for estimation of 2-dimensional background with rectangular ridges has the form

char *Background2RectangularRidges(float **spectrum,
int sizex,
int sizey,
int number_of_iterations_x,
int number_of_iterations_y,
int direction,
int filter_order,
int filter_type);

This function calculates background spectrum from source spectrum. The result is placed to the array pointed by
spectrum pointer.

Function parameters:

• spectrum pointer to the array of source spectrum
• sizex x length of spectrum
• sizey y length of spectrum
• number_of_iterations_x-maximal x width of clipping window
• number_of_iterations_y-maximal y width of clipping window
• direction direction of change of clipping window. Possible values:

– BACK2_INCREASING_WINDOW
– BACK2_DECREASING_WINDOW

• filter_order-order of clipping filter. Possible values:

– BACK2_ORDER2 BACK2_ORDER4
– BACK2_ORDER6 BACK2_ORDER8

• filter_type determines the algorithm of the filtering. Possible values:

– BACK2_SUCCESSIVE_FILTERING
– BACK2_ONE_STEP_FILTERING

In what follows we describe a function to estimate continuous 2-dimensional background together with rectangular and
skew ridges. In Figure 1.13 we present a spectrum of this type.

The goal is to remove rectangular as well as skew ridges from the spectrum and to leave only 2-dimensional coincidence
peaks. After applying background elimination function and subtraction we get the two dimensional peaks presented in
Figure 1.14

In Figures 1.15 and 1.16 we present experimental spectrum with skew ridges and estimated background, respectively.

The function for the estimation of background together with skew ridges has the form

char *Background2SkewRidges(float **spectrum,
int sizex,
int sizey,
int number_of_iterations_x,
int number_of_iterations_y,
int direction,
int filter_order);

The result is placed to the array pointed by spectrum pointer.

Function parameters:

• spectrum pointer to the array of source spectrum
• sizex x length of spectrum
• sizey y length of spectrum
• number_of_iterations_x maximal x width of clipping window
• number_of_iterations_y maximal y width of clipping window
• direction direction of change of clipping window. Possible values:

14 CHAPTER 1. BACKGROUND ELIMINATION

Figure 1.13: Function to estimate continuous 2-dimensional background together with rectangular and skew ridges

Figure 1.14: Two dimensional peaks obtained after applying background elimination function and subtraction

1.2. 2-DIMENSIONAL SPECTRA 15

Figure 1.15: Experimental spectrum with skew ridges

Figure 1.16: Experimental spectrum with estimated background

16 CHAPTER 1. BACKGROUND ELIMINATION

– BACK2_INCREASING_WINDOW
– BACK2_DECREASING_WINDOW

• filter_order order of clipping filter. Possible values:

– BACK2_ORDER2
– BACK2_ORDER4
– BACK2_ORDER6
– BACK2_ORDER8

Next we present the function that estimates the continuous background together with rectangular, and nonlinear ridges.
To illustrate the data of such a form we present synthetic data shown in Figure 1.17. The estimated background is
given in Figure 1.18. Pure Gaussian after subtracting the background from the original spectrum is shown in Figure
1.19

Figure 1.17: Synthetic data

The function to estimate also the nonlinear ridges has the form

char *Background2NonlinearRidges(float **spectrum,
int sizex,
int sizey,
int number-of-iterations-x,
int number-of-iterations-y,
int direction,
int filter_order);

The result is placed to the array pointed by spectrum pointer..

Function parameters:

• spectrum pointer to the array of source spectrum
• sizex x length of spectrum
• sizey y length of spectrum
• number_of_iterations_x maximal x width of clipping window
• number_of_iterations_y maximal y width of clipping window
• direction direction of change of clipping window. Possible values:

– BACK2_INCREASING_WINDOW _ BACK2_DECREASING_WINDOW

1.2. 2-DIMENSIONAL SPECTRA 17

Figure 1.18: Estimated background

Figure 1.19: Pure Gaussian after subtracting the background from the original spectrum

18 CHAPTER 1. BACKGROUND ELIMINATION

• filter_order order of clipping filter. Possible values:

– BACK2_ORDER2
– BACK2_ORDER4
– BACK2_ORDER6
– BACK2_ORDER8

The information contained in the skew ridges and non-linear ridges can be interesting and one may wish to separate it
from the rectangular ridges. Therefore we have implemented also two functions allowing to estimate ridges only in
the direction rectangular to x- axis and y-axis. Let us have both rectangular and skew ridges from spectrum given in
Figure 1.13 estimated using above described function Background2SkewRidges(Figure 1.20).

Figure 1.20: Background2SkewRidges9

Now let us estimate ridges rectangular to x-axis and y-axis (Figures 1.21, 1.22)

After subtraction these data from spectrum in Figure 1.20, we get separated skew ridge given in Figure 1.23.

The functions for estimation of 1-dimensional ridges in 2-dimensional spectra have the forms

char *Background2RectangularRidgesX(float **spectrum,
int sizex,
int sizey,
int number-of-iterations,
int direction,
int filter_order);

Function parameters:

• spectrum pointer to the array of source spectrum
• sizex x length of spectrum
• sizey y length of spectrum
• number_of_iterations maximal x width of clipping window
• direction direction of change of clipping window. Possible values:

– BACK2_INCREASING_WINDOW
– BACK2_DECREASING_WINDOW

• filter_order order of clipping filter. Possible values:

1.2. 2-DIMENSIONAL SPECTRA 19

Figure 1.21: Ridges rectangular to x-axis

Figure 1.22: ridges rectangular to y-axis

20 CHAPTER 1. BACKGROUND ELIMINATION

Figure 1.23: Separated skew ridge

– BACK2_ORDER2
– BACK2_ORDER4
– BACK2_ORDER6
– BACK2_ORDER8

char *Background2RectangularRidgesY(float **spectrum,
int sizex,
int sizey,
int number_of_iterations,
int direction,
int filter_order);

Function parameters:

• spectrum pointer to the array of source spectrum
• sizex x length of spectrum
• sizey y length of spectrum
• number_of_iterations maximal width of clipping window
• direction direction of change of clipping window. Possible values:

– BACK2_INCREASING_WINDOW
– BACK2_DECREASING_WINDOW

• filter_order order of clipping filter. Possible values

– BACK2_ORDER2
– BACK2_ORDER4
– BACK2_ORDER6
– BACK2_ORDER8

Chapter 2

SMOOTHING

-1-DIMENSIONAL SPECTRA

The operation of the smoothing is based on the convolution of the original data with the filter of the type

(1,2,1)/4 -three points smoothing

(-3,12,17,12,-3)/35 -five points smoothing

(-2,3,6,7,6,3,-2)/21 -seven points smoothing

(-21,14,39,54,59,54,39,14,-21)/231 -nine points smoothing

(-36,9,44,69,84,89,84,69,44,9,-36)/429 -11 points smoothing

(-11,0,9,16,21,24,25,24,21,16,9,0,-11)/143 -13 points smoothing

(-78,-13,42,87,122,147,162,167,162,147,122,87,42,-13,-78)/1105 -15 points smoothing. The function for one-dimensional
smoothing has the form

char *Smooth1(float *spectrum,
int size,
int points);

This function calculates smoothed spectrum from source spectrum. The result is placed in the vector pointed by
spectrum pointer.

Function parameters:

• spectrum pointer to the vector of source spectrum
• size length of spectrum
• points width of smoothing window. Allowed values

– SMOOTH1_3POINTS
– SMOOTH1_5POINTS
– SMOOTH1_7POINTS
– SMOOTH1_9POINTS
– SMOOTH1_11POINTS
– SMOOTH1_13POINTS
– SMOOTH1_15POINTS

An example of 1-dimensional spectra smoothing and the influence of the filter width on the data is presented in Figure
2.1

2.1 2-DIMENSIONAL SPECTRA

The smoothing of the two dimensional data is analogous to the one dimensional case. The width of filter can be chosen
independently for each dimension. The form of the 2-D smoothing function is as follows

21

22 CHAPTER 2. SMOOTHING

Figure 2.1: 1-dimensional spectra smoothing and the influence of the filter width on the data

char *Smooth2(float **spectrum,
int sizex,
int sizey,
int pointsx,
int pointsy);

This function calculates smoothed spectrum from source spectrum. The result is placed in the array pointed by
spectrum pointer.

Function parameters:

• spectrum pointer to the array of source spectrum
• sizex x length of spectrum
• sizey y length of spectrum
• pointsx,pointsy width of smoothing window. Allowed values:

– SMOOTH2_3POINTS
– SMOOTH2_5POINTS
– SMOOTH2_7POINTS
– SMOOTH2_9POINTS
– SMOOTH2_11POINTS
– SMOOTH2_13POINTS
– SMOOTH2_15POINTS

An example of 2-D original data and data after smoothing is given in Figures 2.2, 2.3.

2.1. 2-DIMENSIONAL SPECTRA 23

Figure 2.2: 2-D original data

Figure 2.3: Data after smoothing

24 CHAPTER 2. SMOOTHING

Chapter 3

PEAK SEARCHING

3.1 1-DIMENSIONAL SPECTRA

The basic function of the 1-dimensional peak searching is in detail described in [4], [5]. It allows to identify automatically
the peaks in a spectrum with the presence of the continuous background and statistical fluctuations - noise. The
algorithm is based on smoothed second differences that are compared to its standard deviations. Therefore it is
necessary to pass a parameter of sigma to the peak searching function. The algorithm is selective to the peaks with the
given sigma. The form of the basic peak searching function is

Int-t Search1(const float *spectrum,
int size,
double sigma);

This function searches for peaks in source spectrum. The number of found peaks and their positions are written into
structure pointed by one_dim_peak structure pointer.

Function parameters:

• source pointer to the vector of source spectrum
• p pointer to the one_dim_peak structure pointer
• size length of source spectrum
• sigma sigma of searched peaks

The structure one_dim_peak has the form:

struct one_dim_peak{
int number_of_peaks;
double position[MAX_NUMBER_OF_PEAKS1];

};

An example of simple one-dimensional spectrum with identified peaks is given in Figure 3.1.

An example of 1-dimensional experimental spectrum with many identified peaks is given in Figure 3.2.

However when we have noisy data the number of peaks can be enormous. One such an example is given in Figure 3.3.
Therefore it can be useful to have possibility to set a threshold value and to consider only the peaks higher than this
threshold (see Figure 3.4, only three peaks were identified, threshold=50.) The value in the center of the peak value[i]
minus the average value in two symmetrically positioned channels (channels i-3*sigma, i+3*sigma) must be greater
than threshold. Otherwise the peak is ignored.

An alternative approach was proposed in [6].. The algorithm generates new invariant spectrum based on discrete
Markov chains. In this spectrum the noise is suppressed, the spectrum is smoother than the original one. On the
other hand it emphasizes peaks (depending on the averaging window). The example of the part of original noisy
spectrum and Markov spectrum for window=3 is given in Figure 3.5 Then the peaks can found in Markov spectrum
using standard above presented algorithm.

The form of the generalized peak searching function is as follows.

25

26 CHAPTER 3. PEAK SEARCHING

Figure 3.1: Simple one-dimensional spectrum with identified peaks

Figure 3.2: 1-dimensional experimental spectrum with many identified peaks

3.1. 1-DIMENSIONAL SPECTRA 27

Figure 3.3: With noisy data the number of peaks can be enormous

Figure 3.4: Iwth threshold=50, only three peaks were identified

28 CHAPTER 3. PEAK SEARCHING

Figure 3.5: Part of original noisy spectrum and Markov spectrum for window=3

Int-t Search1General(float *spectrum,
int size,
float sigma,
int threshold,
bool markov,
int aver-window);

This function searches for peaks in source spectrum. The number of found peaks and their positions are written into
structure pointed by one_dim_peak structure pointer.

Function parameters:

• spectrum pointer to the vector of source spectrum source spectrum is replaced by new spectrum calculated using
Markov chains method.

• size length of source spectrum
• sigma sigma of searched peaks
• threshold threshold value for selecting of peaks
• markov logical variable, if it is true, first the source spectrum is replaced by new spectrum calculated using

Markov chains method.
• aver_window averaging window used in calculation of Markov spectrum, applies only for markov variable is true

The methods of peak searching are sensitive to the sigma. Usually the sigma value is known beforehand. It also changes
only slightly with the energy. We have investigated as well the robustness of the proposed algorithms to the spectrum
with the peaks with sigma changing from 1 to 10 (see Figure 3.6).

We applied peak searching algorithm based on Markov approach. We changed sigma in the interval from 1 to 10. The
spectra for averaging windows 3, 5, 10 are shown in Figure 3.7.

When we applied peak searching function to the Markov spectrum averaged with the window=10, we obtained correct
estimate of all 10 peak positions for sigma=2,3,4,5,6,7,8. It was not the case when we made the same experiment with
the original spectrum. For all sigmas some peaks were not discovered.

3.1. 1-DIMENSIONAL SPECTRA 29

Figure 3.6: Robustness of the proposed algorithms to the spectrum with the peaks with sigma changing from 1 to 10

Figure 3.7: Spectra for averaging windows 3, 5, 10

30 CHAPTER 3. PEAK SEARCHING

3.2 2-DIMENSIONAL SPECTRA

The basic function of the 2-dimensional peak searching is in detail described in [4].. It identifies automatically the
peaks in a spectrum with the presence of the continuous background, statistical fluctuations as well as coincidences of
background in one dimension and peak in the other one-ridges. The form of the basic function of 2-dimensional peak
searching is

Int-t Search2(const float **source,
int sizex,
int sizey,
double sigma);

This function searches for peaks in source spectrum .The number of found peaks and their positions are written into
structure pointed by two_dim_peak structure pointer.

Function parameters:

• source pointer to the vector of source spectrum
• sizex x length of source spectrum
• sizey y length of source spectrum
• sigma sigma of searched peaks

An example of the two-dimensional spectrum with the identified peaks is shown in Figure 3.8.

Figure 3.8: Two-dimensional spectrum with the identified peaks

We have also generalized the peak searching function analogously to one dimensional data. The generalized peak
searching function for two dimensional spectra has the form

Int-t Search2General(float **source,
int sizex,
int sizey,
double sigma,
int threshold,
bool markov,
int aver-window);

3.2. 2-DIMENSIONAL SPECTRA 31

This function searches for peaks in source spectrum. The number of found peaks and their positions are written into
structure pointed by two_dim_peak structure pointer.

Function parameters:

• source pointer to the vector of source spectrum
• sizex x length of source spectrum
• sizey y length of source spectrum
• sigma sigma of searched peaks
• threshold threshold value for selection of peaks
• markov logical variable, if it is true, first the source spectrum is replaced by new spectrum calculated using

Markov chains method.
• aver_window averaging window of searched peaks (applies only for Markov method)

An example of experimental 2-dimensional spectrum is given in Figure 3.9. The number of peaks identified by the
function now is 295.

Figure 3.9: Experimental 2-dimensional spectrum

The function works even for very noisy data. In Figure 3.10 we present synthetic 2-dimensional spectrum with 5 peaks.
The method should recognize what is real 2-dimensional peak and what is the crossing of two 1-dimensional ridges The
Markov spectrum with averaging window=3 is given in Figure 3.11. One can observe that this spectrum is smoother
than the original one. After applying the general peak searching function to the Markov spectrum with sigma=2, and
threshold=600, we get correctly identified peaks.

32 CHAPTER 3. PEAK SEARCHING

Figure 3.10: Synthetic 2-dimensional spectrum with 5 peaks

Figure 3.11: Markov spectrum with averaging window=3

Chapter 4

DECONVOLUTION - UNFOLDING

4.1 1-DIMENSIONAL SPECTRA

Mathematical formulation of the convolution system is:

y(i) =
N−1∑
k=0

h(i− k)x(k), i = 0, 1, 2, ..., N − 1

where h(i) is the impulse response function, x, y are input and output vectors,

respectively, N is the length of x and h vectors. In matrix form we have:



y(0)
y(1)
.
.
.
.
.

y(2N − 2)
y(2N − 1)


=



h(0) 0 0 0 ... 0
h(1) h(0) 0 0 ... 0
. h(1) h(0) 0 ... 0

h(N − 1) . h(1) h(0) ... 0
0 h(N − 1) . h(1) ... 0
0 0 h(N − 1) h(0)
0 0 0 h(N − 1) ... h(1)
.
0 0 0 0 ... h(N − 1)




x(0)
x(1)
x(2)
.
.

y(N − 1)



Let us assume that we know the response and the output vector (spectrum) of the above given system. The deconvolution
represents solution of the overdetermined system of linear equations, i.e., the calculation of the vector x.
The goal of the deconvolution methods is to improve the resolution in the spectrum and to decompose multiplets. From
mathematical point of view the operation of deconvolution is extremely critical as well as time consuming operation.
From all the methods studied the Gold deconvolution (decomposition) proved to work as the best one. It is suitable to
process positive definite data (e.g. histograms). In detail the method is described in [7], [8].

4.2 Gold deconvolution algorithm

• proved to work as the best, other methods (Fourier, VanCittert etc) oscillate

y = Hx

HT = HTHx

y
′

= H
′
x

x
(k+1)
i = y

′

i∑N−1
m=0 H

′
imx

(k)
m

x
(k)
i , i = 0, 1, ..., N − 1,

where:
k = 1, 2, 3, ..., I

x(0) = [1, 1, ..., 1]T

The basic function has the form

33

34 CHAPTER 4. DECONVOLUTION - UNFOLDING

char *Deconvolution1(float *source,
const float *resp,
int size,
int number-of-iterations);

This function calculates deconvolution from source spectrum according to response spectrum.

Function parameters:

• source pointer to the vector of source spectrum
• resp pointer to the vector of response spectrum
• size length of source and response spectra
• number_of_iterations for details see [8]

As an illustration of the method let us introduce small example. In Figure 4.1 we present original 1-dimensional
spectrum. It contains multiplets that cannot be directly analyzed. The response function (one peak) is given in Figure
4.2. We assume the same response function (not changing the shape) along the entire energy scale. So the response
matrix is composed of mutually shifted response functions by one channel, however of the same shape.

Figure 4.1: Original 1-dimensional spectrum

The result after deconvolution is given in Figure 4.3. It substantially improves the resolution in the spectrum.

We have developed a new high resolution deconvolution algorithm. We have observed that the Gold deconvolution
converges to its stable state (solution). It is useless to increase the number of iterations, the result obtained does not
change. To continue in decreasing the width of peaks we have found that when the solution reaches its stable state it is
necessary to stop iterations, then to change the vector in a way and repeat again the Gold deconvolution . We have
found that to change the particular solution we need to apply non-linear boosting function to it. The power function
proved to give the best results. At the beginning the function calculates exact solution of the Toeplitz system of linear
equations.

x(0) = [x2
e(0), x2

e(1), ..., x2
e(N − 1),]T

where :
xe = H

′−1y
′

Then it applies the Gold deconvolution algorithm to the solution and carries out preset number of iterations. Then the
power function with the exponent equal to the boosting coefficient is applied to the deconvolved data. These data are

4.2. GOLD DECONVOLUTION ALGORITHM 35

Figure 4.2: Response function (one peak)

Figure 4.3: Result after deconvolution

36 CHAPTER 4. DECONVOLUTION - UNFOLDING

then used as initial estimate of the solution of linear system of equations and again the Gold algorithm is employed.
The whole procedure is repeated number_of_repetitions times.

The form of the high-resolution deconvolution function is

char *Deconvolution1HighResolution(float *source,
const float *resp,
int size,
int number-of-iterations,
int number-of-repetitions,
double boost);

This function calculates deconvolution from source spectrum according to response spectrum

The result is placed in the vector pointed by source pointer.

Function parameters:

• source pointer to the vector of source spectrum
• resp pointer to the vector of response spectrum
• size length of source and response spectra
• number_of_iterations for details we refer to manual
• number_of_repetitions for details we refer to manual
• boost boosting factor, for details we refer to manual

The result obtained using the data from Figures 4.1, 4.2 and applying the high resolution deconvolution is given in
Figure 4.4. It decomposes the peaks even more (practically to 1, 2 channels).

Figure 4.4: Result obtained using the data from Figures 4.1, 4.2 and applying the high resolution deconvolution

Another example of synthetic data is given in Figure 4.5. We have positioned the two peaks very close to each other (2
channels). The method of high resolution deconvolution has decomposed these peaks practically to one channel. The
original data are shown as polyline, the data after deconvolution as bars. The numbers at the bars denote the heights
of bars and the numbers in parenthesis the original area of peaks. The area of original peaks is concentrated into one
channel.

Up to now we assumed that the shape of the response is not changing. However the method of Gold decomposition can
be utilized also for the decomposition of input data (unfolding) with completely different responses. The form of the
unfolding function is as follows

4.3. 2-DIMENSIONAL SPECTRA 37

Figure 4.5: Example of synthetic data

char *Deconvolution1Unfolding(float *source,
const float **resp,
int sizex,
int sizey,
int number-of-iterations);

This function unfolds source spectrum according to response matrix columns. The result is placed in the vector pointed
by source pointer.

Function parameters:

• source pointer to the vector of source spectrum
• resp pointer to the matrix of response spectra
• sizex length of source spectrum and # of rows of response matrix
• sizey # of columns of response matrix
• number_of_iterations

Note!!! sizex must be >= sizey. After decomposition the resulting channels are written back to the first sizey channels
of the source spectrum.

The example of the response matrix composed of the responses of different chemical elements is given in Figure 4.6

The original spectrum before unfolding is given in Figure 4.7. The obtained coefficients after unfolding, i.e., the contents
of the responses in the original spectrum is presented in the Figure 4.8.

Another example where we have used unfolding method is the decomposition of continuum of gamma-ray spectra.
Using simulation and interpolation techniques we have synthesized the response matrix (size 3400x3400 channels) of
Gammasphere spectrometer (Figure 4.9). Its detail is presented in Figure 4.10. The original spectrum of Co56 before
and after continuum decomposition are presented in Figures 4.11, 4.12, respectively.

4.3 2-DIMENSIONAL SPECTRA

We have extended the method of Gold deconvolution also for 2-dimensional data. Again the goal of the deconvolution
methods is to improve the resolution in the spectrum and to decompose multiplets. In detail the method of optimized
2-dimensional deconvolution is described in [8].

38 CHAPTER 4. DECONVOLUTION - UNFOLDING

Figure 4.6: Example of the response matrix composed of the responses of different chemical elements

Figure 4.7: Original spectrum before unfolding

4.3. 2-DIMENSIONAL SPECTRA 39

Figure 4.8: Contents of the responses in the original spectrum

Figure 4.9: Response matrix (size 3400x3400 channels) of Gammasphere spectrometer

40 CHAPTER 4. DECONVOLUTION - UNFOLDING

Figure 4.10: Detail of Figure 4.9

Figure 4.11: Original spectrum of Co56 before continuum decomposition

4.3. 2-DIMENSIONAL SPECTRA 41

Figure 4.12: Original spectrum of Co56 after continuum decomposition

Mathematical formulation of 2-dimensional convolution system is as follows

y(i1, i2) =
N1−1∑
k1=0

N2−1∑
k2=0

h(i1 − k1, i2 − k2)x(k1, k2), i1 = 0, 1, 2, ..., N1 − 1, i2 = 0, 1, 2, ..., N2 − 1

Assuming we know the output spectrum y and the response spectrum h,the task is to calculate the matrix x.

The basic function has the form

char *Deconvolution2(float **source,
const float **resp,
int sizex,
int sizey,
int niter);

This function calculates deconvolution from source spectrum according to response spectrum. The result is placed in
the matrix pointed by source pointer.

Function parameters:

• source pointer to the matrix of source spectrum
• resp pointer to the matrix of response spectrum
• sizex x length of source and response spectra
• sizey y length of source and response spectra
• number_of_iterations for details see [8]

The example of 2-dimensional spectrum before deconvolution is presented in Figure 4.13. In the process of deconvolution
we have used the response matrix (one peak shifted to the beginning of the coordinate system) given in Figure 4.14.
Employing the Gold deconvolution algorithm implemented in the decon2 function we get the result shown in Figure
4.15. One can notice that the peaks became narrower thus improving the resolution in the spectrum.

Analogously to 1-dimensional case we have developed high-resolution 2-dimensional deconvolution. From the beginning
the exact solution of the cyclic convolution 2-dimensional system is calculated. Then we apply the repeated deconvolution
with boosting in the same way like in 1- dimensional case. The form of the high-resolution 2-dimensional deconvolution
function is:

42 CHAPTER 4. DECONVOLUTION - UNFOLDING

Figure 4.13: 2-dimensional spectrum before deconvolution

Figure 4.14: Response matrix (one peak shifted to the beginning of the coordinate system)

4.3. 2-DIMENSIONAL SPECTRA 43

Figure 4.15: Result obtained employing the Gold deconvolution algorithm implemented in the decon2 function

char *Deconvolution2HighResolution(float **source,
const float **resp,
int sizex,
int sizey,
int number_of_iterations,
int number_of_repetitions,
double boost);

This function calculates deconvolution from source spectrum

according to response spectrum

The result is placed in the matrix pointed by source pointer.

Function parameters:

• source pointer to the matrix of source spectrum
• resp pointer to the matrix of response spectrum
• sizex x length of source and response spectra
• sizey y length of source and response spectra
• number_of_iterations
• number_of_repetitions
• boost boosting factor

When we apply this function to the data from Figure 4.13 using response matrix given in Figure 4.14 we get the result
shown in Figure 4.16. It is apparent that the high-resolution deconvolution decomposes the input data even more than
the original Gold deconvolution.

44 CHAPTER 4. DECONVOLUTION - UNFOLDING

Figure 4.16: Result obtained applying Deconvolution2HighResolution to the data from Figure 4.13 using response
matrix given in Figure 4.14

Chapter 5

FITTING

A lot of algorithms have been developed (Gauss-Newton, Levenber-Marquart conjugate gradients, etc.) and more
or less successfully implemented into programs for analysis of complex spectra. They are based on matrix inversion
that can impose appreciable convergence difficulties mainly for large number of fitted parameters. Peaks can be fitted
separately, each peak (or multiplets) in a region or together all peaks in a spectrum. To fit separately each peak one
needs to determine the fitted region. However it can happen that the regions of neighboring peaks are overlapping
(mainly in 2-dimensional spectra). Then the results of fitting are very poor. On the other hand, when fitting together
all peaks found in a spectrum, one needs to have a method that is stable (converges) and fast enough to carry out
fitting in reasonable time. The gradient methods based on the inversion of large matrices are not applicable because of
two reasons

a. calculation of inverse matrix is extremely time consuming;

b. due to accumulation of truncation and rounding-off errors the result can become worthless.

We have implemented two kinds of fitting functions. The first approach is based on the algorithm without matrix
inversion [9]-awmi algorithm. It allows to fit large blocks of data and large number of parameters.

The other one is based on calculation of the system of linear equations using Stiefel-Hestens method [10]. It converges
faster than awmi algorithm, however it is not suitable to fit large number of parameters.

5.1 1-DIMENSIONAL SPECTRA

• the quantity to be minimized in the fitting procedure for one dimensional spectrum is defined as :

χ2 = 1
N −M

N∑
i=1

[yi − f(i, a)]2

yi

where i is the channel in the fitted spectrum, N is the number of channels in the fitting subregion, M is the number of
free parameters, yi is the content of the i-th channel, a is a vector of the parameters being fitted and f(i, a) is a fitting
or peak shape function.

Instead of the weighting coefficient yi in the denominator of the above given formula one can use also the value of
f(i, a). It is suitable for data with poorstatistics [11], [12].

The third statistic to be optimized, which is implemented in the fitting functions is Maximum Likelihood Method. It is
of the choice of the user to select suitable statistic..

• after differentiating χ2 we obtain the following M simultaneous equations

N∑
i=1

yi − f(i, a(t))
yi

∂f(i, at)
∂ak

=
M∑
j=1

N∑
i=1

∂f(i, a(t))
∂aj

∂f(i, a(t))
∂ak

∆a(t)
j

• in γ-ray spectra we have to fit together tens, hundreds of peaks simultaneously that represent sometimes thousands
of parameters.

45

46 CHAPTER 5. FITTING

• the calculation of the inversion matrix of such a size is practically impossible.

• the awmi method is based on the assumption that off-diagonal terms in the matrix A are equal to zero.

∆a(t+1)
k = α(t)

∑N
i=1

e
(t)
i

yi

∂f(i,a(t))
∂ak∑N

i=1

[
∂f(i,a(t))
∂ak

]2
1
yi

where the error in the channel i is e(t)
i = yi − f(i, a(t)); k = 1, 2, ...,M and α(t) = 1 if the process is convergent or

α(t) = 0.5α(t−1) if it is divergent. Another possibility is to optimize this coefficient.

the error of k-th parameter estimate is

∆a(e)
k =

√√√√√ ∑N
i=1

e2
i

yi∑N
i=1

[
∂f(i,a(t))
∂ak

]2
1
yi

algorithm with higher powers w=1,2,3. . .

∆a(t+1)
k,w = α(t)

∑N
i=1

ei

yi

[
∂f(i,a(t))
∂ak

]2w−1

∑N
i=1

[
∂f(i,a(t))
∂ak

]2w
1
yi

we have implemented the nonsymmetrical semiempirical peak shape function.

it contains the symmetrical Gaussian as well as nonsymmetrical terms.

f(i, a) =
M∑
i=1

A(j)
{
exp

[
−(i− p(j))2

2σ2

]
+ 1

2T.exp
[

(i− p(j))
Bσ

]
.erfc

[
(i− p(j))

σ
+ 1

2B

]
+ 1

2S.erfc
[

(i− p(j))
σ

]}

where T, S are relative amplitudes and B is a slope.

Detailed description of the algorithm is given in [13].

The fitting function implementing the algorithm without matrix inversion has the form

char* Fit1Awmi(float *source,
TSpectrumOneDimFit *p,
int size);

This function fits the source spectrum. The calling program should fill in input parameters of the one_dim_fit structure
The fitted parameters are written into structure pointed by one_dim_fit structure pointer and fitted data are written
into source spectrum.

Function parameters:

• source pointer to the vector of source spectrum
• p pointer to the one_dim_fit structure pointer
• size length of source spectrum

The one_dim_fit structure has the form:

class TSpectrumOneDimFit{

public:

int number_of_peaks; // input parameter, should be >0
int number_of_iterations; // input parameter, should be >0
int xmin; // first fitted channel
int xmax; // last fitted channel

5.1. 1-DIMENSIONAL SPECTRA 47

double alpha; // convergence coefficient, input parameter, it should be
// positive number and <=1

double chi; // here the function returns resulting chi-square
int statistic_type; // type of statistics, possible values

// FIT1_OPTIM_CHI_COUNTS (chi square statistics with
// counts as weighting coefficients),
// FIT1_OPTIM_CHI_FUNC_VALUES (chi square statistics
// with function values as weighting coefficients)
// FIT1_OPTIM_MAX_LIKELIHOOD

int alpha_optim; // optimization of convergence coefficients, possible values
// FIT1_ALPHA_HALVING,
// FIT1_ALPHA_OPTIMAL

int power; // possible values FIT1_FIT_POWER2,4,6,8,10,12
int fit_taylor; // order of Taylor expansion, possible values

// FIT1_TAYLOR_ORDER_FIRST, FIT1_TAYLOR_ORDER_SECOND

double position_init[MAX_NUMBER_OF_PEAKS1]; // initial values of
// peaks positions, input parameters

double position_calc[MAX_NUMBER_OF_PEAKS1]; // calculated values
// of fitted positions, output parameters

double position_err[MAX_NUMBER_OF_PEAKS1]; // position errors
bool fix_position[MAX_NUMBER_OF_PEAKS1]; // logical vector which allows to fix

// appropriate positions (not fit). However they
// are present in the estimated functional

double amp_init[MAX_NUMBER_OF_PEAKS1]; // initial values of peaks
// amplitudes, input parameters

double amp_calc[MAX_NUMBER_OF_PEAKS1]; // calculated values of
// fitted amplitudes, output parameters

double amp_err[MAX_NUMBER_OF_PEAKS1]; // amplitude errors
bool fix_amp[MAX_NUMBER_OF_PEAKS1]i; // logical vector, which allows to fix

// appropriate amplitudes (not fit). However they
// are present in the estimated functional

double area[MAX_NUMBER_OF_PEAKS1]; // calculated areas of peaks
double area_err[MAX_NUMBER_OF_PEAKS1]; // errors of peak areas

double sigma_init // sigma parameter, see peak shape function
double sigma_calc;
double sigma_err;
bool fix_sigma;
double t_init // t parameter, , see peak shape function
double t_calc;
double t_err;
bool fix_t;
double b_init // b parameter, , see peak shape function
double b_calc;
double b_err;
bool fix_b;
double s_init; // s parameter, , see peak shape function
double s_calc;
double s_err;
bool fix_s;
double a0_init; // backgroud is estimated as a0+a1*x+a2*x*x
double a0_calc;
double a0_err;
bool fix_a0;
double a1_init;
double a1_calc;
double a1_err;
bool fix_a1;
double a2_init;
double a2_calc;
double a2_err;
bool fix_a2;

48 CHAPTER 5. FITTING

};

As an example we present simple 1-dimensional synthetic spectrum with 5 peaks. The fit obtained using above given
awmi fitting function is given in Figure 5.1. The chi-square achieved in this fit was 0.76873. The input value of the fit
(positions of peaks and their amplitudes) were estimated using peak searching function.

Figure 5.1: Fit obtained using above given awmi fitting function

Let us go to more complicated fit with lot of overlapping peaks Figure 5.2. The initial positions of peaks were determined
from original data, using peak searching function. The fit is not very good, as there are some peaks missing.

However to analyze the spectrum we can proceed in completely different way employing the sophisticated functions
of background elimination and deconvolution. First let us remove background from the original raw data. We get
spectrum given in Figure 5.3.

Then we can apply the Gold deconvolution function to these data. We obtain result presented in Figure 5.4.

Using peaks searching method, looking just for local maxima, (sigma=0) with appropriate threshold (50), we can
estimate initial positions of peaks for fitting function. After the fit of the original experimental spectrum (with
background) we obtain the result shown in Figure 5.5. Now the fitted function corresponds much better to experimental
values

We have implemented also the fitting function with matrix inversion based on Stiefel-Hestens method of the solution of
the system of linear equations. The form of the function is as follows

char *Fit1Stiefel(float *source,
TSpectrumOneDimFit* p,
int size);

This function fits the source spectrum. The calling program should fill in input parameters of the one_dim_fit structure
The fitted parameters are written into structure pointed by one_dim_fit structure pointer and fitted data are written
into source spectrum.

Function parameters:

• source pointer to the vector of source spectrum
• p pointer to the one_dim_fit structure pointer
• size length of source spectrum

5.1. 1-DIMENSIONAL SPECTRA 49

Figure 5.2: More complicated fit with lot of overlapping peaks

Figure 5.3: Removed background from the original raw data

50 CHAPTER 5. FITTING

Figure 5.4: Gold deconvolution function applied to the data

Figure 5.5: Fit of the original experimental spectrum (with background)

5.2. 2-DIMENSIONAL SPECTRA 51

The structure one_dim_fit is the same as in awmi function. The parameters power, fit_taylor are not applicable for
this function

The results for small number of fitted parameters are the same as with awmi function. However it converges faster.
The example for data given in Figure 5.1 is given in the following table:

of iterationsi Chi awmi Chi-Stiefel

1

924 89.042

5

773.15 0.96242

10

38.13 0.77041

50

0.90293 0.76873

100

0.76886 0.76873

500

0.76873 0.76873

5.2 2-DIMENSIONAL SPECTRA

it is straightforward that for two dimensional spectra one can write

∆a(t+1)
k = α(t)

∑N1
i1=1

∑N2
i2=1

e
(t)
i1,i2
yi1,i2

∂f(i1,i2,a(t))
∂ak∑N1

i1=1
∑N2
i2=1

[
∂f(i1,i2,a(t))

∂ak

]2
1

yi1,i2

analogously for two dimensional peaks we have chosen the peak shape function of the following form

f(i1, i2, a) =
M∑
j=1

 Axy(j)exp
{

− 1
2(1−ρ2)

[
(i1−px(j))2

σ2
x

− 2ρ(i1−px(j))(i2−py(j))
σxσy

+ (i2−py(j))2

σ2
y

]}
+Ax(j)exp

[
− (i1−px1 (j))2

2σ2
x

]
+Ay(j)exp

[
− (i2−py1 (j))2

2σ2
y

] + b0 + b1i1 + b2i2

The meaning of the parameters is analogous to 1-dimensional case. Again all the details can be found in [13]

The fitting function implementing the algorithm without matrix inversion for 2-dimensional data has the form

char* Fit2Awmi(float **source,
TSpectrumTwoDimFit* p,
int sizex,
int sizey);

This function fits the source spectrum. The calling program should fill in input parameters of the two_dim_fit structure
The fitted parameters are written into structure pointed by two_dim_fit structure pointer and fitted data are written
back into source spectrum.

Function parameters:

52 CHAPTER 5. FITTING

• source pointer to the matrix of source spectrum
• p pointer to the two_dim_fit structure pointer, see manual
• sizex length x of source spectrum
• sizey length y of source spectrum

The two_dim_fit structure has the form

class TSpectrumTwoDimFit{

public:

int number_of_peaks; // input parameter, shoul be>0
int number_of_iterations; // input parameter, should be >0
int xmin; // first fitted channel in x direction
int xmax; // last fitted channel in x direction
int ymin; // first fitted channel in y direction
int ymax; // last fitted channel in y direction
double alpha; // convergence coefficient, input parameter, it should be positive

// number and <=1
double chi; // here the function returns resulting chi square
int statistic_type; // type of statistics, possible values

// FIT2_OPTIM_CHI_COUNTS (chi square statistics with
// counts as weighting coefficients),
// FIT2_OPTIM_CHI_FUNC_VALUES (chi square statistics
// with function values as weighting
// coefficients),FIT2_OPTIM_MAX_LIKELIHOOD

int alpha_optim; // optimization of convergence coefficients, possible values
// FIT2_ALPHA_HALVING, FIT2_ALPHA_OPTIMAL

int power; // possible values FIT21_FIT_POWER2,4,6,8,10,12
int fit_taylor; // order of Taylor expansion, possible values

// FIT2_TAYLOR_ORDER_FIRST,
// FIT2_TAYLOR_ORDER_SECOND

double position_init_x[MAX_NUMBER_OF_PEAKS2]; // initial values of x
// positions of 2D peaks, input parameters

double position_calc_x[MAX_NUMBER_OF_PEAKS2]; // calculated values
// of fitted x positions of 2D peaks, output parameters

double position_err_x[MAX_NUMBER_OF_PEAKS2]; // x position errors of 2D peaks
bool fix_position_x[MAX_NUMBER_OF_PEAKS2]; // logical vector which allows to fix appropriate

// x positions of 2D peaks (not fit).
// However they are present in the estimated functional

double position_init_y[MAX_NUMBER_OF_PEAKS2]; // initial values of y
// positions of 2D peaks, input parameters

double position_calc_y[MAX_NUMBER_OF_PEAKS2]; // calculated values
// of fitted y positions of 2D peaks, output parameters

double position_err_y[MAX_NUMBER_OF_PEAKS2]; // y position errors of 2D peaks
bool fix_position_y[MAX_NUMBER_OF_PEAKS2]; // logical vector which allows to fix appropriate

// y positions of 2D peaks (not fit).
// However they are present in the estimated functional

double position_init_x1[MAX_NUMBER_OF_PEAKS2]; // initial values of x
// positions of 1D ridges, input parameters

double position_calc_x1[MAX_NUMBER_OF_PEAKS2]; // calculated values of
// fitted x positions of 1D ridges, output parameters

double position_err_x1[MAX_NUMBER_OF_PEAKS2]; // x position errors of 1D ridges
bool fix_position_x1[MAX_NUMBER_OF_PEAKS2]; // logical vector which allows to fix appropriate

// x positions of 1D ridges (not fit).
// However they are present in the estimated functional

double position_init_y1[MAX_NUMBER_OF_PEAKS2]; // initial values of y
// positions of 1D ridges, input parameters

double position_calc_y1[MAX_NUMBER_OF_PEAKS2]; // calculated values
// of fitted y positions of 1D ridges, output parameters

double position_err_y1[MAX_NUMBER_OF_PEAKS2]; // y position errors of 1D ridges
bool fix_position_y1[MAX_NUMBER_OF_PEAKS2]; // logical vector which allows to fix

// appropriate y positions of 1D ridges (not fit).

5.2. 2-DIMENSIONAL SPECTRA 53

// However they are present in the estimated functional
double amp_init[MAX_NUMBER_OF_PEAKS2]; // initial values of 2D peaks

// amplitudes, input parameters
double amp_calc[MAX_NUMBER_OF_PEAKS2]; // calculated values of

// fitted amplitudes of 2D peaks, output parameters
double amp_err[MAX_NUMBER_OF_PEAKS2]; // amplitude errors of 2D peaks
bool fix_amp[MAX_NUMBER_OF_PEAKS2]; // logical vector which allows

// to fix appropriate amplitudes of 2D peaks (not fit).
// However they are present in the estimated functional

double amp_init_x1[MAX_NUMBER_OF_PEAKS2]; // initial values of 1D
// ridges amplitudes, input parameters

double amp_calc_x1[MAX_NUMBER_OF_PEAKS2]; // calculated values of
// fitted amplitudes of 1D ridges, output parameters

double amp_err_x1[MAX_NUMBER_OF_PEAKS2]; // amplitude errors of 1D ridges
bool fix_amp_x1[MAX_NUMBER_OF_PEAKS2]; // logical vector which alloes to fix

// appropriate amplitudes of 1D ridges (not fit).
// However they are present in the estimated functional

double amp_init_y1[MAX_NUMBER_OF_PEAKS2]; // initial values of 1D
// ridges amplitudes, input parameters

double amp_calc_y1[MAX_NUMBER_OF_PEAKS2]; // calculated values of
// fitted amplitudes of 1D ridges, output parameters

double amp_err_y1[MAX_NUMBER_OF_PEAKS2]; // amplitude errors of 1D ridges
bool fix_amp_y1[MAX_NUMBER_OF_PEAKS2]; // logical vector which allows to fix

// appropriate amplitudes of 1D ridges (not fit).
// However they are present in the estimated functional

double volume[MAX_NUMBER_OF_PEAKS1]; // calculated volumes of peaks
double volume_err[MAX_NUMBER_OF_PEAKS1]; // errors of peak volumes
double sigma_init_x; // sigma x parameter
double sigma_calc_x;
double sigma_err_x;
bool fix_sigma_x;
double sigma_init_y; // sigma y parameter
double sigma_calc_y;
double sigma_err_y;
bool fix_sigma_y;
double ro_init; // correlation coefficient
double ro_calc;
double ro_err;
bool fix_ro;
double txy_init; // t parameter for 2D peaks
double txy_calc;
double txy_err;
bool fix_txy;
double sxy_init; // s parameter for 2D peaks
double sxy_calc;
double sxy_err;
bool fix_sxy;
double tx_init; // t parameter for 1D ridges (x direction)
double tx_calc;
double tx_err;
bool fix_tx;
double ty_init; // t parameter for 1D ridges (y direction)
double ty_calc;
double ty_err;
bool fix_ty;
double sx_init; // s parameter for 1D ridges (x direction)
double sx_calc;
double sx_err;
bool fix_sx;
double sy_init; // s parameter for 1D ridges (y direction)
double sy_calc;
double sy_err;
bool fix_sy;

54 CHAPTER 5. FITTING

double bx_init; // b parameter for 1D ridges (x direction)
double bx_calc;
double bx_err;
bool fix_bx;
double by_init; // b parameter for 1D ridges (y direction)
double by_calc;
double by_err;
bool fix_by;
double a0_init; // backgroud is estimated as a0+ax*x+ay*y
double a0_calc;
double a0_err;
bool fix_a0;
double ax_init;
double ax_calc;
double ax_err;
bool fix_ax;
double ay_init;
double ay_calc;
double ay_err;
bool fix_ay;

};

The example of the original spectrum and the fitted spectrum is given in Figures. 5.6, 5.7, respectively. We have
fitted 5 peaks. Each peak was represented by 7 parameters, which together with sigmax, sigmay and b0 resulted in 38
parameters. The chi-square after 1000 iterations was 0.6571.

Figure 5.6: 2-dimensional Cosine transform

The awmi algorithm can be applied also to large blocks of data and large number of peaks. In the next example we
present spectrum with identified 295 peaks. Each peak is represented by 7 parameters, which together with sigmax, y
and b0 resulted in 2068 fitted parameters. The original spectrum and fitted function are given in Figures. 5.8, 5.9,
respectively. The achieved chi-square was 0.76732.

We have implemented the fitting function with matrix inversion based on Stiefel-Hestens method of the solution of the
system of linear equations also for 2-dimensional data. The form of the function is as follows

char* Fit2Stiefel(float **source,
TSpectrumTwoDimFit* p,

5.2. 2-DIMENSIONAL SPECTRA 55

Figure 5.7: Fitted spectrum

Figure 5.8: Original spectrum

56 CHAPTER 5. FITTING

Figure 5.9: Fitted function

int sizex,
int sizey);

This function fits the source spectrum. The calling program should fill in input parameters of the two_dim_fit structure
The fitted parameters are written into structure pointed by two_dim_fit structure pointer and fitted data are written
back into source spectrum.

Function parameters:

• source pointer to the matrix of source spectrum
• p pointer to the two_dim_fit structure pointer, see manual
• sizex length x of source spectrum
• sizey length y of source spectrum

The structure two_dim_fit is the same as in awmi function. The parameters power, fit_taylor are not applicable for
this function

The results for small number of fitted parameters are the same as with awmi function. However it converges faster.
The example for data given in Figure 5.6 (38 parameters) is presented in the following table:

of iterations Chi awmi Chi-Stiefel
1 24.989 10.415
5 20.546 1.0553
10 6.256 0.84383
50 1.0985 0.64297
100 0.657 1 0.64297
500 0.651 94 0.64297

Again Stiefel-Hestens method converges faster. However its calculation is for this number of parameters approximately
3 times longer. For larger number of parameters the time needed to calculate the inversion grows with the cube of the
number of fitted parameters. For example the fit of large number of parameters (2068) for data in Figure 5.8 using
awmi algorithm lasted about 12 hours (using 450 MHz PC). The calculation using matrix inversion method is not
realizable in reasonable time.

Chapter 6

TRANSFORMS

6.1 1-DIMENSIONAL SPECTRA

Orthogonal transforms can be successfully used for the processing of nuclear spectra . They can be used to remove
high frequency noise, to increase signal-to-background ratio as well as to enhance low intensity components [14]. We
have implemented also the function for the calculation of the commonly used orthogonal transforms

• Haar
• Walsh
• Cos
• Sin
• Fourier
• Hartley

Between these transform one can define so called generalized mixed transforms that are also implemented in the
transform function

• Fourier-Haar
• Fourier-Walsh
• Walsh-Haar
• Cos-Walsh
• Cos-Haar
• Sin-Walsh
• Sin-Haar

The suitability of the application of appropriate transform depends on the character of the data, i.e., on the shape of
dominant components contained in the data. The form of the transform function is as follows:

char *Transform1(const float *source,
float *dest,
int size,
int type,
int direction,
int degree);

This function transforms the source spectrum. The calling program should fill in input parameters. Transformed data
are written into dest spectrum.

Function parameters:

• source pointer to the vector of source spectrum, its length should be equal to size parameter except for inverse
FOURIER, FOUR-WALSH, FOUR-HAAR transform. These need 2*size length to supply real and imaginary
coefficients.

• dest pointer to the vector of dest data, its length should be equal to size parameter except for direct FOURIER,
FOUR-WALSh, FOUR-HAAR. These need 2*size length to store real and imaginary coefficients

• size basic length of source and dest spectra

57

58 CHAPTER 6. TRANSFORMS

• type type of transform

– TRANSFORM1_HAAR
– TRANSFORM1_WALSH
– TRANSFORM1_COS
– TRANSFORM1_SIN
– TRANSFORM1_FOURIER
– TRANSFORM1_HARTLEY
– TRANSFORM1_FOURIER_WALSH
– TRANSFORM1_FOURIER_HAAR
– TRANSFORM1_WALSH_HAAR
– TRANSFORM1_COS_WALSH
– TRANSFORM1_COS_HAAR
– TRANSFORM1_SIN_WALSH
– TRANSFORM1_SIN_HAAR

• direction transform direction (forward, inverse)

– TRANSFORM1_FORWARD
– TRANSFORM1_INVERSE

• degree applies only for mixed transforms Let us illustrate the applications of the transform using an example. In
Figure 6.1 we have spectrum with many peaks, complicated background and high level of noise.

Figure 6.1: Spectrum with many peaks

In Figures. 6.2, 6.3, 6.4 we present this spectrum transformed using Haar, Walsh and Cosine transforms, respectively.

Haar transforms (Figure 6.2) creates clusters of data. These coefficients can be analyzed and then filtered, enhanced
etc. On the other hand Walsh transform (Figure 6.3) concentrates the dominant components near to zero of the
coordinate system. It is more suitable to process data of rectangular shape (e.g. in the field of digital signal processing).
Finally Cosine transform concentrates in the best way the transform coefficients to the beginning of the coordinate
system. From the point of view of the variance distribution it is sometimes called suboptimal. One can notice that
approximately one half of the coefficients are negligible. This fact can be utilized to the compression purposes (in two
or more dimensional data), filtering (smoothing) etc.

We have implemented several application functions utilizing the properties of the orthogonal transforms. Let us start
with zonal filtration function. It has the form.

6.1. 1-DIMENSIONAL SPECTRA 59

Figure 6.2: Spectrum transformed using Haar transform

Figure 6.3: Spectrum transformed using Walsh transform

60 CHAPTER 6. TRANSFORMS

Figure 6.4: Spectrum transformed using Cosine transform

char *Filter1Zonal(const float *source,
float *dest,
int size,
int type,
int degree,
int xmin,
int xmax,
float filter-coeff);

This function transforms the source spectrum. The calling program should fill in input parameters. Then it sets
transformed coefficients in the given region (xmin, xmax) to the given filter_coeff and transforms it back Filtered data
are written into dest spectrum.

Function parameters:

• source pointer to the vector of source spectrum, its length should be size
• dest pointer to the vector of dest data, its length should be size
• size basic length of source and dest spectra
• type type of transform

– TRANSFORM1_HAAR
– TRANSFORM1_WALSH
– TRANSFORM1_COS
– TRANSFORM1_SIN
– TRANSFORM1_FOURIER
– TRANSFORM1_HARTLEY
– TRANSFORM1_FOURIER_WALSH
– TRANSFORM1_FOURIER_HAAR
– TRANSFORM1_WALSH_HAAR
– TRANSFORM1_COS_WALSH
– TRANSFORM1_COS_HAAR
– TRANSFORM1_SIN_WALSH
– TRANSFORM1_SIN_HAAR

• degree applied only for mixed transforms
• xmin low limit of filtered region

6.1. 1-DIMENSIONAL SPECTRA 61

• xmax high limit of filtered region
• filter_coeff value which is set in filtered region

An example of the filtration using Cosine transform is given in the Figure 6.5. It illustrates a part of the spectrum
from Figure 6.1 and two spectra after filtration preserving 2048 coefficients and 1536 coefficients. One can observe very
good fidelity of the overall shape of both spectra with the original data. However some distortion can be observed in
details of the second spectrum after filtration preserving only 1536 coefficients. The useful information in the transform
domain can be compressed into one half of the original space.

Figure 6.5: Filtration using Cosine transform

In the transform domain one can also enhance (multiply with the constant > 1) some regions. In this way one can
change peak-to-background ratio. This function has the form

char *Enhance1(const float *source,
float *dest,
int size,
int type,
int degree,
int xmin,
int xmax,
float enhance-coeff);

This function transforms the source spectrum. The calling program should fill in input parameters. Then it multiplies
transformed coefficients in the given region (xmin, xmax) by the given enhance_coeff and transforms it back Processed
data are written into dest spectrum.

Function parameters:

• source pointer to the vector of source spectrum, its length should be size
• dest pointer to the vector of dest data, its length should be size
• size basic length of source and dest spectra
• type type of transform

– TRANSFORM1_HAAR
– TRANSFORM1_WALSH
– TRANSFORM1_COS

62 CHAPTER 6. TRANSFORMS

– TRANSFORM1_SIN
– TRANSFORM1_FOURIER
– TRANSFORM1_HARTLEY
– TRANSFORM1_FOURIER_WALSH
– TRANSFORM1_FOURIER_HAAR
– TRANSFORM1_WALSH_HAAR
– TRANSFORM1_COS_WALSH
– TRANSFORM1_COS_HAAR
– TRANSFORM1_SIN_WALSH
– TRANSFORM1_SIN_HAAR

• degree applied only for mixed transforms
• xmin low limit of filtered region
• xmax high limit of filtered region
• enhance_coeff value by which the filtered region is multiplied

An example of enhancement of the coefficients from region 380-800 by the constant 2 in the Cosine transform domain
is given in the Figure 6.6. The determination of the region is a matter of analysis in the appropriate transform domain.
We assumed that low frequency components are placed in the low coefficients. As it can be observed the enhancement
changes the peak-to-background ratio.

Figure 6.6: Enhancement of the coefficients from region 380-800 by the constant 2 in the Cosine transform domain

6.2 2-DIMENSIONAL SPECTRA

Analogously to1-dimensional data we have implemented the transforms also for 2-dimensional data. Besides of the
classic orthogonal transforms

• Haar
• Walsh
• Cos
• Sin
• Fourier
• Hartley
• Fourier-Haar

6.2. 2-DIMENSIONAL SPECTRA 63

• Fourier-Walsh
• Walsh-Haar
• Cos-Walsh
• Cos-Haar
• Sin-Walsh
• Sin-Haar

char *Transform2(const float **source,
float **dest,
int sizex,
int sizey,
int type,
int direction,
int degree);

This function transforms the source spectrum. The calling program should fill in input parameters. Transformed data
are written into dest spectrum.

Function parameters:

• source pointer to the matrix of source spectrum, its size should be sizex*sizey except for inverse FOURIER,
FOUR-WALSH, FOUR-HAAR transform. These need sizex*2*sizey length to supply real and imaginary
coefficients.

• dest pointer to the matrix of destination data, its size should be sizex*sizey except for direct FOURIER,
FOUR-WALSh, FOUR-HAAR. These need sizex*2*sizey length to store real and imaginary coefficients

• sizex,sizey basic dimensions of source and dest spectra
• type type of transform

– TRANSFORM2_HAAR
– TRANSFORM2_WALSH
– TRANSFORM2_COS
– TRANSFORM2_SIN
– TRANSFORM2_FOURIER
– TRANSFORM2_HARTLEY
– TRANSFORM2_FOURIER_WALSH
– TRANSFORM2_FOURIER_HAAR
– TRANSFORM2_WALSH_HAAR
– TRANSFORM2_COS_WALSH
– TRANSFORM2_COS_HAAR
– TRANSFORM2_SIN_WALSH
– TRANSFORM2_SIN_HAAR

• direction transform direction (forward, inverse)
• degree applies only for mixed transforms

An example of the 2-dimensional Cosine transform of data from Figure 5.6 is given in Figure 6.7. One can notice
that the data are concentrated again around the beginning of the coordinate system. This allows to apply filtration,
enhancement and compression techniques in the transform domain.

In some cases when the spectrum is smooth the cosine transforms are very efficient. In Figures 6.8, 6.9 we show original
spectrum and transformed coefficients using Cosine transform, respectively.

Analogously to 1-dimensional case we have implemented also the functions for zonal filtration, Gauss filtration and
enhancement. The zonal filtration function using classic transforms has the form

char *Filter2Zonal(const float **source,
float **dest,
int sizex,
int sizey,
int type,
int degree,
int xmin,
int xmax,
int ymin,
int ymax,
float filter-coeff);

64 CHAPTER 6. TRANSFORMS

Figure 6.7: 2-dimensional Cosine transform of data from Figure 5.6

Figure 6.8: Original spectrum

6.2. 2-DIMENSIONAL SPECTRA 65

Figure 6.9: Transformed coefficients using Cosine transform

This function transforms the source spectrum. The calling program should fill in input parameters. Then it sets
transformed coefficients in the given region to the given filter_coeff and transforms it back Filtered data are written
into dest spectrum.

Function parameters:

• source pointer to the matrix of source spectrum, its size should be sizex*sizey
• dest pointer to the matrix of destination data, its size should be sizex*sizey
• sizex,sizey basic dimensions of source and dest spectra
• type type of transform

– TRANSFORM2_HAAR
– TRANSFORM2_WALSH
– TRANSFORM2_COS
– TRANSFORM2_SIN
– TRANSFORM2_FOURIER
– TRANSFORM2_HARTLEY
– TRANSFORM2_FOURIER_WALSH
– TRANSFORM2_FOURIER_HAAR
– TRANSFORM2_WALSH_HAAR
– TRANSFORM2_COS_WALSH
– TRANSFORM2_COS_HAAR
– TRANSFORM2_SIN_WALSH
– TRANSFORM2_SIN_HAAR

• degree applies only for mixed transforms
• xmin low limit x of filtered region
• xmax high limit x of filtered region
• ymin low limit y of filtered region
• ymax high limit y of filtered region
• filter_coeff value which is set in filtered region

The enhancement function using transforms has the form

char *Enhance2(const float **source,
float **dest,

66 CHAPTER 6. TRANSFORMS

int sizex,
int sizey,
int type,
int degree,
int xmin,
int xmax,
int ymin,
int ymax,
float enhance-coeff);

This function transforms the source spectrum. The calling program should fill in input parameters. Then it multiplies
transformed coefficients in the given region by the given enhance_coeff and transforms it back

Function parameters:

• source pointer to the matrix of source spectrum, its size should be sizex*sizey
• dest pointer to the matrix of destination data, its size should be sizex*sizey
• sizex,sizey basic dimensions of source and dest spectra
• type type of transform

– TRANSFORM2_HAAR
– TRANSFORM2_WALSH
– TRANSFORM2_COS
– TRANSFORM2_SIN
– TRANSFORM2_FOURIER
– TRANSFORM2_HARTLEY
– TRANSFORM2_FOURIER_WALSH
– TRANSFORM2_FOURIER_HAAR
– TRANSFORM2_WALSH_HAAR
– TRANSFORM2_COS_WALSH
– TRANSFORM2_COS_HAAR
– TRANSFORM2_SIN_WALSH
– TRANSFORM2_SIN_HAAR

• degree applies only for mixed transforms
• xmin low limit x of filtered region
• xmax high limit x of filtered region
• ymin low limit y of filtered region
• ymax high limit y of filtered region
• enhance-coeff value which is set in filtered region

Chapter 7

VISUALIZATION

7.1 1-DIMENSIONAL SPECTRA

The 1-dimensional visualization function displays spectrum (or part of it) on the Canvas of a form. Before calling the
function one has to fill in one_dim_pic structure containing all parameters of the display. The function has the form

char *display1(struct one-dim-pic* p);

This function displays the source spectrum on Canvas. All parameters are grouped in one_dim_pic structure. Before
calling display1 function the structure should be filled in and the address of one_dim_pic passed as parameter to
display1 function. The meaning of appropriate parameters is apparent from description of one_dim_pic structure.
The constants , which can be used for appropriate parameters are defined in procfunc.h header file.

struct one_dim_pic {

float *source; // spectrum to be displayed

TCanvas *Canvas; // Canvas where the spectrum will be displayed

int size; // size of source spectrum
int xmin; // x-starting channel of spectrum
int xmax; // x-end channel of spectrum
int ymin; // base counts
int ymax; // count full scale

int bx1; // position of picture on Canvas, min x
int bx2; // position of picture on Canvas, max x
int by1; // position of picture on Canvas, min y
int by2; // position of picture on Canvas, max y

int display_mode; // spectrum display mode (points, polyline, bars, rainbow, steps, bezier)
int y_scale; // y scale (linear, log, sqrt)
int levels; // # of color levels for rainbow display mode, it does not apply

// for other display modes
float rainbow1_step; // determines the first color component step for neighbouring

// color levels, applies only for rainbow display mode
float rainbow2_step; // determines the second component color step for

// neighbouring color levels, applies only for rainbow display mode
float rainbow3_step; // determines the third component color step for

// neighbouring color levels, applies only for rainbow display mode

int color_alg; // applies only for rainbow display mode (rgb smooth algorithm, rgb
// modulo color component, cmy smooth algorithm, cmy modulo color
// component, cie smooth algorithm, cie modulo color component, yiq
// smooth algorithm, yiq modulo color component, hsv smooth
// algorithm, hsv modulo color component [15]

67

68 CHAPTER 7. VISUALIZATION

int bar_thickness; // applies only for bar display mode
int bar_empty_flag; // (empty bars, full bars) applies only for bar display mode
int border_color; // color of background of the picture
int full_border; // decides whether background is painted
int raster_en_dis; // decides whether the axes and rasters are shown
int raster_long; // decides whether the rasters are drawn as long lines
int raster_color; // color of the rasters
char *raster_description_x; // x axis description
char *raster_description_y; // y axis description

int pen_color; // color of spectrum
int pen_dash; // style of pen
int pen_width; // width of line

int chanmark_style; // style of channel marks
int chanmark_width; // width of channel marks
int chanmark_height; // height of channel marks
int chanmark_en_dis; // decides whether the channel marks are shown
int chanmark_color; // color of channel marks

// auxiliary variables, transform coefficients, for internal use only
double mx;
double my;
double px;
double py;

// auxiliary internal variables, working place
double gbezx,gbezy;
TPoint bz[4];

};

The examples using different display parameters are shown in the next few Figures

Figure 7.1: Display mode -polyline, width of pen=3

7.1. 1-DIMENSIONAL SPECTRA 69

Figure 7.2: Display mode- bars, shown channel marks

Figure 7.3: Display mode- steps, log scale, shown channel marks

70 CHAPTER 7. VISUALIZATION

Figure 7.4: Display mode -Bezier curve interpolation, shown channel marks

Figure 7.5: Display mode- rainbow bars, color algorithm (model) RGB, number of color levels=1024, pen width=3

7.2. 2-DIMENSIONAL SPECTRA 71

Figure 7.6: Display mode-empty bars, color algorithm YIQ, number of color levels 2048

7.2 2-DIMENSIONAL SPECTRA

The 2-dimensional visualization function displays spectrum (or part of it) on the Canvas of a form. Before calling the
function one has to fill in two_dim_pic structure containing all parameters of the display. The function has the form

char *display2(struct two-dim-pic* p);

This function displays the source two dimensional spectrum on Canvas. All parameters are grouped in two_dim_pic
structure. Before calling display2 function the structure should be filled in and the address of two_dim_pic passed as
parameter to display2 function. The meaning of appropriate parameters is apparent from description of one_dim_pic
structure. The constants , which can be used for appropriate parameters are defined in procfunc.h header file.

struct two_dim_pic {

float **source; // source spectrum to be displayed

TCanvas *Canvas; // Canvas where the spectrum will be displayed

int sizex; // x-size of source spectrum
int sizey; // y-size of source spectrum
int xmin; // x-starting channel of spectrum
int xmax; // x-end channel of spectrum
int ymin; // y-starting channel of spectrum
int ymax; // y-end channel of spectrum
int zmin; // base counts
int zmax; // counts full scale
int bx1; // position of picture on Canvas, min x
int bx2; // position of picture on Canvas, max x
int by1; // position of picture on Canvas, min y
int by2; // position of picture on Canvas, max y
int mode_group; // display mode algorithm group (simple modes-

// PICTURE2_MODE_GROUP_SIMPLE, modes with shading
// according to light-PICTURE2_MODE_GROUP_LIGHT, modes with
// shading according to channels counts-

72 CHAPTER 7. VISUALIZATION

// PICTURE2_MODE_GROUP_HEIGHT, modes of combination of
// shading according to light and to channels counts-
// PICTURE2_MODE_GROUP_LIGHT_HEIGHT)

int display_mode; // spectrum display mode (points, grid, contours, bars, x_lines,
// y_lines, bars_x, bars_y, needles, surface, triangles)

int z_scale; // z scale (linear, log, sqrt)
int nodesx; // number of nodes in x dimension of grid
int nodesy; // number of nodes in y dimension of grid
int count_reg; // width between contours, applies only for contours display mode
int alfa; // angles of display,alfa+beta must be less or equal to 90, alpha- angle

// between base line of Canvas and left lower edge of picture picture
// base plane

int beta; // angle between base line of Canvas and right lower edge of picture base plane
int view_angle; // rotation angle of the view, it can be 0, 90, 180, 270 degrees
int levels; // # of color levels for rainbowed display modes, it does not apply for

// simple display modes algorithm group
float rainbow1_step; // determines the first component step for neighbouring color

// levels, applies only for rainbowed display modes, it does not apply
// for simple display modes algorithm group

float rainbow2_step; // determines the second component step for neighbouring
// color levels, applies only for rainbowed display modes, it does not
// apply for simple display modes algorithm group

float rainbow3_step; // determines the third component step for neighbouring
// color levels, applies only for rainbowed display modes, it does not
// apply for simple display modes algorithm group

int color_alg; // applies only for rainbowed display modes (rgb smooth algorithm,
// rgb modulo color component, cmy smooth algorithm, cmy modulo
// color component, cie smooth algorithm, cie modulo color component,
// yiq smooth algorithm, yiq modulo color component, hsv smooth
// algorithm, hsv modulo color component, it does not apply for simple
// display modes algorithm group [15]

float l_h_weight; // weight between shading according to fictive light source and
// according to channels counts, applies only for
// PICTURE2_MODE_GROUP_LIGHT_HEIGHT modes group

int xlight; // x position of fictive light source, applies only for rainbowed display
// modes with shading according to light

int ylight; // y position of fictive light source, applies only for rainbowed display
// modes with shading according to light

int zlight; // z position of fictive light source, applies only for rainbowed display
// modes with shading according to light

int shadow; // determines whether shadow will be drawn (no shadow, shadow),
// for rainbowed display modes with shading according to light

int shading; // determines whether the picture will shaded, smoothed (no shading,
// shading), for rainbowed display modes only

int bezier; // determines Bezier interpolation (applies only for simple display
// modes group for grid, x_lines, y_lines display modes)

int border_color; // color of background of the picture
int full_border; // decides whether background is painted
int raster_en_dis; // decides whether the rasters are shown
int raster_long; // decides whether the rasters are drawn as long lines
int raster_color; // color of the rasters
char *raster_description_x; // x axis description
char *raster_description_y; // y axis description
char *raster_description_z; // z axis description
int pen_color; // color of spectrum
int pen_dash; // style of pen
int pen_width; // width of line
int chanmark_en_dis; // decides whether the channel marks are shown
int chanmark_style; // style of channel marks
int chanmark_width; // width of channel marks
int chanmark_height; // height of channel marks
int chanmark_color; // color of channel marks
int chanline_en_dis; // decides whether the channel lines (grid) are shown

7.2. 2-DIMENSIONAL SPECTRA 73

// auxiliary variables, transformation coefficients for internal use only
double kx;
double ky;
double mxx;
double mxy;
double myx;
double myy;
double txx;
double txy;
double tyx;
double tyy;
double tyz;
double vx;
double vy;
double nu_sli;

// auxiliary internal variables, working place
double z,zeq,gbezx,gbezy,dxspline,dyspline;
int xt,yt,xs,ys,xe,ye,priamka,z_preset_value;
unsigned short obal[MAXIMUM_XSCREEN_RESOLUTION];
unsigned short obal_cont[MAXIMUM_XSCREEN_RESOLUTION];
TPoint bz[4];

};

The examples using different display parameters are shown in the next few Figures.

Figure 7.7: Display mode-bars, pen width=2

74 CHAPTER 7. VISUALIZATION

Figure 7.8: Display mode-triangles, log scale

Figure 7.9: Display mode-contours

7.2. 2-DIMENSIONAL SPECTRA 75

Figure 7.10: Display mode surface shading according to height

Figure 7.11: Display mode-surface shading according to light point

76 CHAPTER 7. VISUALIZATION

Figure 7.12: Display mode-surface shading according to height+light position with ratio 50:50, CMY color model

Figure 7.13: Display mode bars shaded according to height

7.2. 2-DIMENSIONAL SPECTRA 77

Figure 7.14: Display mode- surface shading according to light position with shadows

Figure 7.15: Display mode- surface shading according to height with 10 levels of contours

78 CHAPTER 7. VISUALIZATION

Figure 7.16: Display mode- surface shading according to height, sqrt scale, channel marks and lines shown

Figure 7.17: Display mode- surface shading according to height-contours, rasters allowing to localize interesting parts
are shown.

References

[1] M. Morháč, J. Kliman, V. Matoušek, M. Veselský, I. Turzo.: Background elimination methods for multidimensional
gamma-ray spectra. NIM, A401 (1997) 113-132.

[2] C. G Ryan et al.: SNIP, a statistics-sensitive background treatment for the quantitative analysis of PIXE spectra in
geoscience applications. NIM, B34 (1988), 396-402.

[3] D. D. Burgess, R. J. Tervo: Background estimation for gamma-ray spectroscopy. NIM 214 (1983), 431-434.

[4] M. Morháč, J. Kliman, V. Matoušek, M. Veselský, I. Turzo.:Identification of peaks in multidimensional coincidence
gamma-ray spectra. NIM, A443 (2000) 108-125.

[5] M.A. Mariscotti: A method for identification of peaks in the presence of background and its application to spectrum
analysis. NIM 50 (1967), 309-320.

[6] Z.K. Silagadze, A new algorithm for automatic photopeak searches. NIM A 376 (1996), 451.

[7] P. Bandžuch, M. Morháč, J. Krištiak: Study of the VanCitter and Gold iterative methods of deconvolutionand their
application in the deconvolution of experimental spectra of positron annihilation, NIM A 384 (1997) 506-515.

[8] M. Morháč, J. Kliman, V. Matoušek, M. Veselský, I. Turzo.: Efficient one- and two-dimensional Gold deconvolution
and its application to gamma-ray spectra decomposition. NIM, A401 (1997) 385-408.

[9] I. A. Slavic: Nonlinear least-squares fitting without matrix inversion applied to complex Gaussian spectra analysis.
NIM 134 (1976) 285-289.

[10] B. Mihaila: Analysis of complex gamma spectra, Rom. Jorn. Phys., Vol. 39, No. 2, (1994), 139-148.

[11] T. Awaya: A new method for curve fitting to the data with low statistics not using chi-square method. NIM 165
(1979) 317-323.

[12] T. Hauschild, M. Jentschel: Comparison of maximum likelihood estimation and chi-square statistics applied to
counting experiments. NIM A 457 (2001) 384-401.

[13] M. Morháč, J. Kliman, M. Jandel, Ľ. Krupa, V. Matoušek: Study of fitting algorithms applied to simultaneous
analysis of large number of peaks in γ-ray spectra. Applied spectroscopy, Accepted for publication.

[14] C.V. Hampton, B. Lian, Wm. C. McHarris: Fast-Fourier-transform spectral enhancement techniques for gamma-ray
spectroscopy. NIM A353 (1994) 280-284..

[15] D. Hearn, M. P. Baker: Computer Graphics, Prentice-Hall International, Inc., 1994.

79

	Processing and Visualization Functions
	BACKGROUND ELIMINATION
	1-DIMENSIONAL SPECTRA
	2-DIMENSIONAL SPECTRA

	SMOOTHING
	2-DIMENSIONAL SPECTRA

	PEAK SEARCHING
	1-DIMENSIONAL SPECTRA
	2-DIMENSIONAL SPECTRA

	DECONVOLUTION - UNFOLDING
	1-DIMENSIONAL SPECTRA
	Gold deconvolution algorithm
	2-DIMENSIONAL SPECTRA

	FITTING
	1-DIMENSIONAL SPECTRA
	2-DIMENSIONAL SPECTRA

	TRANSFORMS
	1-DIMENSIONAL SPECTRA
	2-DIMENSIONAL SPECTRA

	VISUALIZATION
	1-DIMENSIONAL SPECTRA
	2-DIMENSIONAL SPECTRA

	References

