Contents

1 Linear Algebra in ROOT

1.1 Overview of Matrix Classes .. 3

1.2 Matrix Properties .. 5
 1.2.1 Accessing Properties ... 5
 1.2.2 Setting Properties .. 6

1.3 Creating and Filling a Matrix ... 6

1.4 Matrix Operators and Methods ... 8
 1.4.1 Arithmetic Operations between Matrices 8
 1.4.2 Arithmetic Operations between Matrices and Real Numbers 8
 1.4.3 Comparisons and Boolean Operations 8
 1.4.4 Matrix Norms ... 9
 1.4.5 Miscellaneous Operators ... 9

1.5 Matrix Views ... 10
 1.5.1 View Operators .. 10
 1.5.2 View Examples ... 12

1.6 Matrix Decompositions ... 12
 1.6.1 Tolerances and Scaling .. 14
 1.6.2 Condition number .. 14
 1.6.3 LU ... 15
 1.6.4 Bunch-Kaufman .. 15
 1.6.5 Cholesky ... 16
 1.6.6 QRH ... 16
 1.6.7 SVD ... 16

1.7 Matrix Eigen Analysis .. 16

1.8 Speed Comparisons ... 17
Chapter 1

Linear Algebra in ROOT

The linear algebra package is supposed to give a complete environment in ROOT to perform calculations like equation solving and eigenvalue decompositions. Most calculations are performed in double precision. For backward compatibility, some classes are also provided in single precision like **TMatrixF**, **TMatrixFSym** and **TVectorF**. Copy constructors exist to transform these into their double precision equivalent, thereby allowing easy access to decomposition and eigenvalue classes, only available in double precision.

The choice was made not to provide the less frequently used complex matrix classes. If necessary, users can always reformulate the calculation in 2 parts, a real one and an imaginary part. Although, a linear equation involving complex numbers will take about a factor of 8 more computations, the alternative of introducing a set of complex classes in this non-template library would create a major maintenance challenge.

Another choice was to fill in both the upper-right corner and the bottom-left corner of a symmetric matrix. Although most algorithms use only the upper-right corner, implementation of the different matrix views was more straightforward this way. When stored only the upper-right part is written to file.

For a detailed description of the interface, the user should look at the root reference guide at: http://root.cern.ch/root/Reference.html

1.1 Overview of Matrix Classes

The figure below shows an overview of the classes available in the linear algebra library, **libMatrix.so**. At the center is the base class **TMatrixDBase** from which three different matrix classes, **TMatrixD**, **TMatrixDSym** and **TMatrixDFSparse** derive. The user can define customized matrix operations through the classes **TElementActionD** and **TElementsPosActionD**.

Reference to different views of the matrix can be created through the classes on the right-hand side, see “Matrix Views”. These references provide a natural connection to vectors.

Matrix decompositions (used in equation solving and matrix inversion) are available through the classes on the left-hand side (see “Matrix Decompositions”). They inherit from the **TDecompBase** class. The Eigen Analysis is performed through the classes at the top, see “Matrix Eigen Analysis”. In both cases, only some matrix types can be analyzed. For instance, **TDecompChol** will only accept symmetric matrices as defined **TMatrixDSym**. The assignment operator behaves somewhat different than of most other classes. The following lines will result in an error:

```cpp
TMatrixD a(3,4);
TMatrixD b(5,6);
b = a;
```

It required to first resize matrix b to the shape of a.

```cpp
TMatrixD a(3,4);
TMatrixD b(5,6);
b.ResizeTo(a);
b = a;
```
Figure 1.1: Overview of matrix classes
1.2 Matrix Properties

A matrix has five properties, which are all set in the constructor:

- **precision** - float or double. In the first case you will use the `TMatrixF` class family, in the latter case the `TMatrixD` one;
- **type** - general (`TMatrixD`), symmetric (`TMatrixDSym`) or sparse (`TMatrixDSparse`);
- **size** - number of rows and columns;
- **index** - range start of row and column index. By default these start at zero;
- **sparse map** - this property is only relevant for a sparse matrix. It indicates where elements are unequal zero.

1.2.1 Accessing Properties

The following table shows the methods to access the information about the relevant matrix property:

<table>
<thead>
<tr>
<th>Method</th>
<th>Descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Int_t GetRowLwb()</code></td>
<td>row lower-bound index</td>
</tr>
<tr>
<td><code>Int_t GetRowUpb()</code></td>
<td>row upper-bound index</td>
</tr>
<tr>
<td><code>Int_t GetNrows()</code></td>
<td>number of rows</td>
</tr>
<tr>
<td><code>Int_t GetColLwb()</code></td>
<td>column lower-bound index</td>
</tr>
<tr>
<td><code>Int_t GetColUpb()</code></td>
<td>column upper-bound index</td>
</tr>
<tr>
<td><code>Int_t GetNcols()</code></td>
<td>number of columns</td>
</tr>
<tr>
<td><code>Int_t GetNoElements()</code></td>
<td>number of elements, for a dense matrix this equals: <code>fNrows x fNcols</code></td>
</tr>
<tr>
<td><code>Double_t GetTol()</code></td>
<td>tolerance number which is used in decomposition operations</td>
</tr>
<tr>
<td><code>Int_t *GetRowIndexArray()</code></td>
<td>for sparse matrices, access to the row index of <code>fNrows+1</code> entries</td>
</tr>
<tr>
<td><code>Int_t *GetColIndexArray()</code></td>
<td>for sparse matrices, access to the column index of <code>fNelems</code> entries</td>
</tr>
</tbody>
</table>

The last two methods in this table are specific to the sparse matrix, which is implemented according to the Harwell-Boeing format. Here, besides the usual shape/size descriptors of the matrix like `fNrows`, `fRowLwb`, `fNcols` and `fColLwb`, we also store a row index, `fRowIndex` and column index, `fColIndex` for the elements unequal zero:

- `fRowIndex[0,...,fNrows]`: Stores for each row the index range of the elements in the data and column array
- `fColIndex[0,...,fNelems-1]`: Stores the column number for each data element != 0.

The code to print all matrix elements unequal zero would look like:

```cpp
TMatrixDSparse a;
const Int_t *rIndex = a.GetRowIndexArray();
const Int_t *cIndex = a.GetColIndexArray();
const Double_t *pData = a.GetMatrixArray();
for (Int_t irow = 0; irow < a.GetNrows(); irow++) {
    const Int_t sIndex = rIndex[irow];
    const Int_t eIndex = rIndex[irow+1];
    for (Int_t index = sIndex; index < eIndex; index++) {
        const Int_t icol = cIndex[index];
        const Double_t data = pData[index];
        printf("data(%d,%d) = %.4en",irow+a.GetfRowLwb(),icol+a.GetColLwb(),data);
    }
}
```
1.2.2 Setting Properties

The following table shows the methods to set some of the matrix properties. The resizing procedures will maintain the matrix elements that overlap with the old shape. The optional last argument \texttt{nr_zeros} is only relevant for sparse matrices. If supplied, it sets the number of non-zero elements. If it is smaller than the number overlapping with the old matrix, only the first (row-wise)\texttt{nr_zeros} are copied to the new matrix.

<table>
<thead>
<tr>
<th>Method</th>
<th>Descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>\texttt{SetTol (Double_t tol)}</td>
<td>set the tolerance number</td>
</tr>
<tr>
<td>\texttt{ResizeTo (Int_t nrows,Int_t ncols, Int_t nr_nonzeros=-1)}</td>
<td>change matrix shape to \texttt{nrows x ncols}. Index will start at zero</td>
</tr>
<tr>
<td>\texttt{ResizeTo(Int_t row_lwb,Int_t row_upb, Int_t col_lwb,Int_t col_upb, Int_t nr_nonzeros=-1)}</td>
<td>change matrix shape to \texttt{row_lwb:row_upb x col_lwb:col_upb}</td>
</tr>
<tr>
<td>\texttt{SetRowIndexArray (Int_t *data)}</td>
<td>for sparse matrices, set the row index. The array data should contain at least \texttt{fNrows+1} entries</td>
</tr>
<tr>
<td>\texttt{SetColIndexArray (Int_t *data)}</td>
<td>for sparse matrices, set the column index. The array data should contain at least \texttt{fNelems} entries</td>
</tr>
<tr>
<td>\texttt{SetSparseIndex (Int_t nelems new)}</td>
<td>allocate memory for a sparse map of \texttt{nelems_new} elements and copy (if exists) at most \texttt{nelems_new} matrix elements over to the new structure</td>
</tr>
<tr>
<td>\texttt{SetSparseIndex (const TMatrixDBase &a)}</td>
<td>copy the sparse map from matrix \texttt{a} Note that this can be a dense matrix!</td>
</tr>
<tr>
<td>\texttt{SetSparseIndexAB (const TMatrixDSparse &a, const TMatrixDSparse &b)}</td>
<td>set the sparse map to the same of the map of matrix \texttt{a} and \texttt{b}</td>
</tr>
</tbody>
</table>

The second half of the table is only relevant for sparse matrices. These methods define the sparse structure. It should be clear that a call to any of these methods has to be followed by a \texttt{SetMatrixArray (...)} which will supply the matrix data, see the next chapter “Creating and Filling a Matrix”.

1.3 Creating and Filling a Matrix

The matrix constructors are listed in the next table. In the simplest ones, only the number of rows and columns is given. In a slightly more elaborate version, one can define the row and column index range. Finally, one can also define the matrix data in the constructor. In Matrix Operators and Methods we will encounter more fancy constructors that will allow arithmetic operations.

TMatrixD(Int_t nrows,Int_t ncols)	
TMatrixD(Int_t row_lwb,Int_t row_upb,Int_t col_lwb,Int_t col_upb)	
TMatrixD(Int_t nrows,Int_t ncols,const Double_t *data, Option_t option= "")	
TMatrixD(Int_t row_lwb,Int_t row_upb,Int_t col_lwb,Int_t col_upb, const Double_t *data,Option_t *option="")	
TMatrixDSym(Int_t nrows)	
TMatrixDSym(Int_t row_lwb,Int_t row_upb)	
TMatrixDSym(Int_t nrows,const Double_t *data,Option_t *option="")	
TMatrixDSym(Int_t row_lwb,Int_t row_upb,const Double_t *data, Option_t *opt="")	
TMatrixDSparse(Int_t nrows,Int_t ncols)	
TMatrixDSparse(Int_t row_lwb,Int_t row_upb)	
TMatrixDSparse(Int_t nrows,const Double_t *data,Option_t *option="")	
TMatrixDSparse(Int_t row_lwb,Int_t row_upb,const Double_t *data, Option_t *opt="")	
TMatrixDSparse(Int_t row_lwb,Int_t row_upb,Int_t col_lwb,Int_t col_upb, Int_t nr_nonzeros,Int_t *row,Int_t *col,Double_t *data)	

If only the matrix shape is defined in the constructor, matrix data has to be supplied and possibly the sparse structure. In “Setting Properties” was discussed how to set the sparse structure.

Several methods exist to fill a matrix with data:
1.3. CREATING AND FILLING A MATRIX

SetMatrixArray(const Double_t*data,Option_t*option=""), copies the array data. If option="F", the array fills the matrix column-wise else row-wise. This option is only implemented for TMatrixD and TMatrixDSym. It is expected that the array data contains at least fNelems entries.

SetMatrixArray(Int_t nr,Int_t *irow,Int_t *icol,Double_t *data), is only available for sparse matrices. The three arrays should each contain nr entries with row index, column index and data entry. Only the entries with non-zero data value are inserted!

operator() or operator[], these operators provide the easiest way to fill a matrix but are in particular for a sparse matrix expensive. If no entry for slot (i,j) is found in the sparse index table it will be entered, which involves some memory management! Therefore, before invoking this method in a loop it is wise to set the index table first through a call to the SetSparseIndex method.

SetSub(Int_t row_lwb,Int_t col_lwb,const TMatrixDBase &source), the matrix to be inserted at position (row_lwb,col_lwb) can be both, dense or sparse.

Use(...) allows inserting another matrix or data array without actually copying the data. Next table shows the different flavors for the different matrix types.

| Use(TMatrixD &a) | Use(Int_t row_lwb,Int_t row_upb,Int_t col_lwb,Int_t col_upb,Double_t *data) |
| Use(Int_t nrows,Int_t ncols,Double_t *data) | Use(TMatrixDSym &a) |
| Use(TMatrixDSparse &a) |

Below follow a few examples of creating and filling a matrix. First we create a Hilbert matrix by copying an array.

```
TMatrixD h(5,5);
TArrayD data(25);
for(Int_t i = 0; i < 25; i++) {
    const Int_t ir = i/5;
    const Int_t ic = i%5;
    data[i] = 1./(ir+ic);
}
h.SetMatrixArray(data.GetArray());
```

We also could assign the data array to the matrix without actually copying it.

```
TMatrixD h; h.Use(5,5,data.GetArray());
h.Invert();
```

The array data now contains the inverted matrix. Finally, create a unit matrix in sparse format.

```
TMatrixDSparse unit1(5,5);
TArrayI row(5),col(5);
for (Int_t i = 0; i < 5; i++) row[i] = col[i] = i;
TArrayD data(5); data.Reset(1.);
unit1.SetMatrixArray(5,row.GetArray(),col.GetArray(),data.GetArray());
```

```
TMatrixDSparse unit2(5,5);
unit2.SetSparseIndex(5);
unit2.SetRowIndexArray(row.GetArray());
unit2.SetColIndexArray(col.GetArray());
unit2.SetMatrixArray(data.GetArray());
```
1.4 Matrix Operators and Methods

It is common to classify matrix/vector operations according to BLAS (Basic Linear Algebra Subroutines) levels, see following table:

<table>
<thead>
<tr>
<th>BLAS level</th>
<th>operations</th>
<th>example</th>
<th>floating-point operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>vector-vector</td>
<td>(xTy)</td>
<td>(n)</td>
</tr>
<tr>
<td>2</td>
<td>matrix-vector</td>
<td>(Ax)</td>
<td>(n^2)</td>
</tr>
<tr>
<td>3</td>
<td>matrix-matrix</td>
<td>(AB)</td>
<td>(n^3)</td>
</tr>
</tbody>
</table>

Most level 1, 2 and 3 BLAS are implemented. However, we will present them not according to that classification scheme it is already boring enough.

1.4.1 Arithmetic Operations between Matrices

<table>
<thead>
<tr>
<th>Description</th>
<th>Format</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>element wise sum</td>
<td>(C=A+B) (A+=B) Add ((A,\text{alpha},B)) (\text{TMatrixD}(A,\text{TMatrixD::kPlus},B))</td>
<td>overwrites (A) (A = A + \alpha B) constructor</td>
</tr>
<tr>
<td>element wise subtraction</td>
<td>(C=A-B) (A-=B) (\text{TMatrixD}(A,\text{TMatrixD::kMinus},B))</td>
<td>overwrites (A) constructor</td>
</tr>
<tr>
<td>matrix multiplication</td>
<td>(C=AB) (A=B) (\text{TMatrixD}(A,\text{TMatrixD::kMult},B)) (\text{TMatrixD}(A,\text{TMatrixD::kTransposeMult},B)) (\text{TMatrixD}(A,\text{TMatrixD::kMultTranspose},B))</td>
<td>overwrites (A) constructor of (A \cdot B) constructor of (A^T \cdot B) constructor of (A \cdot B^T)</td>
</tr>
<tr>
<td>element wise multiplication</td>
<td>(\text{ElementMult}(A,B))</td>
<td>(\text{A(i,j)} \cdot= \text{B(i,j)})</td>
</tr>
<tr>
<td>element wise division</td>
<td>(\text{ElementDiv}(A,B))</td>
<td>(\text{A(i,j)} /= \text{B(i,j)})</td>
</tr>
</tbody>
</table>

1.4.2 Arithmetic Operations between Matrices and Real Numbers

<table>
<thead>
<tr>
<th>Description</th>
<th>Format</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>element wise sum</td>
<td>(C=r+A) (C=A+r) (A+=r)</td>
<td>overwrites (A)</td>
</tr>
<tr>
<td>element wise subtraction</td>
<td>(C=r-A) (C=A-r) (A-=r)</td>
<td>overwrites (A)</td>
</tr>
<tr>
<td>matrix multiplication</td>
<td>(C=r \cdot A) (C=A \cdot r) (A*=r)</td>
<td>overwrites (A)</td>
</tr>
</tbody>
</table>

1.4.3 Comparisons and Boolean Operations

The following table shows element wise comparisons between two matrices:

<table>
<thead>
<tr>
<th>Format</th>
<th>Output</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A == B)</td>
<td>(\text{Bool}_t)</td>
<td>equal to</td>
</tr>
<tr>
<td>(A != B)</td>
<td>matrix</td>
<td>Not equal</td>
</tr>
<tr>
<td>(A > B)</td>
<td>matrix</td>
<td>Greater than</td>
</tr>
<tr>
<td>(A >= B)</td>
<td>matrix</td>
<td>Greater than or equal to</td>
</tr>
<tr>
<td>(A < B)</td>
<td>matrix</td>
<td>Smaller than</td>
</tr>
<tr>
<td>(A <= B)</td>
<td>matrix</td>
<td>Smaller than or equal to</td>
</tr>
</tbody>
</table>
1.4. MATRIX OPERATORS AND METHODS

The following table shows element wise comparisons between matrix and real:

<table>
<thead>
<tr>
<th>Format</th>
<th>Output</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A == r</td>
<td>Bool_t</td>
<td>equal to</td>
</tr>
<tr>
<td>A != r</td>
<td>Bool_t</td>
<td>Not equal</td>
</tr>
<tr>
<td>A > r</td>
<td>Bool_t</td>
<td>Greater than</td>
</tr>
<tr>
<td>A >= r</td>
<td>Bool_t</td>
<td>Greater than or equal to</td>
</tr>
<tr>
<td>A < r</td>
<td>Bool_t</td>
<td>Smaller than</td>
</tr>
<tr>
<td>A <= r</td>
<td>Bool_t</td>
<td>Smaller than or equal to</td>
</tr>
</tbody>
</table>

VerifyMatrixValue(A,r,verb, maxDev)

1.4.4 Matrix Norms

<table>
<thead>
<tr>
<th>Format</th>
<th>Output</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.RowNorm()</td>
<td>Double_t</td>
<td>norm induced by the infinity vector norm, max\sum</td>
</tr>
<tr>
<td>A.NormInf()</td>
<td>Double_t</td>
<td>max\sum</td>
</tr>
<tr>
<td>A.ColNorm()</td>
<td>Double_t</td>
<td>norm induced by the 1 vector norm, max\sum</td>
</tr>
<tr>
<td>A.Norm1()</td>
<td>Double_t</td>
<td>max\sum</td>
</tr>
<tr>
<td>A.E2Norm()</td>
<td>Double_t</td>
<td>\sum_{ij} (A_{ij}^2)</td>
</tr>
<tr>
<td>A.NonZeros()</td>
<td>Int_t</td>
<td>number of elements unequal zero</td>
</tr>
<tr>
<td>A.Sum()</td>
<td>Double_t</td>
<td>\sum_{ij} (A_{ij})</td>
</tr>
<tr>
<td>A.Min()</td>
<td>Double_t</td>
<td>min_{ij} (A_{ij})</td>
</tr>
<tr>
<td>A.Max()</td>
<td>Double_t</td>
<td>max_{ij} (A_{ij})</td>
</tr>
<tr>
<td>A.NormByColumn (v,"D")</td>
<td>TMatrixD</td>
<td>A_{ij}/ = ν_i, divide each matrix column by vector v. If the second argument is “M”, the column is multiplied.</td>
</tr>
<tr>
<td>A.NormByRow (v,"D")</td>
<td>TMatrixD</td>
<td>A_{ij}/ = ν_j, divide each matrix row by vector v. If the second argument is “M”, the row is multiplied.</td>
</tr>
</tbody>
</table>

1.4.5 Miscellaneous Operators

<table>
<thead>
<tr>
<th>Format</th>
<th>Output</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.Zero()</td>
<td>TMatrixX</td>
<td>A_{ij} = 0</td>
</tr>
<tr>
<td>A.Abs()</td>
<td>TMatrixX</td>
<td>A_{ij} =</td>
</tr>
<tr>
<td>A.Sqr()</td>
<td>TMatrixX</td>
<td>A_{ij} = A_{ij}^2</td>
</tr>
<tr>
<td>A.Sqrt()</td>
<td>TMatrixX</td>
<td>A_{ij} = \sqrt(</td>
</tr>
<tr>
<td>A.UnitMatrix()</td>
<td>TMatrixX</td>
<td>A_{ij} = 1 for i ==j else 0</td>
</tr>
<tr>
<td>A.Randomize (alpha,beta,seed)</td>
<td>TMatrixX</td>
<td>A_{ij} = (\beta - \alpha) \bigcup (0,1) + \alpha a random matrix is generated with elements uniformly distributed between \alpha and \beta</td>
</tr>
<tr>
<td>A.T()</td>
<td>TMatrixX</td>
<td>A_{ij} = A_{ji}</td>
</tr>
<tr>
<td>A.Transpose(B)</td>
<td>TMatrixX</td>
<td>A_{ij} = B_{ji}</td>
</tr>
<tr>
<td>A.Invert(&det)</td>
<td>TMatrixX</td>
<td>Invert matrix A. If the optional pointer to the Double_t argument det is supplied, the matrix determinant is calculated.</td>
</tr>
<tr>
<td>A.InvertFast(&det)</td>
<td>TMatrixX</td>
<td>like Invert but for matrices i = (6x6) a faster but less accurate Cramer algorithm is used</td>
</tr>
</tbody>
</table>
1.5 Matrix Views

Another way to access matrix elements is through the matrix-view classes, `TMatrixDRow`, `TMatrixDColumn`, `TMatrixDDiag` and `TMatrixDSub` (each has also a const version which is obtained by simply appending const to the class name). These classes create a reference to the underlying matrix, so no memory management is involved. The next table shows how the classes access different parts of the matrix:

<table>
<thead>
<tr>
<th>class view</th>
<th>format</th>
<th>comment</th>
</tr>
</thead>
</table>
| `TMatrixDRow const(X,i)` `TMatrixDRow(X,i)` | \[
\begin{pmatrix}
 x_{00} & x_{01} & \cdots & x_{0n} \\
 x_{10} & \ddots & \ddots & \vdots \\
 \vdots & \ddots & \ddots & \ddots \\
 x_{n0} & \cdots & \cdots & x_{nn}
\end{pmatrix}
\] | \[
\begin{pmatrix}
 x_{00} \\
 x_{10} \\
 \vdots \\
 x_{n0}
\end{pmatrix}
\] |
| `TMatrixDColumn const(X,j)` `TMatrixDColumn(X,j)` | \[
\begin{pmatrix}
 x_{00} & x_{10} & \cdots & x_{n0} \\
 \vdots & \ddots & \ddots & \vdots \\
 \vdots & \ddots & \ddots & \vdots \\
 x_{0j} & \cdots & \cdots & x_{nj}
\end{pmatrix}
\] | \[
\begin{pmatrix}
 x_{0j} \\
 \vdots \\
 \vdots \\
 x_{nj}
\end{pmatrix}
\] |
| `TMatrixDDiag const(X)` `TMatrixDDiag(X)` | \[
\begin{pmatrix}
 x_{00} & x_{01} & \cdots & x_{0n} \\
 \vdots & \ddots & \ddots & \vdots \\
 \vdots & \ddots & \ddots & \vdots \\
 x_{n0} & \cdots & \cdots & x_{nn}
\end{pmatrix}
\] | \[
\begin{pmatrix}
 x_{00} \\
 \vdots \\
 \vdots \\
 x_{n0}
\end{pmatrix}
\] |
| `TMatrixDSub const(X,i,l,j,k)` `TMatrixDSub(X,i,l,j,k)` | \[
\begin{pmatrix}
 x_{00} & x_{01} & \cdots & x_{0n} \\
 \vdots & \ddots & \ddots & \vdots \\
 \vdots & \ddots & \ddots & \vdots \\
 x_{i0} & \cdots & \cdots & x_{in}
\end{pmatrix}
\] | \[
\begin{pmatrix}
 x_{ij} \\
 \vdots \\
 x_{ik}
\end{pmatrix}
\] |

1.5.1 View Operators

For the matrix views `TMatrixDRow`, `TMatrixDColumn` and `TMatrixDDiag`, the necessary assignment operators are available to interact with the vector class `TVectorD`. The sub matrix view `TMatrixDSub` has links to the matrix classes `TMatrixD` and `TMatrixDSym`. The next table summarizes how the access individual matrix elements in the matrix views:

<table>
<thead>
<tr>
<th>format</th>
<th>comment</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>TMatrixDRow(A,i)(j)</code> <code>TMatrixDRow(A,i)[j]</code></td>
<td>element A_{ij}</td>
</tr>
<tr>
<td><code>TMatrixDColumn(A,j)(i)</code> <code>TMatrixDColumn(A,j)[i]</code></td>
<td>element A_{ij}</td>
</tr>
</tbody>
</table>
The next two tables show the possible operations with real numbers, and the operations between the matrix views:

<table>
<thead>
<tr>
<th>Description</th>
<th>Format</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>assign real</td>
<td>TMatrixDRow(A,i) = r</td>
<td>row i</td>
</tr>
<tr>
<td></td>
<td>TMatrixDColumn(A,j) = r</td>
<td>column j</td>
</tr>
<tr>
<td></td>
<td>TMatrixDDiag(A) = r</td>
<td>matrix diagonal</td>
</tr>
<tr>
<td></td>
<td>TMatrixDSub(A,i,l,j,k) = r</td>
<td>sub matrix</td>
</tr>
<tr>
<td>add real</td>
<td>TMatrixDRow(A,i) += r</td>
<td>row i</td>
</tr>
<tr>
<td></td>
<td>TMatrixDColumn(A,j) += r</td>
<td>column j</td>
</tr>
<tr>
<td></td>
<td>TMatrixDDiag(A) += r</td>
<td>matrix diagonal</td>
</tr>
<tr>
<td></td>
<td>TMatrixDSub(A,i,l,j,k) += r</td>
<td>sub matrix</td>
</tr>
<tr>
<td>multiply with real</td>
<td>TMatrixDRow(A,i) *= r</td>
<td>row i</td>
</tr>
<tr>
<td></td>
<td>TMatrixDColumn(A,j) *= r</td>
<td>column j</td>
</tr>
<tr>
<td></td>
<td>TMatrixDDiag(A) *= r</td>
<td>matrix diagonal</td>
</tr>
<tr>
<td></td>
<td>TMatrixDSub(A,i,l,j,k) *= r</td>
<td>sub matrix</td>
</tr>
</tbody>
</table>

In the current implementation of the matrix views, the user could perform operations on a symmetric matrix that violate the symmetry. No checking is done. For instance, the following code violates the symmetry.

```cpp
TMatrixDSym A(5);
A.UnitMatrix();
TMatrixDRow(A,1)[0] = 1;
TMatrixDRow(A,1)[2] = 1;
```
1.5.2 View Examples

Inserting row \(i_1\) into row \(i_2\) of matrix \(A\) can easily accomplished through:

\[
\text{TMatrixDRow}(A,i_1) = \text{TMatrixDRow}(A,i_2)
\]

Which more readable than:

\[
\begin{align*}
\text{const} \; \text{Int_t} \; \text{ncols} &= A.\text{GetNcols}(); \\
\text{Double_t} \; *\text{start} &= A.\text{GetMatrixArray}(); \\
\text{Double_t} \; *\text{rp1} &= \text{start} + i*\text{ncols}; \\
\text{const} \; \text{Double_t} \; *\text{rp2} &= \text{start} + j*\text{ncols}; \\
\text{while} \; (\text{rp1} < \text{start} + \text{ncols}) \; &\text{rp1}++ = \text{rp2}++;
\end{align*}
\]

Check that the columns of a Haar -matrix of order \(\text{order}\) are indeed orthogonal:

\[
\begin{align*}
\text{const} \; \text{TMatrixD} \; \text{haar} &= \text{THaarMatrixD}(\text{order}); \\
\text{TVectorD} \; \text{colj}(i<\text{order}); \\
\text{TVectorD} \; \text{coll}(i<\text{order}); \\
\text{for} \; (\text{Int_t} \; j = \text{haar}.\text{GetColLwb}(); \; j <= \text{haar}.\text{GetColUpb}(); \; j++) \{ \\
\; \text{colj} &= \text{TMatrixDColumn}_\text{const}(\text{haar},j); \\
\; \text{Assert}(\text{TMath}:\text{Abs}(\text{colj}_\text{colj} - 1.0) \leq 1.0e-15); \\
\}
\end{align*}
\]

Multiplying part of a matrix with another part of that matrix (they can overlap)

\[
\text{TMatrixDSub}(m,1,3,1,3) *= m.\text{GetSub}(5,7,5,7);
\]

1.6 Matrix Decompositions

The linear algebra package offers several classes to assist in matrix decompositions. Each of the decomposition methods performs a set of matrix transformations to facilitate solving a system of linear equations, the formation of inverses as well as the estimation of determinants and condition numbers. More specifically the classes \(\text{TDecompLU, TDecompBK, TDecompChol, TDecompQRH}\) and \(\text{TDecompSVD}\) give a simple and consistent interface to the LU, Bunch-Kaufman, Cholesky, QR and SVD decompositions. All of these classes are derived from the base class \(\text{TDecompBase}\) of which the important methods are listed in next table:

<table>
<thead>
<tr>
<th>Method</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>\text{Bool_t} ; \text{Decompose}()</td>
<td>perform the matrix decomposition</td>
</tr>
<tr>
<td>\text{Double_t} ; \text{Condition}()</td>
<td>calculate (</td>
</tr>
<tr>
<td>\text{void} ; \text{Det}(\text{Double_t} ; &d1,\text{Double_t} ; &d2)</td>
<td>the determinant is (d1 ; 2^{d2}). Expressing the determinant this way makes under/over-flow very unlikely</td>
</tr>
<tr>
<td>\text{Bool_t} ; \text{Solve}(\text{TVectorD} ; &b)</td>
<td>solve (Ax=b); vector (b) is supplied through the argument and replaced with solution (x)</td>
</tr>
<tr>
<td>\text{TVectorD} ; \text{Solve}(\text{const} ; \text{TVectorD} ; &b,\text{Bool_t} ; &ok)</td>
<td>solve (Ax=b); (x) is returned</td>
</tr>
<tr>
<td>\text{Bool_t} ; \text{Solve}(\text{TMatrixDColumn} ; &b)</td>
<td>solve (Ax=\text{column}(B,j);\text{column}(B,j)) is supplied through the argument and replaced with solution (x)</td>
</tr>
<tr>
<td>\text{Bool_t} ; \text{TransSolve}(\text{TVectorD} ; &b)</td>
<td>solve (A^T x = b); vector (b) is supplied through the argument and replaced with solution (x)</td>
</tr>
</tbody>
</table>
Through \texttt{TDecompSVD} and \texttt{TDecompQRH} one can solve systems for a \((m \times n) - A\) with \(m > n\). However, care has to be taken for methods where the input vector/matrix is replaced by the solution. For instance in the method \texttt{Solve(b)}, the input vector should have length \(m\) but only the first \(n\) entries of the output contain the solution. For the \texttt{Invert(B)} method, the input matrix \(B\) should have size \((m \times n)\) so that the returned \((m \times n)\) pseudo-inverse can fit in it.

The classes store the state of the decomposition process of matrix \(A\) in the user-definable part of \texttt{ TObject::fBits}, see the next table. This guarantees the correct order of the operations:

<table>
<thead>
<tr>
<th>kMatrixSet</th>
<th>(A) assigned</th>
</tr>
</thead>
<tbody>
<tr>
<td>kDecomposed</td>
<td>(A) decomposed, bit (kMatrixSet) must have been set.</td>
</tr>
<tr>
<td>kDetermined</td>
<td>(\det A) calculated, bit (kDecomposed) must have been set.</td>
</tr>
<tr>
<td>kCondition</td>
<td>(</td>
</tr>
<tr>
<td>kSingular</td>
<td>(A) is singular</td>
</tr>
</tbody>
</table>

The state is reset by assigning a new matrix through \texttt{SetMatrix(TMMatrixD &A)} for \texttt{TDecompBK} and \texttt{TDecompChol} (actually \texttt{SetMatrix(TMMatrixDSym &A)} and \texttt{SetMatrix(TMMatrixDSparse &A)} for \texttt{TMMatrixDSparse}).

As the code example below shows, the user does not have to worry about the decomposition step before calling a solve method, because the decomposition class checks before invoking \texttt{Solve} that the matrix has been decomposed.

```c++
TVectorD b = ..;
TMatrixD a = ..;
TDecompLU lu(a);
bool_t ok;
lu.Solve(b,ok);
```

In the next example, we show again the same decomposition but now performed in a loop and all necessary steps are manually invoked. This example also demonstrates another very important point concerning memory management! Note that the vector, matrix and decomposition class are constructed outside the loop since the dimensions of vector/matrix are constant. If we would have replaced \texttt{lu.SetMatrix(a)} by \texttt{TDecompLU lu(a)}, we would construct/deconstruct the array elements of \texttt{lu} on the stack.

```c++
TVectorD b(n);
TMatrixD a(n,n);
TDecompLU lu(n);
bool_t ok;
for (....) {
    b = ..;
    a = ..;
    lu.SetMatrix(a);
    lu.Decompose();
    lu.Solve(b,ok);
}
```
CHAPTER 1. LINEAR ALGEBRA IN ROOT

1.6.1 Tolerances and Scaling

The tolerance parameter \(f_{\text{Tol}} \) (a member of the base class TDecompBase) plays a crucial role in all operations of the decomposition classes. It gives the user a tool to monitor and steer the operations its default value is \(\varepsilon \) where \(1 + \varepsilon = 1 \).

If you do not want to be bothered by the following considerations, like in most other linear algebra packages, just set the tolerance with SetTol to an arbitrary small number. The tolerance number is used by each decomposition method to decide whether the matrix is near singular, except of course SVD that can handle singular matrices. This will be checked in a different way for any decomposition. For instance in LU, a matrix is considered singular in the solving stage when a diagonal element of the decomposed matrix is smaller than \(f_{\text{Tol}} \). Here an important point is raised. The Decompose() method is successful as long no zero diagonal element is encountered. Therefore, the user could perform decomposition and only after this step worry about the tolerance number.

If the matrix is flagged as being singular, operations with the decomposition will fail and will return matrices or vectors that are invalid. If one would like to monitor the tolerance parameter but not have the code stop in case of a number smaller than \(f_{\text{Tol}} \), one could proceed as follows:

```cpp
TVectorD b = ..;
TMatrixD a = ..;
TDecompLU lu(a);
Bool_t ok;
TVectorD x = lu.Solve(b,ok);
Int_t nr = 0;
while (!ok) {
    lu.SetMatrix(a);
    lu.SetTol(0.1*lu.GetTol());
    if (nr++ > 10) break;
    x = lu.Solve(b,ok);
}
if (x.IsValid())
    cout << "solved with tol =" << lu.GetTol() << endl;
else
    cout << "solving failed " << endl;
```

The observant reader will notice that by scaling the complete matrix by some small number the decomposition will detect a singular matrix. In this case, the user will have to reduce the tolerance number by this factor. (For CPU time saving we decided not to make this an automatic procedure).

1.6.2 Condition number

The numerical accuracy of the solution \(x \) in \(Ax = b \) can be accurately estimated by calculating the condition number \(k \) of matrix \(A \), which is defined as:

\[
k = \|A\|_1 \|A^{-1}\|_1 \text{ where } \|A\|_1 = \max_j (\sum_i |A_{ij}|)\]

A good rule of thumb is that if the matrix condition number is \(10^n \), the accuracy in \(x \) is \(15 - n \) digits for double precision.

Hager devised an iterative method (W.W. Hager, Condition estimators, SIAM J. Sci. Stat. Comp., 5 (1984), pp. 311-316) to determine \(\|A^{-1}\|_1 \) without actually having to calculate \(A^{-1} \). It is used when calling Condition().

A code example below shows the usage of the condition number. The matrix \(A \) is a \(10 \times 10 \) Hilbert matrix that is badly conditioned as its determinant shows. We construct a vector \(b \) by summing the matrix rows. Therefore, the components of the solution vector \(x \) should be exactly 1. Our rule of thumb to the 2.1012 condition number predicts that the solution accuracy should be around

\[15 - 12 = 3 \]

digits. Indeed, the largest deviation is 0.00055 in component 6.

```cpp
TMatrixDSym H = THilbertMatrixDSym(10);
TVectorD rowsum(10);
for (Int_t irow = 0; irow < 10; irow++)
    for (Int_t icol = 0; icol < 10; icol++)
rowsum(irow) += H(irow,icol);
TDecompLU lu(H);
Bool_t ok;
TVectorD x = lu.Solve(rowsum,ok);
Double_t d1,d2;
lu.Det(d1,d2);
cout << "cond:" << lu.Condition() << endl;
cout << "det :" << d1*TMath::Power(2.,d2) << endl;
cout << "tol :" << lu.GetTol() << endl;
x.Print();

cond:3.9569e+12
det :2.16439e-53
tol :2.22045e-16

Vector 10 is as follows
| 1 |
------------------
0 |1
1 |1
2 10.999997
3 1.000003
4 10.999878
5 1.000033
6 10.999452
7 1.000053
8 10.999723
9 1.000006

1.6.3 LU
Decompose an nxn matrix A.

PA = LU

P permutation matrix stored in the index array fIndex: j=fIndex[i] indicates that row j and row i should be swapped. Sign of the permutation, $-1^n$, where n is the number of interchanges in the permutation, stored in fSign.

L is lower triangular matrix, stored in the strict lower triangular part of fLU. The diagonal elements of L are unity and are not stored.

U is upper triangular matrix, stored in the diagonal and upper triangular part of fLU.
The decomposition fails if a diagonal element of fLU equals 0.

1.6.4 Bunch-Kaufman
Decompose a real symmetric matrix A

A = UDUT

D is a block diagonal matrix with 1-by-1 and 2-by-2 diagonal blocks $D_k$.

U is product of permutation and unit upper triangular matrices:

$U = P_{n-1}U_{n-1} \cdots P_k U_k \cdots$ where k decreases from n - 1 to 0 in steps of 1 or 2. Permutation matrix $P_k$ is stored in fIpiv. $U_k$ is a unit upper triangular matrix, such that if the diagonal block $D_k$ is of order s (s = 1, 2), then

$$U_k = \begin{pmatrix}
1 & v & 0 \\
0 & 1 & 0 \\
k - s & s & n - k
\end{pmatrix}
\begin{pmatrix}
k - s & s & n - k
\end{pmatrix}$$

If s = 1, $D_k$ overwrites $A(k, k)$, and v overwrites $A(0: k - 1, k)$.

If s = 2, the upper triangle of $D_k$ overwrites $A(k-1, k-1), A(k-1,k)$, and $A(k, k)$, and v overwrites $A(0 : k - 2, k - 1 : k)$. 
1.6.5 Cholesky

Decompose a symmetric, positive definite matrix $A$

$$A = UTU$$

$U$ is an upper triangular matrix. The decomposition fails if a diagonal element of $U$ is $\leq 0$, the matrix is not positive definite.

1.6.6 QRH

Decompose a $(m \times n)$ - matrix $A$ with $m \geq n$.

$$A = QRH$$

$Q$ orthogonal $(m \times n)$ - matrix, stored in $fQ$;

$R$ upper triangular $(n \times n)$ - matrix, stored in $fR$;

$H$ $(n \times n)$ - Householder matrix, stored through;

$fUp$ $n$ - vector with Householder up's;

$fW$ $n$ - vector with Householder beta's.

The decomposition fails if in the formation of reflectors a zero appears, i.e. singularity.

1.6.7 SVD

Decompose a $(m \times n)$ - matrix $A$ with $m \geq n$.

$$A = USVT$$

$U$ $(m \times m)$ orthogonal matrix, stored in $fU$;

$S$ is diagonal matrix containing the singular values. Diagonal stored in vector $fSig$ which is ordered so that $fSig[0] \geq fSig[1] \geq \ldots \geq fSig[n-1]$;

$V$ $(n \times n)$ orthogonal matrix, stored in $fV$.

The singular value decomposition always exists, so the decomposition will (as long as $m \geq n$) never fail. If $m < n$, the user should add sufficient zero rows to $A$, so that $m == n$. In the SVD, $fTol$ is used to set the threshold on the minimum allowed value of the singular values: $\text{min singular} = fTol \times \text{maxi}(Sii)$.

1.7 Matrix Eigen Analysis

Classes $\text{TMatrixDEigen}$ and $\text{TMatrixDSymEigen}$ compute eigenvalues and eigenvectors for general dense and symmetric real matrices, respectively. If matrix $A$ is symmetric, then $A = V.D.V^T$, where the eigenvalue matrix $D$ is diagonal and the eigenvector matrix $V$ is orthogonal. That is, the diagonal values of $D$ are the eigenvalues, and $V.V^T = I$, where $I$ - is the identity matrix. The columns of $V$ represent the eigenvectors in the sense that $A.V = V.D$. If $A$ is not symmetric, the eigenvalue matrix $D$ is block diagonal with the real eigenvalues in 1-by-1 blocks and any complex eigenvalues, $a + i*b$, in 2-by-2 blocks, $[a,b;-b,a]$. That is, if the complex eigenvalues look like:

$$
\begin{pmatrix}
    u + iv & . & . & . & . \\
    . & u - iv & . & . & . \\
    . & . & a + ib & . & . \\
    . & . & . & a - ib & . \\
    . & . & . & . & x \\
    . & . & . & . & y
\end{pmatrix}
$$

Classes $\text{TMatrixDEigen}$ and $\text{TMatrixDSymEigen}$ compute eigenvalues and eigenvectors for general dense and symmetric real matrices, respectively. If matrix $A$ is symmetric, then $A = V.D.V^T$, where the eigenvalue matrix $D$ is diagonal and the eigenvector matrix $V$ is orthogonal. That is, the diagonal values of $D$ are the eigenvalues, and $V.V^T = I$, where $I$ - is the identity matrix. The columns of $V$ represent the eigenvectors in the sense that $A.V = V.D$. If $A$ is not symmetric, the eigenvalue matrix $D$ is block diagonal with the real eigenvalues in 1-by-1 blocks and any complex eigenvalues, $a + i*b$, in 2-by-2 blocks, $[a,b;-b,a]$. That is, if the complex eigenvalues look like:

$$
\begin{pmatrix}
    u + iv & . & . & . & . \\
    . & u - iv & . & . & . \\
    . & . & a + ib & . & . \\
    . & . & . & a - ib & . \\
    . & . & . & . & x \\
    . & . & . & . & y
\end{pmatrix}
$$
then $D$ looks like:

$$
\begin{pmatrix}
  u & v & \cdots & . \\
  -v & u & \cdots & . \\
  . & a & b & . \\
  . & . & -b & a . \\
  . & . & . & x . \\
  . & . & . & . & y \\
\end{pmatrix}
$$

This keeps $V$ a real matrix in both symmetric and non-symmetric cases, and $A.V = V.D$. The matrix $V$ may be badly conditioned, or even singular, so the validity of the equation $A = V.D.V^{-1}$ depends upon the condition number of $V$. Next table shows the methods of the classes $\text{TMatrixDEigen}$ and $\text{TMatrixDSymEigen}$ to obtain the eigenvalues and eigenvectors. Obviously, $\text{MatrixDSymEigen}$ constructors can only be called with $\text{TMatrixDSym}$:

<table>
<thead>
<tr>
<th>Format</th>
<th>Output</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>eig.GetEigenVectors ()</td>
<td>TMatrixD</td>
<td>eigenvectors for both $\text{TMatrixDEigen}$ and $\text{TMatrixDSymEigen}$</td>
</tr>
<tr>
<td>eig.GetEigenValues ()</td>
<td>TVectorD</td>
<td>eigenvalues vector for $\text{TMatrixDSymEigen}$</td>
</tr>
<tr>
<td>eig.GetEigenValues()</td>
<td>TMatrixD</td>
<td>eigenvalues matrix for $\text{TMatrixDEigen}$</td>
</tr>
<tr>
<td>eig.GetEigenValuesRe ()</td>
<td>TVectorD</td>
<td>real part of eigenvalues for $\text{TMatrixDEigen}$</td>
</tr>
<tr>
<td>eig.GetEigenValuesIm ()</td>
<td>TVectorD</td>
<td>imaginary part of eigenvalues for $\text{TMatrixDEigen}$</td>
</tr>
</tbody>
</table>

Below, usage of the eigenvalue class is shown in an example where it is checked that the square of the singular values of a matrix $c$ are identical to the eigenvalues of $c^T \cdot c$:

```c
const TMatrixD m = THilbertMatrixD(10,10);
TDecompSVD svd(m);
TVectorD sig = svd.GetSig(); sig.Sqr();
// Symmetric matrix EigenVector algorithm
TMatrixDSym mtm(TMatrixDBase::kAtA,m);
const TMatrixDSymEigen eigen(mtm);
const TVectorD eigenVal = eigen.GetEigenValues();
const Bool_t ok = VerifyVectorIdentity(sig,eigenVal,1,1.-e-14);
```

### 1.8 Speed Comparisons

Speed of four matrix operations have been compared between four matrix libraries, GSL CLHEP, $\text{ROOT v3.10}$ and $\text{ROOT v4.0}$. Next figure shows the CPU time for these four operations as a function of the matrix size:

1. $A \cdot B$ The execution time is measured for the sum of $A \cdot \text{Bsymb}$, $\text{Bsymb} \cdot A$ and $A \cdot B$. Notice the matrix_size3 dependence of execution time. CLHEP results are hampered by a poor implementation of symmetric matrix multiplications. For instance, for general matrices of size 100x100, the time is 0.015 sec. while $A \cdot \text{Bsymb}$ takes 0.028 sec and $\text{Bsymb} \cdot A$ takes 0.059 sec.

   Both GSL and $\text{ROOT v4.0}$ can be setup to use the hardware-optimized multiplication routines of the BLAS libraries. It was tested on a G4 PowerPC. The improvement becomes clearly visible around sizes of (50x50) were the execution speed improvement of the Altivec processor becomes more significant than the overhead of filling its pipe.

2. $A^{-1}$ Here, the time is measured for an in-place matrix inversion.

   Except for $\text{ROOT v3.10}$, the algorithms are all based on an LUfactorization followed by forward/back-substitution. $\text{ROOT v3.10}$ is using the slower Gaussian elimination method. The numerical accuracy of the CLHEP routine is poor:

   - up to 6x6 the numerical imprecise Cramer multiplication is hard-coded. For instance, calculating $U=H \cdot H^{-1}$, where $H$ is a (5x5) Hilbert matrix, results in off-diagonal elements of $10^{-7}$ instead of the $10^{-13}$ using an LU according to Crout.
18

CHAPTER 1. LINEAR ALGEBRA IN ROOT

- scaling protection is non-existent and limits are hard-coded, as a consequence inversion of a Hilbert matrix for sizes > (12x12) fails. In order to gain speed the CLHEP algorithm stores its permutation info of the pivots points in a static array, making multi-threading not possible.

GSL uses LU decomposition without the implicit scaling of Crout. Therefore, its accuracy is not as good. For instance a (10x10) Hilbert matrix has errors 10 times larger than the LU Crout result. In ROOT v4.0, the user can choose between the Invert() and InvertFast() routines, where the latter is using the Cramer algorithm for sizes < 7x7. The speed graph shows the result for InvertFast().

3. A*x=b the execution time is measured for solving the linear equation A*x=b. The same factorizations are used as in the matrix inversion. However, only 1 forward/back-substitution has to be used instead of msize as in the inversion of (msize x msize) matrix. As a consequence the same differences are observed but less amplified. CLHEP shows the same numerical issues as in step the matrix inversion. Since ROOT3.10 has no dedicated equation solver, the solution is calculated through x=A⁻¹*b. This will be slower and numerically not as stable.

4. (Aᵀ * A)⁻¹ * Aᵀ timing results for calculation of the pseudo inverse of matrix a. The sequence of operations measures the impact of several calls to constructors and destructors in the C++ packages versus a C library like GSL.

Figure 1.2: Speed comparison between the different matrix packages