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Chapter 1

The Tutorials and Tests

This chapter is a guide to the examples that come with the installation of ROOT. They are located in two directories:
$ROOTSYS/tutorials and $ROOTSYS/test.

1.1 $ROOTSYS/tutorials

The tutorials directory contains many example scripts. To have all examples working you must have write permission
and you will need to executehsimple.C first. If you do not have write permission in the directory$ROOTSYS/tutorials,
copy the entire directory to your area. The script hsimple.C displays a histogram as it is being filled, and creates a
ROOT file used by the other examples.
To execute it type:

> cd $ROOTSYS/tutorials
> root
*******************************************
* *
* W E L C O M E to R O O T *
* *
* Version 5.16/00 27 June 2006 *
* *
* You are welcome to visit our Web site *
* http://root.cern.ch *
* *
*******************************************
FreeType Engine v2.1.9 used to render TrueType fonts.
Compiled on 28 June 2007 for linux with thread support.

CINT/ROOT C/C++ Interpreter version 5.16.21, June 22, 2007
Type ? for help. Commands must be C++ statements.
Enclose multiple statements between { }.
root[0] .x hsimple.C

Now execute demos.C, which brings up the button bar shown on the left. You can click on any button to execute
another example. To see the source, open the corresponding source file (for example fit1.C). Once you are done, and
want to quit the ROOT session, you can do so by typing .q.

root[] .x demos.C
root[] .q

1.2 $ROOTSYS/test

The test directory contains a set of examples that represent all areas of the framework. When a new release is cut, the
examples in this directory are compiled and run to test the new release’s backward compatibility.
We see these source files:
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Makefile Makefile to build all test programs.
hsimple.cxx Simple test program that creates and saves some histograms
MainEvent.cxx Simple test program that creates a ROOT Tree object and fills it with some simple

structures but also with complete histograms. This program uses the files
Event.cxx, EventCint.cxx and Event.h. An example of a procedure to link this
program is in bind_Event. Note that the Makefile invokes the rootcint utility
to generate the CINT interface EventCint.cxx

Event.cxx Implementation for classes Event and Track
minexam.cxx Simple test program for data fitting
tcollex.cxx Example usage of the ROOT collection classes
tcollbm.cxx Benchmarks of ROOT collection classes
ctorture.cxx Test program for the class TComplex

tstring.cxx Example usage of the ROOT string class
vmatrix.cxx Verification program for the TMatrix class
vvector.cxx Verification program for the TVectorclass
vlazy.cxx Verification program for lazy matrices
hworld.cxx Small program showing basic graphics
guitest.cxx Example usage of the ROOT GUI classes
gui viewer .cxx Another ROOT GUI example program
Hello.cxx Dancing text example
Aclock.cxx Analog clock (a la X11 xclock)
Tetris.cxx The known Tetris game based on the ROOT graphics
stress.cxx Important ROOT stress testing program
stress*.cxx Stress testing of different ROOT classes
bench.cxx STL and ROOT container test and benchmarking program
QpRandomDriver.cx x Verfication program for Quadratic programming classes in Quadp library
DrawTest.sh Entry script to extensive TTree query test suite
dt_* Scripts used by DrawTest.sh

The $ROOTSYS/test directory is a gold mine of root-wisdom nuggets, and we encourage you to explore and exploit it.
These instructions will compile all programs in $ROOTSYS/test:

If you do not have write permission in the $ROOTSYS/test directory, copy the entire $ROOTSYS/test directory to your
area. The Makefile is a useful example of how ROOT applications are linked and built. Edit the Makefile to specify
your architecture by changing the ARCH variable, for example, on an SGI machine type:ARCH = sgikcc.

Now compile all programs:

% gmake

This will build several applications and shared libraries. We are especially interested in Event, stress, and guitest.

1.2.1 Event - An Example of a ROOT Application

Event is created by compiling MainEvent.cxx, and Event.cxx. It creates a ROOT file with a tree and two histograms.
When running Event we have four optional arguments with defaults:

Argument Default
1 Number of Events (1 . . . n) 400
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2 Compression level:
0: no compression at all.
1: If the split level is set to zero, everything is compressed according to the
gzip level 1. If split level is set to 1, leaves that are not floating point numbers
are compressed using the gzip level 1.
2: If the split level is set to zero, everything is compressed according to the
gzip level 2. If split level is set to 1, all non floating point leaves are
compressed according to the gzip level 2 and the floating point leaves are
compressed according to the gzip level 1 (gzip level -1).
Floating point numbers are compressed differently because the gain when
compressing them is about 20 - 30%. For other data types it is generally better
and around 100%.

1

3 Split or not Split
0: only one single branch is created and the complete event is serialized in one
single buffer
1: a branch per variable is created.

1
(Split)

4 Fill
0: read the file
1: write the file, but don’t fill the histograms
2: don’t write, don’t fill the histograms
10: fill the histograms, don’t write the file
11: fill the histograms, write the file
20: read the file sequentially
25: read the file at random

1
(Write, no fill)

1.2.1.1 Effect of Compression on File Size and Write Times

You may have noticed that a ROOT file has up to nine compression level, but here only levels 0, 1, and 2 are described.
Compression levels above 2 are not competitive. They take up to much write time compared to the gain in file space.
Below are three runs of Event on a Pentium III 650 MHz and the resulting file size and write and read times.

No Compression:

> Event 400 0 1 1
400 events and 19153182 bytes processed.
RealTime=6.840000 seconds, CpuTime=3.560000 seconds
compression level=0, split=1, arg4=1
You write 2.800173 Mbytes/Realtime seconds
You write 5.380107 Mbytes/Cputime seconds

> ls -l Event.root
... 19752171 Feb 23 18:26 Event.root

> Event 400 0 1 20
400 events and 19153182 bytes processed.
RealTime=0.790000 seconds, CpuTime=0.790000 seconds
You read 24.244533 Mbytes/Realtime seconds
You read 24.244533 Mbytes/Cputime seconds

We see the file size without compression is 19.75 MB, the write time is 6.84 seconds and the read time is 0.79 seconds.

Compression = 1: event is compressed:

> Event 400 1 1 1
400 events and 19153182 bytes processed.
RealTime=6.440000 seconds, CpuTime=4.020000 seconds
compression level=1, split=1, arg4=1
You write 2.974096 Mbytes/Realtime seconds
You write 4.764473 Mbytes/Cputime seconds

> ls -l Event.root
... 17728188 Feb 23 18:28 Event.root
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> Event 400 1 1 20
400 events and 19153182 bytes processed.
RealTime=0.900000 seconds, CpuTime=0.900000 seconds
You read 21.281312 Mbytes/Realtime seconds
You read 21.281312 Mbytes/Cputime seconds

We see the file size 17.73, the write time was 6.44 seconds and the read time was 0.9 seconds.

Compression = 2: Floating point numbers are compressed with level 1:

> Event 400 2 1 1
400 events and 19153182 bytes processed.
RealTime=11.340000 seconds, CpuTime=9.510000 seconds
compression level=2, split=1, arg4=1
You write 1.688993 Mbytes/Realtime seconds
You write 2.014004 Mbytes/Cputime seconds

> ls -l Event.root
... 13783799 Feb 23 18:29 Event.root

> Event 400 2 1 20
400 events and 19153182 bytes processed.
RealTime=2.170000 seconds, CpuTime=2.170000 seconds
You read 8.826351 Mbytes/Realtime seconds
You read 8.826351 Mbytes/Cputime seconds

The file size is 13.78 MB, the write time is 11.34 seconds and the read time is 2.17 seconds.

This table summarizes the findings on the impact of compressions:

Compression File Size Write Times Read Times
0 19.75 MB 6.84 sec. 0.79 sec.
1 17.73 MB 6.44 sec. 0.90 sec.
2 13.78 MB 11.34 sec. 2.17 sec.

1.2.1.2 Setting the Split Level

Split Level = 0:
Now we execute Event with the split parameter set to 0:

> Event 400 1 0 1
> root
root[] TFile f("Event.root")
root[] TBrowser T

We notice that only one branch is visible (event). The individual data members of the Event object are no longer
visible in the browser. They are contained in the event object on the event branch, because we specified no splitting.
Split Level = 1:

Setting the split level to 1 will create a branch for each data member in the Event object. First we execute Event and
set the split level to 1 and start the browser to examine the split tree:

> Event 400 1 1 1

> root
root[] TFile f("Event.root")
root[] TBrowser browser
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1.2.2 stress - Test and Benchmark

The executable stress is created by compiling stress.cxx. It completes sixteen tests covering the following capabilities
of the ROOT framework.

• Functions, Random Numbers, Histogram Fits

• Size & compression factor of a ROOT file

• Purge, Reuse of gaps in TFile

• 2D Histograms, Functions, 2D Fits

• Graphics & PostScript

• Subdirectories in a ROOT file

• TNtuple, Selections, TCutG, TEventList

• Split and Compression modes for Trees

• Analyze Event.root file of stress 8

• Create 10 files starting from Event.root

• Test chains of Trees using the 10 files

• Compare histograms of test 9 and 11

• Merging files of a chain

• Check correct rebuilt of Event.root in test 13

• Divert Tree branches to separate files

• CINT test (3 nested loops) with LHCb trigger

The program stress takes one argument, the number of events to process. The default is 1000 events. Be aware that
executing stress with 1000 eventswill create several files consuming about 100 MB of disk space; running stress with 30
events will consume about 20 MB. The disk space is released once stress is done.

There are two ways to run stress:

From the system prompt or from the ROOT prompt using the interpreter.

> cd $ROOTSYS/test
> stress // default 1000 events
> stress 30 // test with 30 events

Start ROOT with the batch mode option (-b) to suppress the graphic output.

> root -b
root[] .L stress.cxx
root[] stress(1000)// test with 1000 events
root[] stress(30)// test with 30 events

The output of stress includes a pass/fail conclusion for each test, the total number of bytes read and written, and the
elapsed real and CPU time. It also calculates a performance index for your machine relative to a reference machine a
DELL Inspiron 7500 (Pentium III 600 MHz) with 256 MB of memory and 18GB IDE disk in ROOTMARKS. Higher
ROOTMARKS means better performance. The reference machine has 200 ROOTMARKS, so the sample run below
with 53.7 ROOTMARKS is about four times slower than the reference machine.

Here is a sample run:
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% root -b
root[] .x stress.cxx(30)

Test 1 : Functions, Random Numbers, Histogram Fits............. OK
Test 2 : Check size & compression factor of a Root file........ OK
Test 3 : Purge, Reuse of gaps in TFile......................... OK
Test 4 : Test of 2-d histograms, functions, 2-d fits........... OK
Test 5 : Test graphics & PostScript ............................OK
Test 6 : Test subdirectories in a Root file.................... OK
Test 7 : TNtuple, selections, TCutG, TEventList.......... OK
Test 8 : Trees split and compression modes..................... OK
Test 9 : Analyze Event.root file of stress 8................... OK
Test 10 : Create 10 files starting from Event.root.............. OK
Test 11 : Test chains of Trees using the 10 files............... OK
Test 12 : Compare histograms of test 9 and 11................... OK
Test 13 : Test merging files of a chain......................... OK
Test 14 : Check correct rebuilt of Event.root in test 13........ OK
Test 15 : Divert Tree branches to separate files................ OK
Test 16 : CINT test (3 nested loops) with LHCb trigger.......... OK
******************************************************************
* IRIX64 fnpat1 6.5 01221553 IP27
******************************************************************
stress : Total I/O = 75.3 Mbytes, I = 59.2, O = 16.1
stress : Compr I/O = 75.7 Mbytes, I = 60.0, O = 15.7
stress : Real Time = 307.61 seconds Cpu Time = 292.82 seconds
******************************************************************
* ROOTMARKS = 53.7 * Root2.25/00 20000710/1022

1.2.3 guitest - A Graphical User Interface

The guitest example, created by compiling guitest.cxx, tests and illustrates the use of the native GUI widgets
such as cascading menus, dialog boxes, sliders and tab panels. It is a very useful example to study when designing a
GUI. Some examples of the output of guitest are shown next. To run it type guitest at the system prompt in the
$ROOTSYS/test directory. We have included an entire chapter on this subject where we explore guitest in detail and
use it to explain how to build our own ROOT application with a GUI. See “Writing a Graphical User Interface”.
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Figure 1.1: Native GUI widgets
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