Contents

1 Collection Classes

1.1

1.2
1.3
14
1.5
1.6

1.7
1.8

1.9

Understanding Collections o 0 e
1.1.1 General Characteristics e
1.1.2 Determining the Class of Contained Objects
1.1.3 Types of Collections e
1.1.4 Ordered Collections (Sequences) it i i
Tterators: Processing a Collection
Foundation Classes e
A Collectable Class o 0 oo e e
The TIter Generic Iterator e
The TList Collection
1.6.1 Tterating Over a TList o . e
The TObjArray Collection o o e e e e
TClonesArray An Array of Identical Objects 10
1.8.1 The Idea Behind TClonesArray o . . 10
Template Containers and STL o 11

© 00 o g O Ot Ut kxR R W W W

CONTENTS

Chapter 1

Collection Classes

Collections are a key feature of the ROOT system. Many, if not most, of the applications you write will use collections.
If you have used parameterized C++ collections or polymorphic collections before, some of this material will be review.
However, much of this chapter covers aspects of collections specific to the ROOT system. When you have read this
chapter, you will know

« How to create instances of collections

e The difference between lists, arrays, hash tables, maps, etc.

e How to add and remove elements of a collection

e How to search a collection for a specific element

e How to access and modify collection elements

o How to iterate over a collection to access collection elements

e How to manage memory for collections and collection elements

o How collection elements are tested for equality (IsEqual())

o How collection elements are compared (Compare()) in case of sorted collections

o How collection elements are hashed (Hash()) in hash tables

1.1 Understanding Collections

A collection is a group of related objects. You will find it easier to manage a large number of items as a collection. For
example, a diagram editor might manage a collection of points and lines. A set of widgets for a graphical user interface
can be placed in a collection. A geometrical model can be described by collections of shapes, materials and rotation
matrices. Collections can themselves be placed in collections. Collections act as flexible alternatives to traditional data
structures of computers science such as arrays, lists and trees.

1.1.1 General Characteristics

The ROOT collections are polymorphic containers that hold pointers to TObjects, so:

e They can only hold objects that inherit from TObject

e They return pointers to TObjects, that have to be cast back to the correct subclass

Collections are dynamic; they can grow in size as required. Collections themselves are descendants of TObject so can
themselves be held in collections. It is possible to nest one type of collection inside another to any level to produce
structures of arbitrary complexity.

Collections do not own the objects they hold for the very good reason that the same object could be a member of more
than one collection. Object ownership is important when it comes to deleting objects; if nobody owns the object it
could end up as wasted memory (i.e. a memory leak) when no longer needed. If a collection is deleted, its objects are
not. The user can force a collection to delete its objects, but that is the user’s choice.

4 CHAPTER 1. COLLECTION CLASSES

1.1.2 Determining the Class of Contained Objects

Most containers may hold heterogeneous collections of objects and then it is left to the user to correctly cast the
TObject pointer to the right class. Casting to the wrong class will give wrong results and may well crash the program!
Therefore, the user has to be very careful. Often a container only contains one class of objects, but if it really contains
a mixture, it is possible to ask each object about its class using the InheritsFrom method.

For example if myObject is a TObject pointer:

if (myObject->InheritsFrom("TParticle") {
printf("myObject is a TParticlen");

3

As the name suggests, this test works even if the object is a subclass of TParticle. The member function IsA() can
be used instead of InheritsFrom to make the test exact. The InheritsFrom and IsA methods use the extensive Run
Time Type Information (RTTI) available via the ROOT meta-classes.

1.1.3 Types of Collections

The ROOT system implements the following basic types of collections: unordered collections, ordered collections and
sorted collections. Next figure shows the inheritance hierarchy for the primary collection classes. All primary collection
classes derive from the abstract base class TCollection.

TCollection
TSeqgCollection THashTable TMap
i)
TList TOrdCollection TObjArray TBtree
TSortedList THashList TClonesArray

Figure 1.1: The inheritance hierarchy of the primary collection classes

1.1.4 Ordered Collections (Sequences)

Sequences are collections that are externally ordered because they maintain internal elements according to the order in
which they were added. The following sequences are available:

e TList

o THashList

e TOrdCollection

e TObjArray

e TClonesArray

1.2. ITERATORS: PROCESSING A COLLECTION 5

The TOrdCollection, TObjArray as well as the TClonesArray can be sorted using their Sort() member function (for
this, the stored objects must provide a comparison function by overriding TObject::Compare() and also must enable
sorting by overriding TObject::IsSortable() to return true). Ordered collections all derive from the abstract base class
TSeqCollection. Sorted collections are ordered by an internal (automatic) sorting mechanism. The following sorted
collections are available (the stored items must be sortable):

e TSortedList

e TBtree
Unordered collections don’t maintain the order in which the elements were added, i.e. when you iterate over an
unordered collection, you are not likely to retrieve elements in the same order they were added to the collection. The
following unordered collections are available:

e THashTable

e TMap

1.2 Iterators: Processing a Collection

The concept of processing all the members of a collection is generic, i.e. independent of any specific representation of a
collection. To process each object in a collection one needs some type of cursor that is initialized and then steps over
each member of the collection in turn. Collection objects could provide this service but there is a snag: as there is only
one collection object per collection there would only be one cursor. Instead, to permit the use of as many cursors as
required, they are made separate classes called iterator. For each collection class there is an associated iterator class
that knows how to sequentially retrieve each member in turn. The relationship between a collection and its iterator is
very close and may require that the iterator has full access to the collection (i.e. it is a friend class). In general iterator
will be used via the TIter wrapper class. For example:

e TList TListIter

e TMap TMapIter

1.3 Foundation Classes

All collections are based on the fundamental classes: TCollection and TIterator. They are so generic that it is not
possible to create objects from them; they are only used as base classes for other classes (i.e. they are abstract base
classes).

The TCollection class provides the basic protocol (i.e. the minimum set of member functions) that all collection
classes have to implement. These include:

e Add Adds another object to the collection.

e GetSize Returns the number of objects in the collection.

¢ Clear Clears out the collection, but does not delete the removed objects.

¢ Delete Clears out the collection and deletes the removed objects. This should only be used
if the collection owns its objects (which are not normally the case).

e FindObject Finds an object given either its name or address.

e Makelterator Returns an iterator associated with the collection.

e Remove Removes an object from the collection.
The code example below shows a class containing three lists, where the fTracks list is the owning collection and the
other two lists are used to store a sub-set of the track objects. In the destructor of the class, the method Delete is

called for the owning collection to delete correctly its entire track objects. To delete the objects in the container use
fTrack->Delete(). To delete the container itself, do ’delete fTracks’.

6 CHAPTER 1. COLLECTION CLASSES

class TEvent : public TObject {
private:
TList *fTracks; //list of all tracks
TList *fVertexl; //subset of tracks part of wertexl
TList *fVertex2; //subset of tracks part of vertexz2
3
TEvent: : ~TEvent ()
{
fTracks->Delete();
delete fTracks;
delete fVertexl;
delete fVertex?2;

The TIterator class defines the minimum set of member functions that all iterators must support. These include:

e Next Returns the next member of the collection or O if no more members.

e Reset Resets the iterator so that Next returns the first object.

1.4 A Collectable Class

By default, all objects of TObject derived classes can be stored in ROOT containers. However, the TObject class
provides some member functions that allow you to tune the behavior of objects in containers. For example, by default
two objects are considered equal if their pointers point to the same address. This might be too strict for some classes
where equality is already achieved if some or all of the data members are equal. By overriding the following TObject
member functions, you can change the behavior of objects in collections:

e IsEqual()is used by the FindObject ()collection method. By default, IsEqual() compares the two object
pointers.

e Compare()returns -1, 0 or 1 depending if the object is smaller, equal or larger than the other object. By default,
a TObject has not a valid Compare () method.

e IsSortable()returns true if the class is sort able (i.e. if it has a valid Compare () method). By default, a TObject
is not sort able.

e Hash(Qreturns a hash value. It needs to be implemented if an object has to be stored in a collection using a
hashing technique, like THashTable, THashList and TMap. By default, Hash() returns the address of the object.
It is essential to choose a good hash function.

The example below shows how to use and override these member functions.

class TObjNum : public TObject {

private:

Int_t num; // TObjNum is a simple container for an integer.
public:

TObjNum(Int_t i = 0) : num(i) { }

~TObjNum() { }

void SetNum(Int_t i) { num = i; }
Int_t GetNum() const { return num; }
void Print(Option_t *) const

{ printf("num = %dn", num); }
Bool_t IsEqual(TObject *obj) const
{ return num == ((TObjNum#*)obj)->num; }
Bool_t IsSortable() const { return kTRUE; }
Int_t Compare(const TObject *obj) const
{ if (num < ((TObjNum*)obj)->num) return -1;
else if (num > ((TObjNum*)obj)->num) return 1;
else return 0; }
ULong_t Hash() const { return num; }

1.5. THE TITER GENERIC ITERATOR 7
1.5 The TIter Generic Iterator

As stated above, the TIterator class is abstract; it is not possible to create TIterator objects. However, it should be
possible to write generic code to process all members of a collection so there is a need for a generic iterator object. A
TIter object acts as generic iterator. It provides the same Next () and Reset() methods as TIterator although it
has no idea how to support them! It works as follows:

o To create a TIter object its constructor must be passed an object that inherits from TCollection. The TIter

constructor calls the MakeIterator () method of this collection to get the appropriate iterator object that inherits
from TIterator.

e The Next () and Reset () methods of TIter simply call the Next () and Reset () methods of the iterator object.

Therefore, TIter simply acts as a wrapper for an object of a concrete class inheriting from TIterator.

To see this working in practice, consider the TObjArray collection. Its associated iterator is TObjArrayIter. Suppose
myarray is a pointer to a TObjArray that contains MyClass objects, i.e.

TObjArray *myarray;
To create a TIter object called myiter:
TIter myiter(myarray);

myarray myiter

TObjArray (4) | TObjArraylter

g

i (2) MakeIterator
TCollection Tlter

(1) TIter
myiter (myarray) N
Ld

As shown in the diagram, this results in several methods being called:

e The TIter constructor is passed a TObjArray
e TIter asks embedded TCollection to make an iterator
e TCollection asks TObjArray to make an iterator

e TObjArray returns a TObjArrayIter.
Now define a pointer for MyClass objects and set it to each member of the TObjArray:

MyClass *myobject;

while ((myobject = (MyClass *)myiter.Next())) {
// process myobject

}

The heart of this is the myiter.Next () expression which does the following:

e The Next () method of the TIter object myiter is called
e The TIter forwards the call to the TIterator embedded in the TObjArrayIter
e TIterator forwards the call to the TObjArrayIter
e TObjArrayIter finds the next MyClass object and returns it
o TIter passes the MyClass object back to the caller
Sometimes the TIter object is called next, and then instead of writing: next.Next () which is legal, but looks rather

odd, iteration is written as next (). This works because the function operator () is defined for the TIter class to be
equivalent to the Next () method.

myiter

5) MyClass
—

(1) Next () '

1.6 The TList Collection

A TList is a doubly linked list. Before being inserted into the list the object pointer is wrapped in a TObjLink object

4
A

@ MyClass

CHAPTER 1.

Titer

(2) Next()

'Y
L

(3) Mext()

TObjArraylter

Tlterator

that contains, besides the object pointer also a previous and next pointer.

Objects are typically added using;:

e Add()
e AddFirst(), AddLast()

e AddBefore(), AddAfter()

Main features of TList: very low cost of adding/removing elements anywhere in the list.

COLLECTION CLASSES

Overhead per element: 1 TObjLink, i.e. two 4 (or 8) byte pointers + pointer to vtable = 12 (or 24) bytes.

Next figure shows the internal data structure of a TList.

class TList : public TSeqCollection

{

private:

TObjLink *fLast;

TObjLink “fFirst;

}:...

class TObjLink {
friend class TList;
private:
TObjLink *fPrev;
TObjLink *fNext;
TObject *fObject;

}:...

Figure 1.2:

1.6.1 Iterating Over a TList

There are four ways to iterate over a TList:

e Using the ForEach script:

!

TObjLink

TObjLink

|

TObjLink

fFPrew

il et

f

¥

fPrey

et

[y

fPrew

fObject

e

(o]l

GetListOfPrimitives()->ForEach(TObject,Draw) O ;

fObject

s

ob

The internal data structure of a TList

¥

il et

fObject

l

(o]s]]

1.7. THE TOBJARRAY COLLECTION

o Using the TList iterator TListIter (via the wrapper class TIter):

TIter next(GetListOfTracks());
while ((TTrack *obj = (TTrack *)next()))
obj->Draw() ;

o Using the TObjLink list entries (that wrap the TObject*):

TObjLink *1lnk = GetListOfPrimitives()->FirstLink();
while (1nk) {

1nk->GetObject () ->Draw() ;

Ink = 1lnk->Next();

e Using the TList’s After () and Before() member functions:

TFree *idcur = this;
while (idcur) {

idcur = (TFreex*)GetListOfFree()->After(idcur);

Method 1 uses internally method 2.
Method 2 works for all collection classes. TIter overloads operator ().

Methods 3 and 4 are specific for TList.

Methods 2, 3 and 4 can also easily iterate backwards using either a backward TIter (using argument kIterBackward)
or by using LastLink() and 1nk>Prev() or by using the Before () method.

1.7 The TObjArray Collection

A TObjArray is a collection which supports traditional array semantics via the overloading of operator[]. Objects
can be directly accessed via an index. The array expands automatically when objects are added. At creation time one
specifies the default array size (default = 16) and lower bound (default = 0). Resizing involves a re-allocation and a
copy of the old array to the new. This can be costly if done too often. If possible, set initial size close to expected
final size. Index validity is always checked (if you are 100% sure and maximum performance is needed you can use
UnCheckedAt () instead of At() or operator[]). If the stored objects are sort able the array can be sorted using
Sort (). Once sorted, efficient searching is possible via the BinarySearch() method. The figure shows the internal

data structure of a TObjArray:

class TObjArray : public TSeqCollection

{

private:

TObject **fCont;

= obj

— ol

—= 0D

—= 0D

Figure 1.3: The internal data structure of a TObjArray

Iterating can be done using a TIter iterator or via a simple for loop:

10 CHAPTER 1. COLLECTION CLASSES

for (int i = 0; i <= fArr.GetLast(); i++)
if ((track = (TTrack*)fArr[i]))
track->Draw() ;

Main features of TObjArray are simple, well-known array semantics. Overhead per element: none, except possible
over sizing of fCont.

1.8 TClonesArray An Array of Identical Objects

A TClonesArray is an array of identical (clone) objects. The memory for the objects stored in the array is allocated
only once in the lifetime of the clones array. All objects must be of the same class. For the rest this class has the same
properties as a TObjArray.

class TClonesArray : public TObjArray {
private:
TObjArray ‘fKeep;

TClass *fClass; fCont
h [¥

B E——

el

F

space foridentical
objects of type fClass

l—|
—
| —
|
—
b

Fy

Figure 1.4: The internal data structure of a TClonesArray
The figure above shows the internal data structure of a TClonesArray. The class is specially designed for repetitive
data analysis tasks, where in a loop many times the same objects, are created and deleted. The only supported way to

add objects to a TClonesArray is via the new with placement method. The different Add () methods of TObjArray
and its base classes are not supported.

1.8.1 The Idea Behind TClonesArray

To reduce the very large number of new and delete calls in large loops like this (O(100000) x O(10000) times new/delete):

TObjArray a(10000);
while (TEvent *ev = (TEvent *)next()) {
for (int i = 0; i < ev->Ntracks; i++) {
ali]l = new TTrack(x,y,z,...);

}

a.Delete();

You better use a TClonesArray which reduces the number of new/delete calls to only O(10000):

TClonesArray a("TTrack", 10000);
while (TEvent *ev = (TEvent *)next()) {

1.9. TEMPLATE CONTAINERS AND STL 11

for (int i = 0; i < ev->Ntracks; i++) { // 0(10000)
TTrack *track = (Track*)a.ConstructedAt(i);
track->Set (x,y,2,...);

}

a.Clear(); // Or Clear("C") if the track objects must be returned (via Track::Clear) to a default state

Considering that a pair of new/delete calls on average cost about 70 ms, O(109) new/deletes will save about 19 hours.
For the other collections, see the class reference guide on the web and the test program $RO0TSYS/test/tcollex.cxx.

1.9 Template Containers and STL

Some people dislike polymorphic containers because they are not truly “type safe”. In the end, the compiler leaves it
the user to ensure that the types are correct. This only leaves the other alternative: creating a new class each time a
new (container organization) / (contained object) combination is needed. To say the least this could be very tedious.
Most people faced with this choice would, for each type of container:

Define the class leaving a dummy name for the contained object type. When a particular container was needed, copy
the code and then do a global search and replace for the contained class. C++ has a built in template scheme that
effectively does just this. For example:

template<class T>
class ArrayContainer {
private:
T *member[10];

};

This is an array container with a 10-element array of pointers to T, it could hold up to 10 T objects. This array is
flawed because it is static and hard-coded, it should be dynamic. However, the important point is that the template
statement indicates that T is a template, or parameterized class. If we need an ArrayContainer for Track objects, it
can be created by:

ArrayContainer<Track> MyTrackArrayContainer;

C++ takes the parameter list and substitutes Track for T throughout the definition of the class ArrayContainer, then
compiles the code so generated, effectively doing the same we could do by hand, but with a lot less effort.

This produces code that is type safe, but does have different drawbacks:

o Templates make code harder to read.
e At the time of writing this documentation, some compilers can be very slow when dealing with templates.
o It does not solve the problem when a container has to hold a heterogeneous set of objects.

o The system can end up generating a great deal of code; each container/object combination has its own code, a
phenomenon that is sometimes referred to as code bloat.

o The Standard Template Library (STL) is part on ANSI C++, and includes a set of template containers.

	Collection Classes
	Understanding Collections
	General Characteristics
	Determining the Class of Contained Objects
	Types of Collections
	Ordered Collections (Sequences)

	Iterators: Processing a Collection
	Foundation Classes
	A Collectable Class
	The TIter Generic Iterator
	The TList Collection
	Iterating Over a TList

	The TObjArray Collection
	TClonesArray An Array of Identical Objects
	The Idea Behind TClonesArray

	Template Containers and STL

