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Chapter 1

Introduction

In the mid 1990’s, René Brun and Fons Rademakers had many years of experience developing interactive tools and
simulation packages. They had lead successful projects such as PAW, PIAF, and GEANT, and they knew PAW the
twenty-year-old FORTRAN libraries had reached their limits. Although still very popular, these tools could not scale
up to the challenges offered by the Large Hadron Collider, where the data is a few orders of magnitude larger than
anything seen before.
At the same time, computer science had made leaps of progress especially in the area of Object Oriented Design, and
René and Fons were ready to take advantage of it.
ROOT was developed in the context of the NA49 experiment at CERN. NA49 has generated an impressive amount of
data, around 10 Terabytes per run. This rate provided the ideal environment to develop and test the next generation
data analysis.
ROOT was, and still is, developed in the “Bazaar style”, a term from the book “The Cathedral and the Bazaar” by
Eric S. Raymond. It means a liberal, informal development style that heavily relies on the diverse and deep talent of
the user community. The result is that physicists developed ROOT for themselves; this made it specific, appropriate,
useful, and over time refined and very powerful. The development of ROOT is a continuous conversation between users
and developers with the line between the two blurring at times and the users becoming co-developers.
When it comes to storing and mining large amount of data, physics plows the way with its Terabytes, but other fields
and industry follow close behind as they acquiring more and more data over time. They are ready to use the true and
tested technologies physics has invented. In this way, other fields and industries have found ROOT useful and they
have started to use it also.
In the bazaar view, software is released early and frequently to expose it to thousands of eager co-developers to pound
on, report bugs, and contribute possible fixes. More users find more bugs, because they stress the program in different
ways. By now, after ten years, the age of ROOT is quite mature. Most likely, you will find the features you are looking
for, and if you have found a hole, you are encouraged to participate in the dialog and post your suggestion or even
implementation on roottalk, the ROOT mailing list.

1.1 The ROOT Mailing Lists

The roottalk was the very first active ROOT mailing list. mailing list People can subscribe to it by registering at the
ROOT web site: http://root.cern.ch/root/Registration.phtml. The RootTalk Forum http://root.cern.ch/phpBB3/ has
been gradually replaced this mailing list since September 2003. The RootTalk Forum is a web-based news group with
about 10 discussion sub-units.
If you have a question, it is likely that it has been asked, answered, and stored in the roottalk or RootTalk Forum
archives. Please use the search engine to see if your question has already been answered before sending a mail to the
roottalk list or post a topic in the Forum.
You can browse the roottalk archives at: http://root.cern.ch/root/roottalk/AboutRootTalk.html. You can send your
question without subscribing to: roottalk@cern.ch

1.2 Contact Information

Several authors wrote this book and you may see a “change of voice” from one chapter to the next. We felt we could
accept this in order to have the expert explain what they know best. If you would like to contribute a chapter or
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4 CHAPTER 1. INTRODUCTION

add to a section, please contact rootdoc@cern.ch. We count on you to send us suggestions on additional topics or on
the topics that need more documentation. Please send your comments, corrections, questions, and suggestions to the
rootdoc list: rootdoc@cern.ch

We attempt to give the user insight into the many capabilities of ROOT. The book begins with the elementary
functionality and progresses in complexity reaching the specialized topics at the end. The experienced user looking for
special topics may find these chapters useful: see “Networking”, “Writing a Graphical User Interface”, “Threads”, and
“PROOF: Parallel Processing”.

1.3 Conventions Used in This Book

We tried to follow a style convention for the sake of clarity. The styles in used are described below.

To show source code in scripts or source files:

{
cout << " Hello" << endl;
float x = 3.;
float y = 5.;
int i = 101;
cout <<" x = "<<x<<" y = "<<y<<" i = "<<i<< endl;

}

To show the ROOT command line, we show the ROOT prompt without numbers. In the interactive system, the ROOT
prompt has a line number (root[12]); for the sake of simplicity, the line numbers are left off.

root[] TLine l
root[] l.Print()
TLine X1=0.000000 Y1=0.000000 X2=0.000000 Y2=0.000000

Italic bold monotype font indicates a global variable, for example gDirectory .

When a variable term is used, it is shown between angled brackets. In the example below the variable term <library>
can be replaced with any library in the $ROOTSYS directory: $ROOTSYS/<library>/inc.

1.4 The Framework

ROOT is an object-oriented framework aimed at solving the data analysis challenges of high-energy physics. There are
two key words in this definition, object oriented and framework. First, we explain what we mean by a framework and
then why it is an object-oriented framework.

1.4.1 What Is a Framework?

Programming inside a framework is a little like living in a city. Plumbing, electricity, telephone, and transportation are
services provided by the city. In your house, you have interfaces to the services such as light switches, electrical outlets,
and telephones. The details, for example, the routing algorithm of the phone switching system, are transparent to you
as the user. You do not care; you are only interested in using the phone to communicate with your collaborators to
solve your domain specific problems.

Programming outside of a framework may be compared to living in the country. In order to have transportation and
water, you will have to build a road and dig a well. To have services like telephone and electricity you will need to
route the wires to your home. In addition, you cannot build some things yourself. For example, you cannot build a
commercial airport on your patch of land. From a global perspective, it would make no sense for everyone to build
their own airport. You see you will be very busy building the infrastructure (or framework) before you can use the
phone to communicate with your collaborators and have a drink of water at the same time. In software engineering,
it is much the same way. In a framework, the basic utilities and services, such as I/O and graphics, are provided.
In addition, ROOT being a HEP analysis framework, it provides a large selection of HEP specific utilities such as
histograms and fitting. The drawback of a framework is that you are constrained to it, as you are constraint to use the
routing algorithm provided by your telephone service. You also have to learn the framework interfaces, which in this
analogy is the same as learning how to use a telephone.

mailto:rootdoc@cern.ch
mailto:rootdoc@cern.ch
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If you are interested in doing physics, a good HEP framework will save you much work. Next is a list of the more
commonly used components of ROOT: Command Line Interpreter, Histograms and Fitting, Writing a Graphical User
Interface, 2D Graphics, Input/Output , Collection Classes, Script Processor.

There are also less commonly used components, as: 3D Graphics, Parallel Processing (PROOF), Run Time Type
Identification (RTTI), Socket and Network Communication, Threads.

1.4.1.1 Advantages of Frameworks

The benefits of frameworks can be summarized as follows:

• Less code to write - the programmer should be able to use and reuse the majority of the existing code. Basic
functionality, such as fitting and histogramming are implemented and ready to use and customize.

• More reliable and robust code - the code inherited from a framework has already been tested and integrated with
the rest of the framework.

• More consistent and modular code - the code reuse provides consistency and common capabilities between
programs, no matter who writes them. Frameworks make it easier to break programs into smaller pieces.

• More focus on areas of expertise - users can concentrate on their particular problem domain. They do not have to
be experts at writing user interfaces, graphics, or networking to use the frameworks that provide those services.

1.4.2 Why Object-Oriented?

Object-Oriented Programming offers considerable benefits compared to Procedure-Oriented Programming:

• Encapsulation enforces data abstraction and increases opportunity for reuse.

• Sub classing and inheritance make it possible to extend and modify objects.

• Class hierarchies and containment containment hierarchies provide a flexible mechanism for modeling real-world
objects and the relationships among them.

• Complexity is reduced because there is little growth of the global state, the state is contained within each object,
rather than scattered through the program in the form of global variables.

• Objects may come and go, but the basic structure of the program remains relatively static, increases opportunity
for reuse of design.

1.5 Installing ROOT

To install ROOT you will need to go to the ROOT website at: http://root.cern.ch/root/Availability.html. You have
a choice to download the binaries or the source. The source is quicker to transfer since it is only ~22 MB, but you
will need to compile and link it. The binaries compiled with no degug information range from ~35 MB to ~45 MB
depending on the target platform.

The installation and building of ROOT is described in Appendix A: Install and Build ROOT. You can download the
binaries, or the source. The GNU g++ compiler on most UNIX platforms can compile ROOT.

Before downloading a binary version make sure your machine contains the right run-time environment. In most cases it
is not possible to run a version compiled with, e.g., gcc4.0 on a platform where only gcc 3.2 is installed. In such cases
you’ll have to install ROOT from source.

ROOT is currently running on the following platforms: supported platforms

• GNU/Linux x86-32 (IA32) and x86-64 (AMD64)(GCC,Intel/icc, Portland/PGCC,KAI/KCC)

• Intel Itanium (IA64) GNU/Linux (GCC, Intel/ecc, SGI/CC)

• FreeBSD and OpenBSD (GCC)

• GNU/Hurd (GCC)

• HP HP-UX 10.x (IA32) and 11 (IA64) (HP CC, aCC, GCC)

http://root.cern.ch/root/Availability.html
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• IBM AIX 4.1 (xlC compiler, GCC)

• Sun Solaris for SPARC (SUN C++ compiler, GCC)

• Sun Solaris for x86 (SUN C++ compiler, KAI/KCC)

• Compaq Alpha (GCC, KAI/KCC, DEC/CXX)

• SGI Irix 32 and 64 bits (GCC, KAI/KCC, SGI C++ compiler)

• Windows >= 95 (Microsoft Visual C++ compiler, Cygwin/GCC)

• MacOS X PPC, x86-32, x86-64 (GCC, Intel/ICC, IBM/xl)

• PowerPC with GNU/Linux and GCC, Debian v2

• PowerPC64 with GNU/Linux and GCC

• ARM with GNU/Linux and GCC

• LynxOS

1.6 The Organization of the ROOT Framework

Now after we know in abstract terms what the ROOT framework is, let us look at the physical directories and files
that come with the ROOT installation. You may work on a platform where your system administrator has already
installed ROOT. You will need to follow the specific development environment for your setup and you may not have
write access to the directories. In any case, you will need an environment variable called ROOTSYS, which holds the
path of the top ROOT directory.

> echo $ROOTSYS
/opt/root

In the ROOTSYS directory are examples, executables, tutorials, header tutorials files, and, if you opted to download
it, the source is here. The directories of special interest to us are bin, tutorials, lib, test, andinclude. The next
figure shows the contents of these directories.

1.6.1 $ROOTSYS/bin

The bin directory contains several executables.

root shows the ROOT splash screen and calls root.exe
root.exe the executable that root calls, if you use a debugger such as gdb, you will need to run

root.exe directly
rootcling is the utility ROOT uses to create a class dictionary for Cling
rmkdepend a modified version of makedepend that is used by the ROOT build system
root-config a script returning the needed compile flags and libraries for projects that compile and

link with ROOT
proofd a small daemon used to authenticate a user of ROOT parallel processing capability

(PROOF)
proofserv the actual PROOF process, which is started by proofd after a user, has successfully

been authenticated
rootd is the daemon for remote ROOT file access (see the TNetFile)

1.6.2 $ROOTSYS/lib

There are several ways to use ROOT, one way is to run the executable by typing root at the system prompt another
way is to link with the ROOT libraries and make the ROOT classes available in your own program.

Here is a short description of the most relevant libraries, the ones marked with a * are only installed when the options
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Figure 1.1: ROOT framework directories
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specified them.

• libAsImage is the image manipulation library

• libCling is the C++ interpreter (Cling)

• libCore is the Base classes

• libEG is the abstract event generator interface classes

• *libEGPythia is the Pythia5 event generator interface

• *libEGPythia6 is the Pythia6 event generator interface

• libFitPanel contains the GUI used for fitting

• libGed contains the GUI used for editing the properties of histograms, graphs, etc.

• libGeom is the geometry package (with builder and painter)

• libGpad is the pad and canvas classes which depend on low level graphics

• libGraf is the 2D graphics primitives (can be used independent of libGpad)

• libGraf3d is the 3D graphics primitives

• libGui is the GUI classes (depend on low level graphics)

• libGuiBld is the GUI designer

• libGuiHtml contains the embedded HTML browser

• libGX11 is the low level graphics interface to the X11 system

• *libGX11TTF is an add-on library to libGX11 providing TrueType fonts

• libHbook is for interface ROOT - HBOOK

• libHist is the histogram classes (with accompanying painter library)

• libHtml is the HTML documentation generation system

• libMatrix is the matrix and vector manipulation

• libMathCore contains the core mathematics and physics vector classes

• libMathMore contains additional functions, interfacing the GSL math library

• libMinuit is the MINUIT fitter

• libNet contains functionality related to network transfer

• libNew is the special global new/delete, provides extra memory checking and interface for shared memory
(optional)

• libPhysics contains the legacy physics classes (TLorentzVector, etc.)

• libPostscript is the PostScript interface

• libProof is the parallel ROOT Facility classes

• libPython provides the interface to Python

• *libRFIO is the interface to CERN RFIO remote I/O system.

• *libRGL is the interface to OpenGL.

• libReflex is the runtime type database library used by Cling

• libRint is the interactive interface to ROOT (provides command prompt)

• libRIO provides the functionality to write and read objects to and from ROOT files

• libRooFit is the RooFit fitting framework

• libRuby is the interface to Ruby
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• libSpectrum provides functionality for spectral analysis

• *libThread is the interface to TThread classes

• libTMVA contains the multivariate analysis toolkit

• libTree is the TTree object container system

• libTreePlayer is the TTree drawing classes

• libTreeViewer is the graphical TTree query interface

1.6.2.1 Library Dependencies

Figure 1.2: ROOT libraries dependencies

The libraries are designed and organized to minimize dependencies, such that you can load just enough code for the
task at hand rather than having to load all libraries or one monolithic chunk. The core library (libCore.so) contains
the essentials; it is a part of all ROOT applications. In the Figure 1-2 you see that libCore.so is made up of base
classes, container classes, meta information classes, operating system specific classes, and the ZIP algorithm used for
compression of the ROOT files.
The Cling library (libCling.so) is also needed in all ROOT applications, and even by libCore. A program referencing
only TObject only needs libCore; libCling will be opened automatically. To add the ability to read and write ROOT
objects one also has to load libRIO. As one would expect, none of that depends on graphics or the GUI.
Library dependencies have different consequences; depending on whether you try to build a binary, or you just try to
access a class that is defined in a library.

1.6.2.2 Linktime Library Dependencies

When building your own executable you will have to link against the libraries that contain the classes you use. The
ROOT reference guide states the library a class is reference guide defined in. Almost all relevant classes can be found
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in libraries returned by root-config -glibs; the graphics libraries are retuned by root-config --libs. These
commands are commonly used in Makefiles. Using root-config instead of enumerating the libraries by hand allows
you to link them in a platform independent way. Also, if ROOT library names change you will not need to change your
Makefile.
A batch program that does not have a graphic display, which creates, fills, and saves histograms and trees, only needs
to link the core libraries (libCore, libRIO), libHist and libTree. If ROOT needs access to other libraries, it loads
them dynamically. For example, if the TreeViewer is used, libTreePlayer and all libraries libTreePlayer depends
on are loaded also. The dependent libraries are shown in the ROOT reference guide’s library dependency graph. The
difference between reference guide libHist and libHistPainter is that the former needs to be explicitly linked and
the latter will be loaded automatically at runtime when ROOT needs it, by means of the Plugin Manager. plugin
manager
In the Figure 1-2, the libraries represented by green boxes outside of the core are loaded via the plugin manager plugin
manager or equivalent techniques, while the white ones are not. Of course, if one wants to access a plugin library
directly, it has to be explicitly linked. An example of a plugin library is libMinuit. To create and fill histograms you
need to link libHist.so. If the code has a call to fit the histogram, the “fitter” will dynamically load libMinuit if it is
not yet loaded.

1.6.2.3 Plugins: Runtime Library Dependencies for Linking

plugin manager The Plugin Manager TPluginManager allows postponing library dependencies to runtime: a plu-
gin library will only be loaded when it is needed. Non-plugins will need to be linked, and are thus loaded at
start-up. Plugins are defined by a base class (e.g. TFile) that will be implemented in a plugin, a tag used to
identify the plugin (e.g. ˆrfio: as part of the protocol string), the plugin class of which an object will be created
(e.g. TRFIOFile), the library to be loaded (in short libRFIO.so to RFIO), and the constructor to be called (e.g.
“TRFIOFile()”). This can be specified in the .rootrc which already contains many plugin definitions, or by calls to
gROOT->GetPluginManager()->AddHandler().

1.6.2.4 Library Autoloading

When using a class in Cling, e.g. in an interpreted source file, ROOT will automatically load the library that defines
this class. On start-up, ROOT parses all files ending on .rootmap rootmap that are in one of the $LD_LIBRARY_PATH
(or $DYLD_LIBRARY_PATH for MacOS, or $PATH for Windows). They contain class names and the library names that the
class depends on. After reading them, ROOT knows which classes are available, and which libraries to load for them.
When TSystem::Load("ALib") is called, ROOT uses this information to determine which libraries libALib.so depends
on. It will load these libraries first. Otherwise, loading the requested library could cause a system (dynamic loader)
error due to unresolved symbols.

1.6.3 $ROOTSYS/tutorials

tutorials The tutorials directory contains many example example scripts. They assume some basic knowledge of
ROOT, and for the new user we recommend reading the chapters: “Histograms” and “Input/Output” before trying the
examples. The more experienced user can jump to chapter “The Tutorials and Tests” to find more explicit and specific
information about how to build and run the examples.
The $ROOTSYS/tutorials/ directory include the following sub-directories:
fft: Fast Fourier Transform with the fftw package fit: Several examples illustrating minimization/fitting foam:
Random generator in multidimensional space geom: Examples of use of the geometry package (TGeo classes) gl:
Visualisation with OpenGL graphics: Basic graphics graphs: Use of TGraph, TGraphErrors, etc. gui: Scripts to
create Graphical User Interface hist: Histograming image: Image Processing io: Input/Output math: Maths and
Statistics functions matrix: Matrices (TMatrix) examples mlp: Neural networks with TMultiLayerPerceptron net:
Network classes (client/server examples) physics: LorentzVectors, phase space pyroot: Python tutorials pythia:
Example with pythia6 quadp: Quadratic Programming ruby: ruby tutorials smatrix: Matrices with a templated
package spectrum: Peak finder, background, deconvolutions splot: Example of the TSplot class (signal/background
estimator) sql: Interfaces to SQL (mysql, oracle, etc) thread: Using Threads tmva: Examples of the MultiVariate
Analysis classes tree: Creating Trees, Playing with Trees unuran: Interface with the unuram random generator library
xml: Writing/Reading xml files
You can execute the scripts in $ROOTSYS/tutorials (or sub-directories) by setting your current directory in the script
directory or from any user directory with write access. Several tutorials create new files. If you have write access to the
tutorials directory, the new files will be created in the tutorials directory, otherwise they will be created in the user
directory.
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1.6.4 $ROOTSYS/test

The test directory contains a set of examples example that represent all areas of the framework. When a new release is
cut, the examples in this directory are compiled and run to test the new release’s backward compatibility. The list of
source files is described in chapter “The Tutorials and Tests”.

The $ROOTSYS/test directory is a gold mine of ROOT-wisdom nuggets, and we encourage you to explore and exploit
it. We recommend the new users to read the chapter “Getting Started”. The chapter “The Tutorials and Tests” has
instructions on how to build all the programs and it goes over the examples Event and stress.

1.6.5 $ROOTSYS/include

The include directory contains all header files. It is especially important because the header files contain the class
definitions.

1.6.6 $ROOTSYS/<library>

The directories we explored above are available when downloading the binaries. When downloading the source you also
get a directory for each library with the corresponding header and source files, located in the inc and src subdirectories.
To see what classes are in a library, you can check the <library>/inc directory for the list of class definitions. For
example, the physics library libPhysics.so contains these class definitions:

> ls -m $ROOTSYS/math/physics/inc/
LinkDef.h, TFeldmanCousins.h, TGenPhaseSpace.h, TLorentzRotation.h,
TLorentzVector.h, TQuaternion.h, TRobustEstimator.h, TRolke.h,
TRotation.h, TVector2.h, TVector3.h

1.7 How to Find More Information

website The ROOT web site has up to date documentation. The ROOT source code automatically generates this
documentation, so each class is explicitly documented on its own web page, which is always up to date with the latest
official release of ROOT.

The ROOT Reference Guide web pages can be found at class index reference guide http://root.cern.ch/root/html/
ClassIndex.html. Each page contains a class description, and an explanation of each method. It shows the class
inheritance tree and lets you jump to the parent class page by clicking on the class name. If you want more details,
you can even see the source. There is a help page available in the little box on the upper right hand side of each class
documentation page. You can see on the next page what a typical class documentation web page looks like. The ROOT
web site also contains in addition to this Reference Guide, “How To’s”, a list of publications and example applications.

1.7.1 Class Reference Guide

The top of any class reference page lets you jump to different parts of the documentation. The first line links to the
class index and the index for the current module (a group of classes, often a library). The second line links to the
ROOT homepage and the class overviews. The third line links the source information - a HTML version of the source
and header file as well as the CVS (the source management system used for the ROOT development) information of
the files. The last line links the different parts of the current pages.

http://root.cern.ch/root/html/ClassIndex.html
http://root.cern.ch/root/html/ClassIndex.html
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Figure 1.3: Example of function documentation, with automatically generated LaTeX-like graphics

Figure 1.4: Inheritance tree, showing what the current class derives from, and which classes inherit from it

Figure 1.5: HTML version of the source file linking all types and most functions
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