
PROOF PROOF –– Parallel ROOT FacilityParallel ROOT Facility

8.8GB, 128 files
1 node: 325 s

32 nodes in parallel: 12 s

32 nodes: dual Itanium II 1 GHz CPU’s,
2 GB RAM, 2x75 GB 15K SCSI disk,
GB Eth

Each node has one copy of the data set
(4 files, total of 277 MB), 32 nodes:
8.8 Gbyte in 128 files, 9 million events 

PROOF Data Access Strategies
Assign to each worker node data in local files
If no (more) local data, get remote data via daemon data
servers (needs good LAN)
In case of SAN/NAS just use round robin strategy

Features
User runs in unique sandbox
- Flexible authentication framework (pass-based, Krb5, GSI)

Package manager for easy installation of user’s environment
- Additional shared libraries, data files, etc.

Support for multiple sessions
- Queries can be run concurrently on different sessions

Support for asynchronous, non-blocking, running mode
- Set of queries submitted to the cluster and processed

sequentially in the background
Query manager for easy handling of results
Retrieve and Archive functionalities
- results can be saved by the master on any mass

storage accessible via TFile::Open()
Full tree viewer functionality, including TChain::Draw()

Grid Interface
Access via an abstract interface class

use Resource Broker to locate available nodes
use File Catalogue and Storage Index to map LNF’s
to a chain of PFN’s
use Monitoring Services

AliEn concrete implementation

Multi-tier architecture

PROOF is a collaboration between the CERN core ROOT team and the MIT Heavy Ion Group

Initialization

Process

Process

Process

Process

Wait for next
command

Slave 1
Tree->Draw()

Pa
ck

et
 g

en
er

at
or

Initialization

Process

Process

Process

Process

Wait for next
command

Slave NMaster
Tree->Draw()

GetNextPacket()

GetNextPacket()

GetNextPacket()

GetNextPacket()

GetNextPacket()

GetNextPacket()

GetNextPacket()

GetNextPacket()

SendObject(histo)SendObject(histo)
Merge

histograms
Display

histograms

0,100

200,100

340,100

490,100

100,100

300,40

440,50

590,60

Master-Worker Workflow

$ root
root[0] tree->Process(“sel.C”)
root[1] TProof proof(“remote”)
root[2] chain->Process(“sel.C”)

Chain definition 
fetched from the 
PROOF master

Feedback 
histograms

Query Results 
in separated 

folders

The PROOF system allows:
parallel analysis of trees in a set of files
parallel analysis of objects in a set of files
parallel execution of scripts

on clusters of heterogeneous machines

Its main design goals are:
Transparency:
• input objects copied from client, output

objects merged, returned to client
Scalability and Adaptability:
• Varying packet size (depends on number

of workers and their relative performance)

Full control via GUI List of sessions

Processing status 
and performance

Query editor Browsers for 
chains and 
selectors


