Logo ROOT  
Reference Guide
 
Loading...
Searching...
No Matches
AnalyticalIntegrals.h File Reference
#include <TMath.h>
#include <Math/ProbFuncMathCore.h>
#include <cmath>
Include dependency graph for AnalyticalIntegrals.h:
This graph shows which files directly or indirectly include this file:

Namespaces

namespace  RooFit
 The namespace RooFit contains mostly switches that change the behaviour of functions of PDFs (or other types of arguments).
 
namespace  RooFit::Detail
 
namespace  RooFit::Detail::AnalyticalIntegrals
 

Functions

double RooFit::Detail::AnalyticalIntegrals::bifurGaussIntegral (double xMin, double xMax, double mean, double sigmaL, double sigmaR)
 
double RooFit::Detail::AnalyticalIntegrals::chebychevIntegral (double const *coeffs, unsigned int nCoeffs, double xMin, double xMax, double xMinFull, double xMaxFull)
 
double RooFit::Detail::AnalyticalIntegrals::exponentialIntegral (double xMin, double xMax, double constant)
 
double RooFit::Detail::AnalyticalIntegrals::fast_fma (double x, double y, double z) noexcept
 use fast FMA if available, fall back to normal arithmetic if not
 
double RooFit::Detail::AnalyticalIntegrals::gaussianIntegral (double xMin, double xMax, double mean, double sigma)
 Function to calculate the integral of an un-normalized RooGaussian over x.
 
double RooFit::Detail::AnalyticalIntegrals::logNormalIntegral (double xMin, double xMax, double m0, double k)
 
double RooFit::Detail::AnalyticalIntegrals::logNormalIntegralStandard (double xMin, double xMax, double mu, double sigma)
 
double RooFit::Detail::AnalyticalIntegrals::max (double x, double y)
 
double RooFit::Detail::AnalyticalIntegrals::min (double x, double y)
 
double RooFit::Detail::AnalyticalIntegrals::poissonIntegral (int code, double mu, double x, double integrandMin, double integrandMax, unsigned int protectNegative)
 
template<bool pdfMode = false>
double RooFit::Detail::AnalyticalIntegrals::polynomialIntegral (double const *coeffs, int nCoeffs, int lowestOrder, double xMin, double xMax)
 In pdfMode, a coefficient for the constant term of 1.0 is implied if lowestOrder > 0.