ROOT
6.08/07
Reference Guide
tmva
tmva
src
GiniIndex.cxx
Go to the documentation of this file.
1
// @(#)root/tmva $Id$
2
// Author: Andreas Hoecker, Joerg Stelzer, Helge Voss, Kai Voss
3
4
/**********************************************************************************
5
* Project: TMVA - a Root-integrated toolkit for multivariate data analysis *
6
* Package: TMVA *
7
* Class : TMVA::GiniIndex *
8
* Web : http://tmva.sourceforge.net *
9
* *
10
* Description: Implementation of the GiniIndex as separation criterion *
11
* Large Gini Indices (maximum 0.5) mean , that the sample is well *
12
* mixed (same amount of signal and bkg) *
13
* bkg. Small Indices mean, well separated. *
14
* general defniniton: *
15
* Gini(Sample M) = 1 - (c(1)/N)^2 - (c(2)/N)^2 .... - (c(k)/N)^2 *
16
* Where: M is a smaple of whatever N elements (events) *
17
* that belong to K different classes *
18
* c(k) is the number of elements that belong to class k *
19
* for just Signal and Background classes this boils down to: *
20
* Gini(Sample) = 2s*b/(s+b)^2 *
21
* *
22
* Authors (alphabetical): *
23
* Andreas Hoecker <Andreas.Hocker@cern.ch> - CERN, Switzerland *
24
* Helge Voss <Helge.Voss@cern.ch> - MPI-K Heidelberg, Germany *
25
* Kai Voss <Kai.Voss@cern.ch> - U. of Victoria, Canada *
26
* *
27
* Copyright (c) 2005: *
28
* CERN, Switzerland *
29
* U. of Victoria, Canada *
30
* Heidelberg U., Germany *
31
* *
32
* Redistribution and use in source and binary forms, with or without *
33
* modification, are permitted according to the terms listed in LICENSE *
34
* (http://tmva.sourceforge.net/LICENSE) *
35
**********************************************************************************/
36
37
//_______________________________________________________________________
38
//
39
// Implementation of the GiniIndex as separation criterion
40
//
41
//_______________________________________________________________________
42
43
#include "
TMVA/GiniIndex.h
"
44
45
#include "
Rtypes.h
"
46
47
ClassImp
(
TMVA::GiniIndex
)
48
49
////////////////////////////////////////////////////////////////////////////////
50
/// Gini(Sample M) = 1 - (c(1)/N)^2 - (c(2)/N)^2 .... - (c(k)/N)^2
51
/// Where: M is a smaple of whatever N elements (events)
52
/// that belong to K different classes
53
/// c(k) is the number of elements that belong to class k
54
/// for just Signal and Background classes this boils down to:
55
/// Gini(Sample) = 2s*b/(s+b)^2 ( = 2 * purity * (1-purity) )
56
///
57
/// !! what we use here is 2*Gini.. as for the later use the factor
58
/// 2 is irrelevant and hence I'd like to save this calculation
59
60
Double_t
TMVA
::
GiniIndex
::GetSeparationIndex( const
Double_t
&s, const
Double_t
&
b
)
61
{
62
if
(s+b <= 0)
return
0;
63
if
(s<=0 || b <=0)
return
0;
64
// else return s*b/(s+b)/(s+b);
65
else
return
2*s*b/(s+
b
)/(s+b);
66
}
67
68
Rtypes.h
GiniIndex.h
TMVA::GiniIndex
Definition:
GiniIndex.h:65
ClassImp
#define ClassImp(name)
Definition:
Rtypes.h:279
Double_t
double Double_t
Definition:
RtypesCore.h:55
TMVA
Abstract ClassifierFactory template that handles arbitrary types.
Definition:
GeneticMinimizer.h:21
b
you should not use this method at all Int_t Int_t Double_t Double_t Double_t Int_t Double_t Double_t Double_t Double_t b
Definition:
TRolke.cxx:630