Logo ROOT   6.08/07
Reference Guide
rf102_dataimport.C File Reference

Detailed Description

View in nbviewer Open in SWAN 'BASIC FUNCTIONALITY' RooFit tutorial macro #102

Importing data from ROOT TTrees and THx histograms



Processing /mnt/build/workspace/root-makedoc-v608/rootspi/rdoc/src/v6-08-00-patches/tutorials/roofit/rf102_dataimport.C...
#include "RooRealVar.h"
#include "RooDataSet.h"
#include "RooDataHist.h"
#include "RooGaussian.h"
#include "TCanvas.h"
#include "RooPlot.h"
#include "TTree.h"
#include "TH1D.h"
#include "TRandom.h"
using namespace RooFit ;
TH1* makeTH1() ;
TTree* makeTTree() ;
void rf102_dataimport()
{
// ---------------------------------------------------
// I m p o r t i n g R O O T h i s t o g r a m s
// ===================================================
// I m p o r t T H 1 i n t o a R o o D a t a H i s t
// ---------------------------------------------------------
// Create a ROOT TH1 histogram
TH1* hh = makeTH1() ;
// Declare observable x
RooRealVar x("x","x",-10,10) ;
// Create a binned dataset that imports contents of TH1 and associates its contents to observable 'x'
RooDataHist dh("dh","dh",x,Import(*hh)) ;
// P l o t a n d f i t a R o o D a t a H i s t
// ---------------------------------------------------
// Make plot of binned dataset showing Poisson error bars (RooFit default)
RooPlot* frame = x.frame(Title("Imported TH1 with Poisson error bars")) ;
dh.plotOn(frame) ;
// Fit a Gaussian p.d.f to the data
RooRealVar mean("mean","mean",0,-10,10) ;
RooRealVar sigma("sigma","sigma",3,0.1,10) ;
RooGaussian gauss("gauss","gauss",x,mean,sigma) ;
gauss.fitTo(dh) ;
gauss.plotOn(frame) ;
// P l o t a n d f i t a R o o D a t a H i s t w i t h i n t e r n a l e r r o r s
// ---------------------------------------------------------------------------------------------
// If histogram has custom error (i.e. its contents is does not originate from a Poisson process
// but e.g. is a sum of weighted events) you can data with symmetric 'sum-of-weights' error instead
// (same error bars as shown by ROOT)
RooPlot* frame2 = x.frame(Title("Imported TH1 with internal errors")) ;
dh.plotOn(frame2,DataError(RooAbsData::SumW2)) ;
gauss.plotOn(frame2) ;
// Please note that error bars shown (Poisson or SumW2) are for visualization only, the are NOT used
// in a maximum likelihood fit
//
// A (binned) ML fit will ALWAYS assume the Poisson error interpretation of data (the mathematical definition
// of likelihood does not take any external definition of errors). Data with non-unit weights can only be correctly
// fitted with a chi^2 fit (see rf602_chi2fit.C)
// -----------------------------------------
// I m p o r t i n g R O O T T T r e e s
// =========================================
// I m p o r t T T r e e i n t o a R o o D a t a S e t
// -----------------------------------------------------------
TTree* tree = makeTTree() ;
// Define 2nd observable y
RooRealVar y("y","y",-10,10) ;
// Construct unbinned dataset importing tree branches x and y matching between branches and RooRealVars
// is done by name of the branch/RRV
//
// Note that ONLY entries for which x,y have values within their allowed ranges as defined in
// RooRealVar x and y are imported. Since the y values in the import tree are in the range [-15,15]
// and RRV y defines a range [-10,10] this means that the RooDataSet below will have less entries than the TTree 'tree'
RooDataSet ds("ds","ds",RooArgSet(x,y),Import(*tree)) ;
// P l o t d a t a s e t w i t h m u l t i p l e b i n n i n g c h o i c e s
// ------------------------------------------------------------------------------------
// Print number of events in dataset
ds.Print() ;
// Print unbinned dataset with default frame binning (100 bins)
RooPlot* frame3 = y.frame(Title("Unbinned data shown in default frame binning")) ;
ds.plotOn(frame3) ;
// Print unbinned dataset with custom binning choice (20 bins)
RooPlot* frame4 = y.frame(Title("Unbinned data shown with custom binning")) ;
ds.plotOn(frame4,Binning(20)) ;
// Draw all frames on a canvas
TCanvas* c = new TCanvas("rf102_dataimport","rf102_dataimport",800,800) ;
c->Divide(2,2) ;
c->cd(1) ; gPad->SetLeftMargin(0.15) ; frame->GetYaxis()->SetTitleOffset(1.4) ; frame->Draw() ;
c->cd(2) ; gPad->SetLeftMargin(0.15) ; frame2->GetYaxis()->SetTitleOffset(1.4) ; frame2->Draw() ;
c->cd(3) ; gPad->SetLeftMargin(0.15) ; frame3->GetYaxis()->SetTitleOffset(1.4) ; frame3->Draw() ;
c->cd(4) ; gPad->SetLeftMargin(0.15) ; frame4->GetYaxis()->SetTitleOffset(1.4) ; frame4->Draw() ;
}
TH1* makeTH1()
{
// Create ROOT TH1 filled with a Gaussian distribution
TH1D* hh = new TH1D("hh","hh",25,-10,10) ;
for (int i=0 ; i<100 ; i++) {
hh->Fill(gRandom->Gaus(0,3)) ;
}
return hh ;
}
TTree* makeTTree()
{
// Create ROOT TTree filled with a Gaussian distribution in x and a uniform distribution in y
TTree* tree = new TTree("tree","tree") ;
Double_t* px = new Double_t ;
Double_t* py = new Double_t ;
tree->Branch("x",px,"x/D") ;
tree->Branch("y",py,"y/D") ;
for (int i=0 ; i<100 ; i++) {
*px = gRandom->Gaus(0,3) ;
*py = gRandom->Uniform()*30 - 15 ;
tree->Fill() ;
}
return tree ;
}
Author
07/2008 - Wouter Verkerke

Definition in file rf102_dataimport.C.