Logo ROOT   6.08/07
Reference Guide
rf303_conditional.C
Go to the documentation of this file.
1 /// \file
2 /// \ingroup tutorial_roofit
3 /// \notebook -js
4 /// 'MULTIDIMENSIONAL MODELS' RooFit tutorial macro #303
5 ///
6 /// Use of tailored p.d.f as conditional p.d.fs.s
7 ///
8 /// pdf = gauss(x,f(y),sx | y ) with f(y) = a0 + a1*y
9 ///
10 /// \macro_image
11 /// \macro_output
12 /// \macro_code
13 /// \author 07/2008 - Wouter Verkerke
14 
15 
16 #include "RooRealVar.h"
17 #include "RooDataSet.h"
18 #include "RooDataHist.h"
19 #include "RooGaussian.h"
20 #include "RooPolyVar.h"
21 #include "RooProdPdf.h"
22 #include "RooPlot.h"
23 #include "TRandom.h"
24 #include "TCanvas.h"
25 #include "TAxis.h"
26 #include "TH1.h"
27 
28 using namespace RooFit;
29 
30 
31 RooDataSet* makeFakeDataXY() ;
32 
33 void rf303_conditional()
34 {
35  // S e t u p c o m p o s e d m o d e l g a u s s ( x , m ( y ) , s )
36  // -----------------------------------------------------------------------
37 
38  // Create observables
39  RooRealVar x("x","x",-10,10) ;
40  RooRealVar y("y","y",-10,10) ;
41 
42  // Create function f(y) = a0 + a1*y
43  RooRealVar a0("a0","a0",-0.5,-5,5) ;
44  RooRealVar a1("a1","a1",-0.5,-1,1) ;
45  RooPolyVar fy("fy","fy",y,RooArgSet(a0,a1)) ;
46 
47  // Create gauss(x,f(y),s)
48  RooRealVar sigma("sigma","width of gaussian",0.5,0.1,2.0) ;
49  RooGaussian model("model","Gaussian with shifting mean",x,fy,sigma) ;
50 
51 
52  // Obtain fake external experimental dataset with values for x and y
53  RooDataSet* expDataXY = makeFakeDataXY() ;
54 
55 
56 
57  // G e n e r a t e d a t a f r o m c o n d i t i o n a l p . d . f m o d e l ( x | y )
58  // ---------------------------------------------------------------------------------------------
59 
60  // Make subset of experimental data with only y values
61  RooDataSet* expDataY= (RooDataSet*) expDataXY->reduce(y) ;
62 
63  // Generate 10000 events in x obtained from _conditional_ model(x|y) with y values taken from experimental data
64  RooDataSet *data = model.generate(x,ProtoData(*expDataY)) ;
65  data->Print() ;
66 
67 
68 
69  // F i t c o n d i t i o n a l p . d . f m o d e l ( x | y ) t o d a t a
70  // ---------------------------------------------------------------------------------------------
71 
72  model.fitTo(*expDataXY,ConditionalObservables(y)) ;
73 
74 
75 
76  // P r o j e c t c o n d i t i o n a l p . d . f o n x a n d y d i m e n s i o n s
77  // ---------------------------------------------------------------------------------------------
78 
79  // Plot x distribution of data and projection of model on x = 1/Ndata sum(data(y_i)) model(x;y_i)
80  RooPlot* xframe = x.frame() ;
81  expDataXY->plotOn(xframe) ;
82  model.plotOn(xframe,ProjWData(*expDataY)) ;
83 
84 
85  // Speed up (and approximate) projection by using binned clone of data for projection
86  RooAbsData* binnedDataY = expDataY->binnedClone() ;
87  model.plotOn(xframe,ProjWData(*binnedDataY),LineColor(kCyan),LineStyle(kDotted)) ;
88 
89 
90  // Show effect of projection with too coarse binning
91  ((RooRealVar*)expDataY->get()->find("y"))->setBins(5) ;
92  RooAbsData* binnedDataY2 = expDataY->binnedClone() ;
93  model.plotOn(xframe,ProjWData(*binnedDataY2),LineColor(kRed)) ;
94 
95 
96  // Make canvas and draw RooPlots
97  new TCanvas("rf303_conditional","rf303_conditional",600, 460);
98  gPad->SetLeftMargin(0.15) ; xframe->GetYaxis()->SetTitleOffset(1.2) ; xframe->Draw() ;
99 
100 }
101 
102 
103 
104 
105 RooDataSet* makeFakeDataXY()
106 {
107  RooRealVar x("x","x",-10,10) ;
108  RooRealVar y("y","y",-10,10) ;
109  RooArgSet coord(x,y) ;
110 
111  RooDataSet* d = new RooDataSet("d","d",RooArgSet(x,y)) ;
112 
113  for (int i=0 ; i<10000 ; i++) {
114  Double_t tmpy = gRandom->Gaus(0,10) ;
115  Double_t tmpx = gRandom->Gaus(0.5*tmpy,1) ;
116  if (fabs(tmpy)<10 && fabs(tmpx)<10) {
117  x = tmpx ;
118  y = tmpy ;
119  d->add(coord) ;
120  }
121 
122  }
123 
124  return d ;
125 }
126 
virtual void SetTitleOffset(Float_t offset=1)
Set distance between the axis and the axis title Offset is a correction factor with respect to the "s...
Definition: TAttAxis.cxx:262
TAxis * GetYaxis() const
Definition: RooPlot.cxx:1118
virtual RooPlot * plotOn(RooPlot *frame, const RooCmdArg &arg1=RooCmdArg::none(), const RooCmdArg &arg2=RooCmdArg::none(), const RooCmdArg &arg3=RooCmdArg::none(), const RooCmdArg &arg4=RooCmdArg::none(), const RooCmdArg &arg5=RooCmdArg::none(), const RooCmdArg &arg6=RooCmdArg::none(), const RooCmdArg &arg7=RooCmdArg::none(), const RooCmdArg &arg8=RooCmdArg::none()) const
Plot dataset on specified frame.
Definition: RooAbsData.cxx:552
RooCmdArg LineColor(Color_t color)
virtual Double_t Gaus(Double_t mean=0, Double_t sigma=1)
Samples a random number from the standard Normal (Gaussian) Distribution with the given mean and sigm...
Definition: TRandom.cxx:235
Definition: Rtypes.h:61
RooAbsData * reduce(const RooCmdArg &arg1, const RooCmdArg &arg2=RooCmdArg(), const RooCmdArg &arg3=RooCmdArg(), const RooCmdArg &arg4=RooCmdArg(), const RooCmdArg &arg5=RooCmdArg(), const RooCmdArg &arg6=RooCmdArg(), const RooCmdArg &arg7=RooCmdArg(), const RooCmdArg &arg8=RooCmdArg())
Create a reduced copy of this dataset.
Definition: RooAbsData.cxx:343
RooCmdArg ProjWData(const RooAbsData &projData, Bool_t binData=kFALSE)
Double_t x[n]
Definition: legend1.C:17
RooDataHist * binnedClone(const char *newName=0, const char *newTitle=0) const
Return binned clone of this dataset.
Definition: RooDataSet.cxx:981
RooCmdArg LineStyle(Style_t style)
Plain Gaussian p.d.f.
Definition: RooGaussian.h:25
const Double_t sigma
Class RooPolyVar is a RooAbsReal implementing a polynomial in terms of a list of RooAbsReal coefficie...
Definition: RooPolyVar.h:28
RooRealVar represents a fundamental (non-derived) real valued object.
Definition: RooRealVar.h:37
VecExpr< UnaryOp< Fabs< T >, VecExpr< A, T, D >, T >, T, D > fabs(const VecExpr< A, T, D > &rhs)
RooAbsData is the common abstract base class for binned and unbinned datasets.
Definition: RooAbsData.h:37
R__EXTERN TRandom * gRandom
Definition: TRandom.h:66
RooDataSet is a container class to hold unbinned data.
Definition: RooDataSet.h:29
virtual const RooArgSet * get(Int_t index) const
Return RooArgSet with coordinates of event &#39;index&#39;.
virtual void add(const RooArgSet &row, Double_t weight=1.0, Double_t weightError=0)
Add a data point, with its coordinates specified in the &#39;data&#39; argset, to the data set...
A RooPlot is a plot frame and a container for graphics objects within that frame. ...
Definition: RooPlot.h:41
The Canvas class.
Definition: TCanvas.h:41
virtual void Print(Option_t *options=0) const
Print TNamed name and title.
Definition: RooAbsData.h:157
RooAbsArg * find(const char *name) const
Find object with given name in list.
double Double_t
Definition: RtypesCore.h:55
RooCmdArg ProtoData(const RooDataSet &protoData, Bool_t randomizeOrder=kFALSE, Bool_t resample=kFALSE)
Double_t y[n]
Definition: legend1.C:17
Definition: Rtypes.h:61
#define gPad
Definition: TVirtualPad.h:289
RooCmdArg ConditionalObservables(const RooArgSet &set)
virtual void Draw(Option_t *options=0)
Draw this plot and all of the elements it contains.
Definition: RooPlot.cxx:559