fBatchSize | TMVA::DNN::TGradientDescent< Architecture_t > | private |
fConvergenceCount | TMVA::DNN::TGradientDescent< Architecture_t > | private |
fConvergenceSteps | TMVA::DNN::TGradientDescent< Architecture_t > | private |
fLearningRate | TMVA::DNN::TGradientDescent< Architecture_t > | private |
fMinimumError | TMVA::DNN::TGradientDescent< Architecture_t > | private |
fStepCount | TMVA::DNN::TGradientDescent< Architecture_t > | private |
fTestError | TMVA::DNN::TGradientDescent< Architecture_t > | private |
fTestInterval | TMVA::DNN::TGradientDescent< Architecture_t > | private |
fTrainingError | TMVA::DNN::TGradientDescent< Architecture_t > | private |
GetConvergenceCount() const | TMVA::DNN::TGradientDescent< Architecture_t > | inline |
GetConvergenceSteps() const | TMVA::DNN::TGradientDescent< Architecture_t > | inline |
GetTestError() const | TMVA::DNN::TGradientDescent< Architecture_t > | inline |
GetTestInterval() const | TMVA::DNN::TGradientDescent< Architecture_t > | inline |
GetTrainingError() const | TMVA::DNN::TGradientDescent< Architecture_t > | inline |
HasConverged() | TMVA::DNN::TGradientDescent< Architecture_t > | inline |
HasConverged(Scalar_t testError) | TMVA::DNN::TGradientDescent< Architecture_t > | inline |
Matrix_t typedef | TMVA::DNN::TGradientDescent< Architecture_t > | |
Reset() | TMVA::DNN::TGradientDescent< Architecture_t > | inline |
Scalar_t typedef | TMVA::DNN::TGradientDescent< Architecture_t > | |
SetBatchSize(Scalar_t rate) | TMVA::DNN::TGradientDescent< Architecture_t > | inline |
SetConvergenceSteps(size_t steps) | TMVA::DNN::TGradientDescent< Architecture_t > | inline |
SetLearningRate(Scalar_t rate) | TMVA::DNN::TGradientDescent< Architecture_t > | inline |
SetTestInterval(size_t interval) | TMVA::DNN::TGradientDescent< Architecture_t > | inline |
Step(Net_t &net, Matrix_t &input, const Matrix_t &output, const Matrix_t &weights) | TMVA::DNN::TGradientDescent< Architecture_t > | inline |
Step(Net_t &master, std::vector< Net_t > &nets, std::vector< TBatch< Architecture_t >> &batches) | TMVA::DNN::TGradientDescent< Architecture_t > | inline |
StepLoss(Net_t &net, Matrix_t &input, const Matrix_t &output, const Matrix_t &weights) | TMVA::DNN::TGradientDescent< Architecture_t > | |
StepLoss(Net_t &net, Matrix_t &input, const Matrix_t &output, const Matrix_t &weights) -> Scalar_t | TMVA::DNN::TGradientDescent< Architecture_t > | inline |
StepMomentum(Net_t &master, std::vector< Net_t > &nets, std::vector< TBatch< Architecture_t >> &batches, Scalar_t momentum) | TMVA::DNN::TGradientDescent< Architecture_t > | inline |
StepNesterov(Net_t &master, std::vector< Net_t > &nets, std::vector< TBatch< Architecture_t >> &batches, Scalar_t momentum) | TMVA::DNN::TGradientDescent< Architecture_t > | inline |
StepReducedWeights(Net_t &net, Matrix_t &input, const Matrix_t &output) | TMVA::DNN::TGradientDescent< Architecture_t > | inline |
StepReducedWeightsLoss(Net_t &net, Matrix_t &input, const Matrix_t &output, const Matrix_t &weights) | TMVA::DNN::TGradientDescent< Architecture_t > | |
StepReducedWeightsLoss(Net_t &net, Matrix_t &input, const Matrix_t &output, const Matrix_t &weights) -> Scalar_t | TMVA::DNN::TGradientDescent< Architecture_t > | inline |
TGradientDescent() | TMVA::DNN::TGradientDescent< Architecture_t > | |
TGradientDescent(Scalar_t learningRate, size_t convergenceSteps, size_t testInterval) | TMVA::DNN::TGradientDescent< Architecture_t > | |
Train(const Data_t &TrainingDataIn, size_t nTrainingSamples, const Data_t &TestDataIn, size_t nTestSamples, Net_t &net, size_t nThreads=1) | TMVA::DNN::TGradientDescent< Architecture_t > | |
Train(const Data_t &trainingData, size_t nTrainingSamples, const Data_t &testData, size_t nTestSamples, Net_t &net, size_t nThreads) -> Scalar_t | TMVA::DNN::TGradientDescent< Architecture_t > | |
TrainMomentum(const Data_t &TrainingDataIn, size_t nTrainingSamples, const Data_t &TestDataIn, size_t nTestSamples, Net_t &net, Scalar_t momentum, size_t nThreads=1) | TMVA::DNN::TGradientDescent< Architecture_t > | |
TrainMomentum(const Data_t &trainingData, size_t nTrainingSamples, const Data_t &testData, size_t nTestSamples, Net_t &net, Scalar_t momentum, size_t nThreads) -> Scalar_t | TMVA::DNN::TGradientDescent< Architecture_t > | |