Logo ROOT   6.16/01
Reference Guide
TMVA::DNN::TDLGradientDescent< Architecture_t > Member List

This is the complete list of members for TMVA::DNN::TDLGradientDescent< Architecture_t >, including all inherited members.

DeepNet_t typedefTMVA::DNN::TDLGradientDescent< Architecture_t >
fBatchSizeTMVA::DNN::TDLGradientDescent< Architecture_t >private
fConvergenceCountTMVA::DNN::TDLGradientDescent< Architecture_t >private
fConvergenceStepsTMVA::DNN::TDLGradientDescent< Architecture_t >private
fLearningRateTMVA::DNN::TDLGradientDescent< Architecture_t >private
fMinimumErrorTMVA::DNN::TDLGradientDescent< Architecture_t >private
fStepCountTMVA::DNN::TDLGradientDescent< Architecture_t >private
fTestErrorTMVA::DNN::TDLGradientDescent< Architecture_t >private
fTestIntervalTMVA::DNN::TDLGradientDescent< Architecture_t >private
fTrainingErrorTMVA::DNN::TDLGradientDescent< Architecture_t >private
GetConvergenceCount() constTMVA::DNN::TDLGradientDescent< Architecture_t >inline
GetConvergenceSteps() constTMVA::DNN::TDLGradientDescent< Architecture_t >inline
GetTestError() constTMVA::DNN::TDLGradientDescent< Architecture_t >inline
GetTestInterval() constTMVA::DNN::TDLGradientDescent< Architecture_t >inline
GetTrainingError() constTMVA::DNN::TDLGradientDescent< Architecture_t >inline
HasConverged()TMVA::DNN::TDLGradientDescent< Architecture_t >
HasConverged(Scalar_t testError)TMVA::DNN::TDLGradientDescent< Architecture_t >
Matrix_t typedefTMVA::DNN::TDLGradientDescent< Architecture_t >
Reset()TMVA::DNN::TDLGradientDescent< Architecture_t >inline
Scalar_t typedefTMVA::DNN::TDLGradientDescent< Architecture_t >
SetBatchSize(Scalar_t rate)TMVA::DNN::TDLGradientDescent< Architecture_t >inline
SetConvergenceSteps(size_t steps)TMVA::DNN::TDLGradientDescent< Architecture_t >inline
SetLearningRate(Scalar_t rate)TMVA::DNN::TDLGradientDescent< Architecture_t >inline
SetTestInterval(size_t interval)TMVA::DNN::TDLGradientDescent< Architecture_t >inline
Step(DeepNet_t &deepNet, std::vector< Matrix_t > &input, const Matrix_t &output, const Matrix_t &weights)TMVA::DNN::TDLGradientDescent< Architecture_t >
Step(DeepNet_t &master, std::vector< DeepNet_t > &nets, std::vector< TTensorBatch< Architecture_t > > &batches)TMVA::DNN::TDLGradientDescent< Architecture_t >
StepLoss(DeepNet_t &deepNet, std::vector< Matrix_t > &input, const Matrix_t &output, const Matrix_t &weights)TMVA::DNN::TDLGradientDescent< Architecture_t >
StepMomentum(DeepNet_t &master, std::vector< DeepNet_t > &nets, std::vector< TTensorBatch< Architecture_t > > &batches, Scalar_t momentum)TMVA::DNN::TDLGradientDescent< Architecture_t >
StepNesterov(DeepNet_t &master, std::vector< DeepNet_t > &nets, std::vector< TTensorBatch< Architecture_t > > &batches, Scalar_t momentum)TMVA::DNN::TDLGradientDescent< Architecture_t >
StepReducedWeights(DeepNet_t &deepNet, std::vector< Matrix_t > &input, const Matrix_t &output, const Matrix_t &weights)TMVA::DNN::TDLGradientDescent< Architecture_t >
StepReducedWeightsLoss(DeepNet_t &deepNet, std::vector< Matrix_t > &input, const Matrix_t &output, const Matrix_t &weights)TMVA::DNN::TDLGradientDescent< Architecture_t >
TDLGradientDescent()TMVA::DNN::TDLGradientDescent< Architecture_t >
TDLGradientDescent(Scalar_t learningRate, size_t convergenceSteps, size_t testInterval)TMVA::DNN::TDLGradientDescent< Architecture_t >