18x = ROOT.RooRealVar(
"x",
"x", 0, 10)
22mean = ROOT.RooRealVar(
"mean",
"mean of gaussians", 5)
23sigma1 = ROOT.RooRealVar(
"sigma1",
"width of gaussians", 0.5)
24sigma2 = ROOT.RooRealVar(
"sigma2",
"width of gaussians", 1)
26sig1 = ROOT.RooGaussian(
"sig1",
"Signal component 1", x, mean, sigma1)
27sig2 = ROOT.RooGaussian(
"sig2",
"Signal component 2", x, mean, sigma2)
30a0 = ROOT.RooRealVar(
"a0",
"a0", 0.5, 0., 1.)
31a1 = ROOT.RooRealVar(
"a1",
"a1", -0.2, 0., 1.)
32bkg = ROOT.RooChebychev(
"bkg",
"Background", x, ROOT.RooArgList(a0, a1))
35sig1frac = ROOT.RooRealVar(
36 "sig1frac",
"fraction of component 1 in signal", 0.8, 0., 1.)
38 "sig",
"Signal", ROOT.RooArgList(sig1, sig2), ROOT.RooArgList(sig1frac))
45nsig = ROOT.RooRealVar(
"nsig",
"number of signal events", 500, 0., 10000)
46nbkg = ROOT.RooRealVar(
47 "nbkg",
"number of background events", 500, 0, 10000)
48model = ROOT.RooAddPdf(
63data = model.generate(ROOT.RooArgSet(x))
70xframe = x.frame(ROOT.RooFit.Title(
"extended ML fit example"))
72model.plotOn(xframe, ROOT.RooFit.Normalization(
73 1.0, ROOT.RooAbsReal.RelativeExpected))
76ras_bkg = ROOT.RooArgSet(bkg)
78 xframe, ROOT.RooFit.Components(ras_bkg), ROOT.RooFit.LineStyle(
79 ROOT.kDashed), ROOT.RooFit.Normalization(
80 1.0, ROOT.RooAbsReal.RelativeExpected))
83ras_bkg_sig2 = ROOT.RooArgSet(bkg, sig2)
85 xframe, ROOT.RooFit.Components(ras_bkg_sig2), ROOT.RooFit.LineStyle(
86 ROOT.kDotted), ROOT.RooFit.Normalization(
87 1.0, ROOT.RooAbsReal.RelativeExpected))
97esig = ROOT.RooExtendPdf(
"esig",
"extended signal p.d.f", sig, nsig)
98ebkg = ROOT.RooExtendPdf(
"ebkg",
"extended background p.d.f", bkg, nbkg)
104model2 = ROOT.RooAddPdf(
"model2",
"(g1+g2)+a", ROOT.RooArgList(ebkg, esig))
107c = ROOT.TCanvas(
"rf202_extendedmlfit",
"rf202_extendedmlfit", 600, 600)
108ROOT.gPad.SetLeftMargin(0.15)
109xframe.GetYaxis().SetTitleOffset(1.4)
112c.SaveAs(
"rf202_extendedmlfit.png")