Loading [MathJax]/extensions/tex2jax.js
Logo ROOT  
Reference Guide
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Modules Pages
rf305_condcorrprod.py
Go to the documentation of this file.
1## \file
2## \ingroup tutorial_roofit
3## \notebook
4##
5## Multidimensional models: multi-dimensional p.d.f.s with conditional p.d.fs in product
6##
7## `pdf = gauss(x,f(y),sx | y ) * gauss(y,ms,sx)` with `f(y) = a0 + a1*y`
8##
9## \macro_code
10##
11## \date February 2018
12## \authors Clemens Lange, Wouter Verkerke (C++ version)
13
14import ROOT
15
16# Create conditional pdf gx(x|y)
17# -----------------------------------------------------------
18
19# Create observables
20x = ROOT.RooRealVar("x", "x", -5, 5)
21y = ROOT.RooRealVar("y", "y", -5, 5)
22
23# Create function f(y) = a0 + a1*y
24a0 = ROOT.RooRealVar("a0", "a0", -0.5, -5, 5)
25a1 = ROOT.RooRealVar("a1", "a1", -0.5, -1, 1)
26fy = ROOT.RooPolyVar("fy", "fy", y, ROOT.RooArgList(a0, a1))
27
28# Create gaussx(x,f(y),sx)
29sigmax = ROOT.RooRealVar("sigma", "width of gaussian", 0.5)
30gaussx = ROOT.RooGaussian(
31 "gaussx", "Gaussian in x with shifting mean in y", x, fy, sigmax)
32
33# Create pdf gy(y)
34# -----------------------------------------------------------
35
36# Create gaussy(y,0,5)
37gaussy = ROOT.RooGaussian(
38 "gaussy",
39 "Gaussian in y",
40 y,
41 ROOT.RooFit.RooConst(0),
42 ROOT.RooFit.RooConst(3))
43
44# Create product gx(x|y)*gy(y)
45# -------------------------------------------------------
46
47# Create gaussx(x,sx|y) * gaussy(y)
48model = ROOT.RooProdPdf(
49 "model",
50 "gaussx(x|y)*gaussy(y)",
51 ROOT.RooArgSet(gaussy),
52 ROOT.RooFit.Conditional(
53 ROOT.RooArgSet(gaussx),
54 ROOT.RooArgSet(x)))
55
56# Sample, fit and plot product pdf
57# ---------------------------------------------------------------
58
59# Generate 1000 events in x and y from model
60data = model.generate(ROOT.RooArgSet(x, y), 10000)
61
62# Plot x distribution of data and projection of model x = Int(dy)
63# model(x,y)
64xframe = x.frame()
65data.plotOn(xframe)
66model.plotOn(xframe)
67
68# Plot x distribution of data and projection of model y = Int(dx)
69# model(x,y)
70yframe = y.frame()
71data.plotOn(yframe)
72model.plotOn(yframe)
73
74# Make two-dimensional plot in x vs y
75hh_model = model.createHistogram("hh_model", x, ROOT.RooFit.Binning(
76 50), ROOT.RooFit.YVar(y, ROOT.RooFit.Binning(50)))
77hh_model.SetLineColor(ROOT.kBlue)
78
79# Make canvas and draw ROOT.RooPlots
80c = ROOT.TCanvas("rf305_condcorrprod", "rf05_condcorrprod", 1200, 400)
81c.Divide(3)
82c.cd(1)
83ROOT.gPad.SetLeftMargin(0.15)
84xframe.GetYaxis().SetTitleOffset(1.6)
85xframe.Draw()
86c.cd(2)
87ROOT.gPad.SetLeftMargin(0.15)
88yframe.GetYaxis().SetTitleOffset(1.6)
89yframe.Draw()
90c.cd(3)
91ROOT.gPad.SetLeftMargin(0.20)
92hh_model.GetZaxis().SetTitleOffset(2.5)
93hh_model.Draw("surf")
94
95c.SaveAs("rf305_condcorrprod.png")