Logo ROOT  
Reference Guide
rf308_normintegration2d.py
Go to the documentation of this file.
1## \file
2## \ingroup tutorial_roofit
3## \notebook
4##
5## Multidimensional models: normalization and integration of p.d.fs, construction of
6## cumulative distribution functions from p.d.f.s in two dimensions
7##
8## \macro_code
9##
10## \date February 2018
11## \authors Clemens Lange, Wouter Verkerke (C++ version)
12
13from __future__ import print_function
14import ROOT
15
16# Set up model
17# ---------------------
18
19# Create observables x,y
20x = ROOT.RooRealVar("x", "x", -10, 10)
21y = ROOT.RooRealVar("y", "y", -10, 10)
22
23# Create p.d.f. gaussx(x,-2,3), gaussy(y,2,2)
24gx = ROOT.RooGaussian(
25 "gx", "gx", x, ROOT.RooFit.RooConst(-2), ROOT.RooFit.RooConst(3))
26gy = ROOT.RooGaussian(
27 "gy", "gy", y, ROOT.RooFit.RooConst(+2), ROOT.RooFit.RooConst(2))
28
29# gxy = gx(x)*gy(y)
30gxy = ROOT.RooProdPdf("gxy", "gxy", ROOT.RooArgList(gx, gy))
31
32# Retrieve raw & normalized values of RooFit p.d.f.s
33# --------------------------------------------------------------------------------------------------
34
35# Return 'raw' unnormalized value of gx
36print("gxy = ", gxy.getVal())
37
38# Return value of gxy normalized over x _and_ y in range [-10,10]
39nset_xy = ROOT.RooArgSet(x, y)
40print("gx_Norm[x,y] = ", gxy.getVal(nset_xy))
41
42# Create object representing integral over gx
43# which is used to calculate gx_Norm[x,y] == gx / gx_Int[x,y]
44x_and_y = ROOT.RooArgSet(x, y)
45igxy = gxy.createIntegral(x_and_y)
46print("gx_Int[x,y] = ", igxy.getVal())
47
48# NB: it is also possible to do the following
49
50# Return value of gxy normalized over x in range [-10,10] (i.e. treating y
51# as parameter)
52nset_x = ROOT.RooArgSet(x)
53print("gx_Norm[x] = ", gxy.getVal(nset_x))
54
55# Return value of gxy normalized over y in range [-10,10] (i.e. treating x
56# as parameter)
57nset_y = ROOT.RooArgSet(y)
58print("gx_Norm[y] = ", gxy.getVal(nset_y))
59
60# Integarte normalizes pdf over subrange
61# ----------------------------------------------------------------------------
62
63# Define a range named "signal" in x from -5,5
64x.setRange("signal", -5, 5)
65y.setRange("signal", -3, 3)
66
67# Create an integral of gxy_Norm[x,y] over x and y in range "signal"
68# ROOT.This is the fraction of of p.d.f. gxy_Norm[x,y] which is in the
69# range named "signal"
70
71igxy_sig = gxy.createIntegral(x_and_y, ROOT.RooFit.NormSet(
72 x_and_y), ROOT.RooFit.Range("signal"))
73print("gx_Int[x,y|signal]_Norm[x,y] = ", igxy_sig.getVal())
74
75# Construct cumulative distribution function from pdf
76# -----------------------------------------------------------------------------------------------------
77
78# Create the cumulative distribution function of gx
79# i.e. calculate Int[-10,x] gx(x') dx'
80gxy_cdf = gxy.createCdf(ROOT.RooArgSet(x, y))
81
82# Plot cdf of gx versus x
83hh_cdf = gxy_cdf.createHistogram("hh_cdf", x, ROOT.RooFit.Binning(
84 40), ROOT.RooFit.YVar(y, ROOT.RooFit.Binning(40)))
85hh_cdf.SetLineColor(ROOT.kBlue)
86
87c = ROOT.TCanvas("rf308_normintegration2d",
88 "rf308_normintegration2d", 600, 600)
89ROOT.gPad.SetLeftMargin(0.15)
90hh_cdf.GetZaxis().SetTitleOffset(1.8)
91hh_cdf.Draw("surf")
92
93c.SaveAs("rf308_normintegration2d.png")