66struct HypoTestOptions {
68 bool noSystematics =
false;
69 double nToysRatio = 4;
72 bool generateBinned =
false;
73 bool useProof =
false;
74 bool enableDetailedOutput =
false;
79void StandardHypoTestDemo(
const char *infile =
"",
const char *workspaceName =
"combined",
80 const char *modelSBName =
"ModelConfig",
const char *modelBName =
"",
81 const char *dataName =
"obsData",
int calcType = 0,
83 int ntoys = 5000,
bool useNC =
false,
const char *nuisPriorName = 0)
86 bool noSystematics = optHT.noSystematics;
87 double nToysRatio = optHT.nToysRatio;
88 double poiValue = optHT.poiValue;
89 int printLevel = optHT.printLevel;
90 bool generateBinned = optHT.generateBinned;
91 bool useProof = optHT.useProof;
92 bool enableDetOutput = optHT.enableDetailedOutput;
124 SimpleLikelihoodRatioTestStat::SetAlwaysReuseNLL(
true);
125 ProfileLikelihoodTestStat::SetAlwaysReuseNLL(
true);
126 RatioOfProfiledLikelihoodsTestStat::SetAlwaysReuseNLL(
true);
141 if (!strcmp(infile,
"")) {
142 filename =
"results/example_combined_GaussExample_model.root";
147 cout <<
"HistFactory file cannot be generated on Windows - exit" << endl;
151 cout <<
"will run standard hist2workspace example" << endl;
152 gROOT->ProcessLine(
".! prepareHistFactory .");
153 gROOT->ProcessLine(
".! hist2workspace config/example.xml");
154 cout <<
"\n\n---------------------" << endl;
155 cout <<
"Done creating example input" << endl;
156 cout <<
"---------------------\n\n" << endl;
167 cout <<
"StandardRooStatsDemoMacro: Input file " <<
filename <<
" is not found" << endl;
178 cout <<
"workspace not found" << endl;
190 if (!
data || !sbModel) {
192 cout <<
"data or ModelConfig was not found" << endl;
202 if (nuisPar && nuisPar->
getSize() > 0) {
203 std::cout <<
"StandardHypoTestInvDemo"
204 <<
" - Switch off all systematics by setting them constant to their initial values" << std::endl;
215 Info(
"StandardHypoTestInvDemo",
"The background model %s does not exist", modelBName);
216 Info(
"StandardHypoTestInvDemo",
"Copy it from ModelConfig %s and set POI to zero", modelSBName);
222 double oldval = var->
getVal();
230 Info(
"StandardHypoTestDemo",
"Model %s has no snapshot - make one using model poi", modelSBName);
234 double oldval = var->
getVal();
263 if (testStatType == 3)
267 if (enableDetOutput) {
277 AsymptoticCalculator::SetPrintLevel(printLevel);
283 else if (calcType == 1)
285 else if (calcType == 2)
298 if (testStatType == 3)
300 if (testStatType != 2 && testStatType != 3)
301 Warning(
"StandardHypoTestDemo",
302 "Only the PL test statistic can be used with AsymptoticCalculator - use by default a two-sided PL");
309 nuisPdf =
w->pdf(nuisPriorName);
312 Info(
"StandardHypoTestDemo",
313 "No nuisance pdf given for the HybridCalculator - try to deduce pdf from the model");
322 Info(
"StandardHypoTestDemo",
323 "No nuisance pdf given - try to use %s that is defined as a prior pdf in the B model",
326 Error(
"StandardHypoTestDemo",
"Cannot run Hybrid calculator because no prior on the nuisance parameter is "
327 "specified or can be derived");
332 Info(
"StandardHypoTestDemo",
"Using as nuisance Pdf ... ");
338 if (
np->getSize() == 0) {
339 Warning(
"StandardHypoTestDemo",
340 "Prior nuisance does not depend on nuisance parameters. They will be smeared in their full range");
352 if (sampler && (calcType == 0 || calcType == 1)) {
357 Warning(
"StandardHypoTestDemo",
"Pdf is extended: but number counting flag is set: ignore it ");
361 int nEvents =
data->numEntries();
362 Info(
"StandardHypoTestDemo",
363 "Pdf is not extended: number of events to generate taken from observed data set is %d", nEvents);
366 Info(
"StandardHypoTestDemo",
"using a number counting pdf");
371 if (
data->isWeighted() && !generateBinned) {
372 Info(
"StandardHypoTestDemo",
"Data set is weighted, nentries = %d and sum of weights = %8.1f but toy "
373 "generation is unbinned - it would be faster to set generateBinned to true\n",
374 data->numEntries(),
data->sumEntries());
386 if (testStatType == 0)
388 if (testStatType == 1)
390 if (testStatType == 2 || testStatType == 3)
406 plot->SetLogYaxis(
true);
409 std::cout <<
"Asymptotic results " << std::endl;
422 for (
int i = 0; i < 5; ++i) {
429 for (
int i = 0; i < 5; ++i) {
430 htExp.SetTestStatisticData(
q[i]);
432 std::cout <<
" Expected p -value and significance at " << sig <<
" sigma = " << htExp.NullPValue()
433 <<
" significance " << htExp.Significance() <<
" sigma " << std::endl;
437 for (
int i = 0; i < 5; ++i) {
441 std::cout <<
" Expected p -value and significance at " << sig <<
" sigma = " << pval <<
" significance "
447 bool writeResult = (calcType != 2);
449 if (enableDetOutput) {
451 Info(
"StandardHypoTestDemo",
"Detailed output will be written in output result file");
454 if (htr != NULL && writeResult) {
457 const char *calcTypeName = (calcType == 0) ?
"Freq" : (calcType == 1) ?
"Hybr" :
"Asym";
463 resultFileName +=
name;
465 TFile *fileOut =
new TFile(resultFileName,
"RECREATE");
467 Info(
"StandardHypoTestDemo",
"HypoTestResult has been written in the file %s", resultFileName.
Data());
void Info(const char *location, const char *msgfmt,...)
Use this function for informational messages.
void Error(const char *location, const char *msgfmt,...)
Use this function in case an error occurred.
void Warning(const char *location, const char *msgfmt,...)
Use this function in warning situations.
winID h TVirtualViewer3D TVirtualGLPainter p
winID h TVirtualViewer3D TVirtualGLPainter char TVirtualGLPainter plot
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void data
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char filename
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t np
R__EXTERN TSystem * gSystem
void Print(Option_t *options=nullptr) const override
Print the object to the defaultPrintStream().
RooFit::OwningPtr< RooArgSet > getObservables(const RooArgSet &set, bool valueOnly=true) const
Given a set of possible observables, return the observables that this PDF depends on.
Int_t getSize() const
Return the number of elements in the collection.
RooAbsArg * first() const
RooAbsData is the common abstract base class for binned and unbinned datasets.
bool canBeExtended() const
If true, PDF can provide extended likelihood term.
double getVal(const RooArgSet *normalisationSet=nullptr) const
Evaluate object.
RooArgSet is a container object that can hold multiple RooAbsArg objects.
RooRealVar represents a variable that can be changed from the outside.
void setVal(double value) override
Set value of variable to 'value'.
Hypothesis Test Calculator based on the asymptotic formulae for the profile likelihood ratio.
Does a frequentist hypothesis test.
Same purpose as HybridCalculatorOriginal, but different implementation.
Common base class for the Hypothesis Test Calculators.
HypoTestResult * GetHypoTest() const override
inherited methods from HypoTestCalculator interface
TestStatSampler * GetTestStatSampler(void) const
Returns instance of TestStatSampler.
This class provides the plots for the result of a study performed with any of the HypoTestCalculatorG...
HypoTestResult is a base class for results from hypothesis tests.
void Print(const Option_t *="") const override
Print out some information about the results Note: use Alt/Null labels for the hypotheses here as the...
void SetBackgroundAsAlt(bool l=true)
virtual double AlternatePValue() const
Return p-value for alternate hypothesis.
virtual double NullPValue() const
Return p-value for null hypothesis.
void SetPValueIsRightTail(bool pr)
SamplingDistribution * GetAltDistribution(void) const
ModelConfig is a simple class that holds configuration information specifying how a model should be u...
virtual void SetSnapshot(const RooArgSet &set)
Set parameter values for a particular hypothesis if using a common PDF by saving a snapshot in the wo...
ModelConfig * Clone(const char *name="") const override
clone
const RooArgSet * GetParametersOfInterest() const
get RooArgSet containing the parameter of interest (return nullptr if not existing)
const RooArgSet * GetNuisanceParameters() const
get RooArgSet containing the nuisance parameters (return nullptr if not existing)
const RooArgSet * GetObservables() const
get RooArgSet for observables (return nullptr if not existing)
const RooArgSet * GetSnapshot() const
get RooArgSet for parameters for a particular hypothesis (return nullptr if not existing)
RooAbsPdf * GetPdf() const
get model PDF (return nullptr if pdf has not been specified or does not exist)
RooAbsPdf * GetPriorPdf() const
get parameters prior pdf (return nullptr if not existing)
ProfileLikelihoodTestStat is an implementation of the TestStatistic interface that calculates the pro...
void SetPrintLevel(Int_t printlevel)
virtual void EnableDetailedOutput(bool e=true, bool withErrorsAndPulls=false)
void SetOneSidedDiscovery(bool flag=true)
Holds configuration options for proof and proof-lite.
TestStatistic that returns the ratio of profiled likelihoods.
void SetSubtractMLE(bool subtract)
virtual void EnableDetailedOutput(bool e=true)
This class simply holds a sampling distribution of some test statistic.
const std::vector< double > & GetSamplingDistribution() const
Get test statistics values.
TestStatistic class that returns -log(L[null] / L[alt]) where L is the likelihood.
virtual void EnableDetailedOutput(bool e=true)
void SetNullParameters(const RooArgSet &nullParameters)
void SetAltParameters(const RooArgSet &altParameters)
ToyMCSampler is an implementation of the TestStatSampler interface.
void SetProofConfig(ProofConfig *pc=nullptr)
calling with argument or nullptr deactivates proof
virtual void SetTestStatistic(TestStatistic *testStatistic, unsigned int i)
Set the TestStatistic (want the argument to be a function of the data & parameter points.
void SetGenerateBinned(bool binned=true)
control to use bin data generation (=> see RooFit::AllBinned() option)
virtual void SetNEventsPerToy(const Int_t nevents)
Forces the generation of exactly n events even for extended PDFs.
The RooWorkspace is a persistable container for RooFit projects.
A ROOT file is a suite of consecutive data records (TKey instances) with a well defined format.
static TFile * Open(const char *name, Option_t *option="", const char *ftitle="", Int_t compress=ROOT::RCompressionSetting::EDefaults::kUseCompiledDefault, Int_t netopt=0)
Create / open a file.
void Close(Option_t *option="") override
Close a file.
const char * GetName() const override
Returns name of object.
virtual void SetName(const char *name)
Set the name of the TNamed.
virtual Int_t Write(const char *name=nullptr, Int_t option=0, Int_t bufsize=0)
Write this object to the current directory.
virtual void Draw(Option_t *option="")
Default Draw method for all objects.
TString & Replace(Ssiz_t pos, Ssiz_t n, const char *s)
const char * Data() const
static TString Format(const char *fmt,...)
Static method which formats a string using a printf style format descriptor and return a TString.
virtual Bool_t AccessPathName(const char *path, EAccessMode mode=kFileExists)
Returns FALSE if one can access a file using the specified access mode.
double normal_cdf(double x, double sigma=1, double x0=0)
Cumulative distribution function of the normal (Gaussian) distribution (lower tail).
double normal_quantile_c(double z, double sigma)
Inverse ( ) of the cumulative distribution function of the upper tail of the normal (Gaussian) distri...
The namespace RooFit contains mostly switches that change the behaviour of functions of PDFs (or othe...
Namespace for the RooStats classes.
bool SetAllConstant(const RooAbsCollection &coll, bool constant=true)
utility function to set all variable constant in a collection (from G.
RooAbsPdf * MakeNuisancePdf(RooAbsPdf &pdf, const RooArgSet &observables, const char *name)
extract constraint terms from pdf
void Quantiles(Int_t n, Int_t nprob, Double_t *x, Double_t *quantiles, Double_t *prob, Bool_t isSorted=kTRUE, Int_t *index=nullptr, Int_t type=7)
Computes sample quantiles, corresponding to the given probabilities.