Logo ROOT  
Reference Guide
 
Loading...
Searching...
No Matches
MulticlassKeras.py
Go to the documentation of this file.
1#!/usr/bin/env python
2## \file
3## \ingroup tutorial_tmva_keras
4## \notebook -nodraw
5## This tutorial shows how to do multiclass classification in TMVA with neural
6## networks trained with keras.
7##
8## \macro_code
9##
10## \date 2017
11## \author TMVA Team
12
13from ROOT import TMVA, TFile, TTree, TCut, gROOT
14from os.path import isfile
15
16from tensorflow.keras.models import Sequential
17from tensorflow.keras.layers import Dense, Activation
18from tensorflow.keras.optimizers import SGD
19
20# Setup TMVA
23
24output = TFile.Open('TMVA.root', 'RECREATE')
25factory = TMVA.Factory('TMVAClassification', output,
26 '!V:!Silent:Color:DrawProgressBar:Transformations=D,G:AnalysisType=multiclass')
27
28# Load data
29if not isfile('tmva_example_multiple_background.root'):
30 createDataMacro = str(gROOT.GetTutorialDir()) + '/tmva/createData.C'
31 print(createDataMacro)
32 gROOT.ProcessLine('.L {}'.format(createDataMacro))
33 gROOT.ProcessLine('create_MultipleBackground(4000)')
34
35data = TFile.Open('tmva_example_multiple_background.root')
36signal = data.Get('TreeS')
37background0 = data.Get('TreeB0')
38background1 = data.Get('TreeB1')
39background2 = data.Get('TreeB2')
40
41dataloader = TMVA.DataLoader('dataset')
42for branch in signal.GetListOfBranches():
43 dataloader.AddVariable(branch.GetName())
44
45dataloader.AddTree(signal, 'Signal')
46dataloader.AddTree(background0, 'Background_0')
47dataloader.AddTree(background1, 'Background_1')
48dataloader.AddTree(background2, 'Background_2')
49dataloader.PrepareTrainingAndTestTree(TCut(''),
50 'SplitMode=Random:NormMode=NumEvents:!V')
51
52# Generate model
53
54# Define model
55model = Sequential()
56model.add(Dense(32, activation='relu', input_dim=4))
57model.add(Dense(4, activation='softmax'))
58
59# Set loss and optimizer
60model.compile(loss='categorical_crossentropy', optimizer=SGD(learning_rate=0.01), weighted_metrics=['accuracy',])
61
62# Store model to file
63model.save('modelMultiClass.h5')
64model.summary()
65
66# Book methods
67factory.BookMethod(dataloader, TMVA.Types.kFisher, 'Fisher',
68 '!H:!V:Fisher:VarTransform=D,G')
69factory.BookMethod(dataloader, TMVA.Types.kPyKeras, 'PyKeras',
70 'H:!V:VarTransform=D,G:FilenameModel=modelMultiClass.h5:FilenameTrainedModel=trainedModelMultiClass.h5:NumEpochs=20:BatchSize=32')
71
72# Run TMVA
73factory.TrainAllMethods()
74factory.TestAllMethods()
75factory.EvaluateAllMethods()
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t Atom_t Time_t format
A specialized string object used for TTree selections.
Definition TCut.h:25
static TFile * Open(const char *name, Option_t *option="", const char *ftitle="", Int_t compress=ROOT::RCompressionSetting::EDefaults::kUseCompiledDefault, Int_t netopt=0)
Create / open a file.
Definition TFile.cxx:4075
This is the main MVA steering class.
Definition Factory.h:80
static void PyInitialize()
Initialize Python interpreter.
static Tools & Instance()
Definition Tools.cxx:71