The Multi Variate Analysis package.
The TMVA Multi-Variate-Analysis classes.
See:
| Classes | |
| class | TMVA::AbsoluteDeviationLossFunction | 
| Absolute Deviation Loss Function.  More... | |
| class | TMVA::AbsoluteDeviationLossFunctionBDT | 
| Absolute Deviation BDT Loss Function.  More... | |
| class | TMVA::BDTEventWrapper | 
| class | TMVA::BinarySearchTree | 
| A simple Binary search tree including a volume search method.  More... | |
| class | TMVA::BinarySearchTreeNode | 
| Node for the BinarySearch or Decision Trees.  More... | |
| class | TMVA::BinaryTree | 
| Base class for BinarySearch and Decision Trees.  More... | |
| class | TMVA::CCPruner | 
| A helper class to prune a decision tree using the Cost Complexity method (see Classification and Regression Trees by Leo Breiman et al)  More... | |
| class | TMVA::CCTreeWrapper | 
| class | Classification | 
| Class to perform two class classification.  More... | |
| class | ClassificationResult | 
| Class to save the results of the classifier.  More... | |
| class | TMVA::ClassifierFactory | 
| This is the MVA factory.  More... | |
| class | TMVA::ClassInfo | 
| Class that contains all the information of a class.  More... | |
| class | TMVA::Config | 
| Singleton class for global configuration settings used by TMVA.  More... | |
| class | TMVA::ConvergenceTest | 
| Check for convergence.  More... | |
| class | TMVA::CostComplexityPruneTool | 
| A class to prune a decision tree using the Cost Complexity method.  More... | |
| class | CreateMethodPlugins | 
| Plugins analysis.  More... | |
| class | TMVA::CrossEntropy | 
| Implementation of the CrossEntropy as separation criterion.  More... | |
| class | TMVA::CrossValidation | 
| Class to perform cross validation, splitting the dataloader into folds.  More... | |
| class | TMVA::CrossValidationResult | 
| Class to save the results of cross validation, the metric for the classification ins ROC and you can ROC curves ROC integrals, ROC average and ROC standard deviation.  More... | |
| class | TMVA::DataInputHandler | 
| Class that contains all the data information.  More... | |
| class | TMVA::DataLoader | 
| class | TMVA::DataSet | 
| Class that contains all the data information.  More... | |
| class | TMVA::DataSetFactory | 
| Class that contains all the data information.  More... | |
| class | TMVA::DataSetInfo | 
| Class that contains all the data information.  More... | |
| class | TMVA::DataSetManager | 
| Class that contains all the data information.  More... | |
| class | TMVA::DecisionTree | 
| Implementation of a Decision Tree.  More... | |
| class | TMVA::Envelope | 
| Abstract base class for all high level ml algorithms, you can book ml methods like BDT, MLP.  More... | |
| class | TMVA::Event | 
| class | TMVA::ExpectedErrorPruneTool | 
| A helper class to prune a decision tree using the expected error (C4.5) method.  More... | |
| class | TMVA::Factory | 
| This is the main MVA steering class.  More... | |
| class | TMVA::FitterBase | 
| Base class for TMVA fitters.  More... | |
| class | TMVA::GeneticAlgorithm | 
| Base definition for genetic algorithm.  More... | |
| class | TMVA::GeneticFitter | 
| Fitter using a Genetic Algorithm.  More... | |
| class | TMVA::GeneticGenes | 
| Cut optimisation interface class for genetic algorithm.  More... | |
| class | TMVA::GeneticPopulation | 
| Population definition for genetic algorithm.  More... | |
| class | TMVA::GeneticRange | 
| Range definition for genetic algorithm.  More... | |
| class | TMVA::GiniIndex | 
| Implementation of the GiniIndex as separation criterion.  More... | |
| class | TMVA::GiniIndexWithLaplace | 
| Implementation of the GiniIndex With Laplace correction as separation criterion.  More... | |
| class | TMVA::HuberLossFunction | 
| Huber Loss Function.  More... | |
| class | TMVA::HuberLossFunctionBDT | 
| Huber BDT Loss Function.  More... | |
| class | TMVA::HyperParameterOptimisation | 
| class | TMVA::HyperParameterOptimisationResult | 
| class | TMVA::IFitterTarget | 
| Interface for a fitter 'target'.  More... | |
| class | TMVA::IMethod | 
| Interface for all concrete MVA method implementations.  More... | |
| class | TMVA::Interval | 
| The TMVA::Interval Class.  More... | |
| class | TMVA::IPruneTool | 
| IPruneTool - a helper interface class to prune a decision tree.  More... | |
| class | TMVA::IPythonInteractive | 
| This class is needed by JsMVA, and it's a helper class for tracking errors during the training in Jupyter notebook.  More... | |
| class | TMVA::KDEKernel | 
| KDE Kernel for "smoothing" the PDFs.  More... | |
| class | kNN | 
| kNN::Event describes point in input variable vector-space, with additional functionality like distance between points  More... | |
| class | TMVA::LDA | 
| class | TMVA::LeastSquaresLossFunction | 
| Least Squares Loss Function.  More... | |
| class | TMVA::LeastSquaresLossFunctionBDT | 
| Least Squares BDT Loss Function.  More... | |
| class | TMVA::LogInterval | 
| The TMVA::Interval Class.  More... | |
| class | TMVA::MCFitter | 
| Fitter using Monte Carlo sampling of parameters.  More... | |
| class | TMVA::MethodANNBase | 
| Base class for all TMVA methods using artificial neural networks.  More... | |
| class | TMVA::MethodBase | 
| Virtual base Class for all MVA method.  More... | |
| class | TMVA::MethodBayesClassifier | 
| Description of bayesian classifiers.  More... | |
| class | TMVA::MethodBDT | 
| Analysis of Boosted Decision Trees.  More... | |
| class | TMVA::MethodBoost | 
| Class for boosting a TMVA method.  More... | |
| class | TMVA::MethodCategory | 
| Class for categorizing the phase space.  More... | |
| class | TMVA::MethodCFMlpANN | 
| Interface to Clermond-Ferrand artificial neural network.  More... | |
| class | TMVA::MethodCFMlpANN_Utils | 
| Implementation of Clermond-Ferrand artificial neural network.  More... | |
| class | TMVA::MethodCompositeBase | 
| Virtual base class for combining several TMVA method.  More... | |
| class | TMVA::MethodCrossValidation | 
| class | TMVA::MethodCuts | 
| Multivariate optimisation of signal efficiency for given background efficiency, applying rectangular minimum and maximum requirements.  More... | |
| class | TMVA::MethodDNN | 
| Deep Neural Network Implementation.  More... | |
| class | TMVA::MethodDT | 
| Analysis of Boosted Decision Trees.  More... | |
| class | TMVA::MethodFDA | 
| Function discriminant analysis (FDA).  More... | |
| class | TMVA::MethodFisher | 
| Fisher and Mahalanobis Discriminants (Linear Discriminant Analysis)  More... | |
| class | TMVA::MethodHMatrix | 
| H-Matrix method, which is implemented as a simple comparison of chi-squared estimators for signal and background, taking into account the linear correlations between the input variables.  More... | |
| class | TMVA::MethodKNN | 
| Analysis of k-nearest neighbor.  More... | |
| class | TMVA::MethodLD | 
| Linear Discriminant.  More... | |
| class | TMVA::MethodLikelihood | 
| Likelihood analysis ("non-parametric approach")  More... | |
| class | TMVA::MethodMLP | 
| Multilayer Perceptron class built off of MethodANNBase.  More... | |
| class | TMVA::MethodPDEFoam | 
| The PDEFoam method is an extension of the PDERS method, which divides the multi-dimensional phase space in a finite number of hyper-rectangles (cells) of constant event density.  More... | |
| class | TMVA::MethodPDERS | 
| This is a generalization of the above Likelihood methods to \( N_{var} \) dimensions, where \( N_{var} \) is the number of input variables used in the MVA.  More... | |
| class | TMVA::MethodRuleFit | 
| J Friedman's RuleFit method.  More... | |
| class | TMVA::MethodSVM | 
| SMO Platt's SVM classifier with Keerthi & Shavade improvements.  More... | |
| class | TMVA::MethodTMlpANN | 
| This is the TMVA TMultiLayerPerceptron interface class.  More... | |
| class | TMVA::MinuitFitter | 
| /Fitter using MINUIT  More... | |
| class | TMVA::MinuitWrapper | 
| Wrapper around MINUIT.  More... | |
| class | TMVA::MisClassificationError | 
| Implementation of the MisClassificationError as separation criterion.  More... | |
| class | TMVA::MsgLogger | 
| ostringstream derivative to redirect and format output  More... | |
| class | TMVA::kNN::Node< T > | 
| This file contains binary tree and global function template that searches tree for k-nearest neigbors.  More... | |
| class | TMVA::Node | 
| Node for the BinarySearch or Decision Trees.  More... | |
| class | TMVA::OptimizeConfigParameters | 
| class | TMVA::OptionBase | 
| Class for TMVA-option handling.  More... | |
| class | TMVA::OptionMap | 
| class to storage options for the differents methods  More... | |
| class | TMVA::PDEFoam | 
| Implementation of PDEFoam.  More... | |
| class | TMVA::PDEFoamCell | 
| class | TMVA::PDEFoamDecisionTree | 
| This PDEFoam variant acts like a decision tree and stores in every cell the discriminant.  More... | |
| class | TMVA::PDEFoamDecisionTreeDensity | 
| This is a concrete implementation of PDEFoam.  More... | |
| class | TMVA::PDEFoamDensityBase | 
| This is an abstract class, which provides an interface for a PDEFoam density estimator.  More... | |
| class | TMVA::PDEFoamDiscriminant | 
| This PDEFoam variant stores in every cell the discriminant.  More... | |
| class | TMVA::PDEFoamDiscriminantDensity | 
| This is a concrete implementation of PDEFoam.  More... | |
| class | TMVA::PDEFoamEvent | 
| This PDEFoam variant stores in every cell the sum of event weights and the sum of the squared event weights.  More... | |
| class | TMVA::PDEFoamEventDensity | 
| This is a concrete implementation of PDEFoam.  More... | |
| class | TMVA::PDEFoamKernelBase | 
| This class is the abstract kernel interface for PDEFoam.  More... | |
| class | TMVA::PDEFoamKernelGauss | 
| This PDEFoam kernel estimates a cell value for a given event by weighting all cell values with a gauss function.  More... | |
| class | TMVA::PDEFoamKernelLinN | 
| This PDEFoam kernel estimates a cell value for a given event by weighting with cell values of the nearest neighbor cells.  More... | |
| class | TMVA::PDEFoamKernelTrivial | 
| This class is a trivial PDEFoam kernel estimator.  More... | |
| class | TMVA::PDEFoamMultiTarget | 
| This PDEFoam variant is used to estimate multiple targets by creating an event density foam (PDEFoamEvent), which has dimension:  More... | |
| class | TMVA::PDEFoamTarget | 
| This PDEFoam variant stores in every cell the average target fTarget (see the Constructor) as well as the statistical error on the target fTarget.  More... | |
| class | TMVA::PDEFoamTargetDensity | 
| This is a concrete implementation of PDEFoam.  More... | |
| class | TMVA::PDEFoamVect | 
| class | TMVA::PDF | 
| PDF wrapper for histograms; uses user-defined spline interpolation.  More... | |
| class | TMVA::QuickMVAProbEstimator | 
| class | TMVA::Ranking | 
| Ranking for variables in method (implementation)  More... | |
| class | TMVA::Reader | 
| The Reader class serves to use the MVAs in a specific analysis context.  More... | |
| class | TMVA::RegressionVariance | 
| Calculate the "SeparationGain" for Regression analysis separation criteria used in various training algorithms.  More... | |
| class | TMVA::Results | 
| Class that is the base-class for a vector of result.  More... | |
| class | TMVA::ResultsClassification | 
| Class that is the base-class for a vector of result.  More... | |
| class | TMVA::ResultsMulticlass | 
| Class which takes the results of a multiclass classification.  More... | |
| class | TMVA::ResultsRegression | 
| Class that is the base-class for a vector of result.  More... | |
| class | TMVA::ROCCalc | 
| class | TMVA::ROCCurve | 
| class | TMVA::RootFinder | 
| Root finding using Brents algorithm (translated from CERNLIB function RZERO)  More... | |
| class | TMVA::Rule | 
| Implementation of a rule.  More... | |
| class | TMVA::RuleCut | 
| A class describing a 'rule cut'.  More... | |
| class | TMVA::RuleEnsemble | 
| class | TMVA::RuleFit | 
| A class implementing various fits of rule ensembles.  More... | |
| class | TMVA::RuleFitAPI | 
| J Friedman's RuleFit method.  More... | |
| class | TMVA::RuleFitParams | 
| A class doing the actual fitting of a linear model using rules as base functions.  More... | |
| class | TMVA::SdivSqrtSplusB | 
| Implementation of the SdivSqrtSplusB as separation criterion.  More... | |
| class | TMVA::SeparationBase | 
| An interface to calculate the "SeparationGain" for different separation criteria used in various training algorithms.  More... | |
| class | TMVA::SimulatedAnnealing | 
| Base implementation of simulated annealing fitting procedure.  More... | |
| class | TMVA::SimulatedAnnealingFitter | 
| Fitter using a Simulated Annealing Algorithm.  More... | |
| class | TMVA::SVEvent | 
| Event class for Support Vector Machine.  More... | |
| class | TMVA::SVKernelFunction | 
| Kernel for Support Vector Machine.  More... | |
| class | TMVA::SVKernelMatrix | 
| Kernel matrix for Support Vector Machine.  More... | |
| class | TMVA::SVWorkingSet | 
| Working class for Support Vector Machine.  More... | |
| class | TMVA::TActivation | 
| Interface for TNeuron activation function classes.  More... | |
| class | TMVA::TActivationChooser | 
| Class for easily choosing activation functions.  More... | |
| class | TMVA::TActivationIdentity | 
| Identity activation function for TNeuron.  More... | |
| class | TMVA::TActivationRadial | 
| Radial basis activation function for ANN.  More... | |
| class | TMVA::TActivationReLU | 
| Rectified Linear Unit activation function for TNeuron.  More... | |
| class | TMVA::TActivationSigmoid | 
| Sigmoid activation function for TNeuron.  More... | |
| class | TMVA::TActivationTanh | 
| Tanh activation function for ANN.  More... | |
| class | TMVA::Timer | 
| Timing information for training and evaluation of MVA methods.  More... | |
| class | TMVA | 
| Base Class for all classes that need option parsing.  More... | |
| class | TMVA::TNeuron | 
| Neuron class used by TMVA artificial neural network methods.  More... | |
| class | TMVA::TNeuronInput | 
| Interface for TNeuron input calculation classes.  More... | |
| class | TMVA::TNeuronInputAbs | 
| TNeuron input calculator – calculates the sum of the absolute values of the weighted inputs.  More... | |
| class | TMVA::TNeuronInputChooser | 
| Class for easily choosing neuron input functions.  More... | |
| class | TMVA::TNeuronInputSqSum | 
| TNeuron input calculator – calculates the squared weighted sum of inputs.  More... | |
| class | TMVA::TNeuronInputSum | 
| TNeuron input calculator – calculates the weighted sum of inputs.  More... | |
| class | TMVA::Tools | 
| Global auxiliary applications and data treatment routines.  More... | |
| class | TMVA::TrainingHistory | 
| Tracking data from training.  More... | |
| class | TMVA::TransformationHandler | 
| Class that contains all the data information.  More... | |
| class | TMVA::TSpline1 | 
| Linear interpolation of TGraph.  More... | |
| class | TMVA::TSpline2 | 
| Quadratic interpolation of TGraph.  More... | |
| class | TMVA::TSynapse | 
| Synapse class used by TMVA artificial neural network methods.  More... | |
| class | TMVA::Types | 
| Singleton class for Global types used by TMVA.  More... | |
| class | TMVA::VariableDecorrTransform | 
| Linear interpolation class.  More... | |
| class | TMVA::VariableGaussTransform | 
| Gaussian Transformation of input variables.  More... | |
| class | TMVA::VariableIdentityTransform | 
| Linear interpolation class.  More... | |
| class | TMVA::VariableImportance | 
| class | TMVA::VariableImportanceResult | 
| class | TMVA::VariableInfo | 
| Class for type info of MVA input variable.  More... | |
| class | TMVA::VariableNormalizeTransform | 
| Linear interpolation class.  More... | |
| class | TMVA::VariablePCATransform | 
| Linear interpolation class.  More... | |
| class | TMVA::VariableRearrangeTransform | 
| Rearrangement of input variables.  More... | |
| class | TMVA::VariableTransformBase | 
| Linear interpolation class.  More... | |
| class | TMVA::Volume | 
| Volume for BinarySearchTree.  More... | |