Logo ROOT  
Reference Guide
 
Loading...
Searching...
No Matches
ApplicationRegressionPyTorch.py
Go to the documentation of this file.
1#!/usr/bin/env python
2## \file
3## \ingroup tutorial_tmva_pytorch
4## \notebook -nodraw
5## This tutorial shows how to apply a trained model to new data (regression).
6##
7## \macro_code
8##
9## \date 2020
10## \author Anirudh Dagar <anirudhdagar6@gmail.com> - IIT, Roorkee
11
12
13# PyTorch has to be imported before ROOT to avoid crashes because of clashing
14# std::regexp symbols that are exported by cppyy.
15# See also: https://github.com/wlav/cppyy/issues/227
16import torch
17
18from ROOT import TMVA, TFile, TString
19from array import array
20from subprocess import call
21from os.path import isfile
22
23
24# Setup TMVA
27reader = TMVA.Reader("Color:!Silent")
28
29
30# Load data
31if not isfile('tmva_reg_example.root'):
32 call(['curl', '-L', '-O', 'http://root.cern.ch/files/tmva_reg_example.root'])
33
34data = TFile.Open('tmva_reg_example.root')
35tree = data.Get('TreeR')
36
37branches = {}
38for branch in tree.GetListOfBranches():
39 branchName = branch.GetName()
40 branches[branchName] = array('f', [-999])
41 tree.SetBranchAddress(branchName, branches[branchName])
42 if branchName != 'fvalue':
43 reader.AddVariable(branchName, branches[branchName])
44
45
46# Book methods
47reader.BookMVA('PyTorch', TString('dataset/weights/TMVARegression_PyTorch.weights.xml'))
48
49
50# Define predict function
51def predict(model, test_X, batch_size=32):
52 # Set to eval mode
54
55 test_dataset = torch.utils.data.TensorDataset(torch.Tensor(test_X))
56 test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
57
58 predictions = []
59 with torch.no_grad():
60 for i, data in enumerate(test_loader):
61 X = data[0]
62 outputs = model(X)
63 predictions.append(outputs)
64 preds = torch.cat(predictions)
65
66 return preds.numpy()
67
68load_model_custom_objects = {"optimizer": None, "criterion": None, "train_func": None, "predict_func": predict}
69
70
71# Print some example regressions
72print('Some example regressions:')
73for i in range(20):
75 print('True/MVA value: {}/{}'.format(branches['fvalue'][0],reader.EvaluateMVA('PyTorch')))
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t Atom_t Time_t format
The Reader class serves to use the MVAs in a specific analysis context.
Definition Reader.h:64
Basic string class.
Definition TString.h:139