20from ROOT
import TMVA, TFile, TTree, TCut
21from subprocess
import call
22from os.path
import isfile
31 '!V:!Silent:Color:DrawProgressBar:Transformations=D,G:AnalysisType=Classification')
35if not isfile(
'tmva_class_example.root'):
36 call([
'curl',
'-L',
'-O',
'http://root.cern.ch/files/tmva_class_example.root'])
39signal = data.Get(
'TreeS')
40background = data.Get(
'TreeB')
43for branch
in signal.GetListOfBranches():
44 dataloader.AddVariable(branch.GetName())
46dataloader.AddSignalTree(signal, 1.0)
47dataloader.AddBackgroundTree(background, 1.0)
48dataloader.PrepareTrainingAndTestTree(
TCut(
''),
49 'nTrain_Signal=4000:nTrain_Background=4000:SplitMode=Random:NormMode=NumEvents:!V')
55model = nn.Sequential()
56model.add_module(
'linear_1', nn.Linear(in_features=4, out_features=64))
57model.add_module(
'relu', nn.ReLU())
58model.add_module(
'linear_2', nn.Linear(in_features=64, out_features=2))
59model.add_module(
'softmax', nn.Softmax(dim=1))
63loss = torch.nn.MSELoss()
64optimizer = torch.optim.SGD
68def train(model, train_loader, val_loader, num_epochs, batch_size, optimizer, criterion, save_best, scheduler):
69 trainer = optimizer(model.parameters(), lr=0.01)
70 schedule, schedulerSteps = scheduler
73 for epoch
in range(num_epochs):
77 running_train_loss = 0.0
78 running_val_loss = 0.0
79 for i, (X, y)
in enumerate(train_loader):
82 train_loss = criterion(output, y)
87 running_train_loss += train_loss.item()
89 print(
"[{}, {}] train loss: {:.3f}".
format(epoch+1, i+1, running_train_loss / 32))
90 running_train_loss = 0.0
93 schedule(optimizer, epoch, schedulerSteps)
99 for i, (X, y)
in enumerate(val_loader):
101 val_loss = criterion(output, y)
102 running_val_loss += val_loss.item()
104 curr_val = running_val_loss /
len(val_loader)
108 best_val = save_best(model, curr_val, best_val)
111 print(
"[{}] val loss: {:.3f}".
format(epoch+1, curr_val))
112 running_val_loss = 0.0
114 print(
"Finished Training on {} Epochs!".
format(epoch+1))
120def predict(model, test_X, batch_size=32):
124 test_dataset = torch.utils.data.TensorDataset(torch.Tensor(test_X))
125 test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size, shuffle=
False)
128 with torch.no_grad():
129 for i, data
in enumerate(test_loader):
132 predictions.append(outputs)
133 preds = torch.cat(predictions)
138load_model_custom_objects = {
"optimizer": optimizer,
"criterion": loss,
"train_func": train,
"predict_func": predict}
143m = torch.jit.script(model)
144torch.jit.save(m,
"modelClassification.pt")
149factory.BookMethod(dataloader, TMVA.Types.kFisher,
'Fisher',
150 '!H:!V:Fisher:VarTransform=D,G')
151factory.BookMethod(dataloader, TMVA.Types.kPyTorch,
'PyTorch',
152 'H:!V:VarTransform=D,G:FilenameModel=modelClassification.pt:FilenameTrainedModel=trainedModelClassification.pt:NumEpochs=20:BatchSize=32')
156factory.TrainAllMethods()
157factory.TestAllMethods()
158factory.EvaluateAllMethods()
162roc = factory.GetROCCurve(dataloader)
163roc.SaveAs(
'ROC_ClassificationPyTorch.png')
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t Atom_t Time_t UChar_t len
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t Atom_t Time_t format
A specialized string object used for TTree selections.
static TFile * Open(const char *name, Option_t *option="", const char *ftitle="", Int_t compress=ROOT::RCompressionSetting::EDefaults::kUseCompiledDefault, Int_t netopt=0)
Create / open a file.
This is the main MVA steering class.
static void PyInitialize()
Initialize Python interpreter.