23nodes_hidden_layer = 64
30model.add(
Dense(nodes_hidden_layer, activation=
'relu', kernel_regularizer=
l2(l2_val), input_dim=num_input_nodes))
34for k
in range(num_hidden_layers-1):
35 model.add(
Dense(nodes_hidden_layer, activation=
'relu', kernel_regularizer=
l2(l2_val)))
48model.compile(loss=
'categorical_crossentropy', optimizer=
SGD(learning_rate=0.01), weighted_metrics=[
'accuracy',])
61 plot_model(model, to_file=
'model.png', show_shapes=
True)
63 print(
'[INFO] Failed to make model plot')
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.