Logo ROOT  
Reference Guide
 
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Modules Pages
Loading...
Searching...
No Matches
latex4.C
Go to the documentation of this file.
1/// \file
2/// \ingroup tutorial_graphics
3/// \notebook
4/// Draw the Greek letters as a table and save the result as GIF, PS, PDF
5/// and SVG files.
6/// Lowercase Greek letters are obtained by adding a # to the name of the letter.
7/// For an uppercase Greek letter, just capitalize the first letter of the
8/// command name. Some letter have two representations. The name of the
9/// second one (the "variation") starts with "var".
10///
11/// ### png output:
12/// \macro_image
13///
14/// ### pdf output:
15/// \macro_image (greek.pdf)
16///
17/// ### svg output:
18/// \macro_image (greek.svg)
19///
20/// \author Rene Brun
21
22void latex4() {
23 auto c1 = new TCanvas("greek","greek",600,700);
24
25 TLatex l;
26 l.SetTextSize(0.03);
27
28 // Draw the columns titles
29 l.SetTextAlign(22);
30 l.DrawLatex(0.165, 0.95, "Lower case");
31 l.DrawLatex(0.495, 0.95, "Upper case");
32 l.DrawLatex(0.825, 0.95, "Variations");
33
34 // Draw the lower case letters
35 l.SetTextAlign(12);
36 float y, x1, x2;
37 y = 0.90; x1 = 0.07; x2 = x1+0.2;
38 l.DrawLatex(x1, y, "alpha : ") ; l.DrawLatex(x2, y, "#alpha");
39 y -= 0.0375 ; l.DrawLatex(x1, y, "beta : ") ; l.DrawLatex(x2, y, "#beta");
40 y -= 0.0375 ; l.DrawLatex(x1, y, "gamma : ") ; l.DrawLatex(x2, y, "#gamma");
41 y -= 0.0375 ; l.DrawLatex(x1, y, "delta : ") ; l.DrawLatex(x2, y, "#delta");
42 y -= 0.0375 ; l.DrawLatex(x1, y, "epsilon : ") ; l.DrawLatex(x2, y, "#epsilon");
43 y -= 0.0375 ; l.DrawLatex(x1, y, "zeta : ") ; l.DrawLatex(x2, y, "#zeta");
44 y -= 0.0375 ; l.DrawLatex(x1, y, "eta : ") ; l.DrawLatex(x2, y, "#eta");
45 y -= 0.0375 ; l.DrawLatex(x1, y, "theta : ") ; l.DrawLatex(x2, y, "#theta");
46 y -= 0.0375 ; l.DrawLatex(x1, y, "iota : ") ; l.DrawLatex(x2, y, "#iota");
47 y -= 0.0375 ; l.DrawLatex(x1, y, "kappa : ") ; l.DrawLatex(x2, y, "#kappa");
48 y -= 0.0375 ; l.DrawLatex(x1, y, "lambda : ") ; l.DrawLatex(x2, y, "#lambda");
49 y -= 0.0375 ; l.DrawLatex(x1, y, "mu : ") ; l.DrawLatex(x2, y, "#mu");
50 y -= 0.0375 ; l.DrawLatex(x1, y, "nu : ") ; l.DrawLatex(x2, y, "#nu");
51 y -= 0.0375 ; l.DrawLatex(x1, y, "xi : ") ; l.DrawLatex(x2, y, "#xi");
52 y -= 0.0375 ; l.DrawLatex(x1, y, "omicron : ") ; l.DrawLatex(x2, y, "#omicron");
53 y -= 0.0375 ; l.DrawLatex(x1, y, "pi : ") ; l.DrawLatex(x2, y, "#pi");
54 y -= 0.0375 ; l.DrawLatex(x1, y, "rho : ") ; l.DrawLatex(x2, y, "#rho");
55 y -= 0.0375 ; l.DrawLatex(x1, y, "sigma : ") ; l.DrawLatex(x2, y, "#sigma");
56 y -= 0.0375 ; l.DrawLatex(x1, y, "tau : ") ; l.DrawLatex(x2, y, "#tau");
57 y -= 0.0375 ; l.DrawLatex(x1, y, "upsilon : ") ; l.DrawLatex(x2, y, "#upsilon");
58 y -= 0.0375 ; l.DrawLatex(x1, y, "phi : ") ; l.DrawLatex(x2, y, "#phi");
59 y -= 0.0375 ; l.DrawLatex(x1, y, "chi : ") ; l.DrawLatex(x2, y, "#chi");
60 y -= 0.0375 ; l.DrawLatex(x1, y, "psi : ") ; l.DrawLatex(x2, y, "#psi");
61 y -= 0.0375 ; l.DrawLatex(x1, y, "omega : ") ; l.DrawLatex(x2, y, "#omega");
62
63 // Draw the upper case letters
64 y = 0.90; x1 = 0.40; x2 = x1+0.2;
65 l.DrawLatex(x1, y, "Alpha : ") ; l.DrawLatex(x2, y, "#Alpha");
66 y -= 0.0375 ; l.DrawLatex(x1, y, "Beta : ") ; l.DrawLatex(x2, y, "#Beta");
67 y -= 0.0375 ; l.DrawLatex(x1, y, "Gamma : ") ; l.DrawLatex(x2, y, "#Gamma");
68 y -= 0.0375 ; l.DrawLatex(x1, y, "Delta : ") ; l.DrawLatex(x2, y, "#Delta");
69 y -= 0.0375 ; l.DrawLatex(x1, y, "Epsilon : ") ; l.DrawLatex(x2, y, "#Epsilon");
70 y -= 0.0375 ; l.DrawLatex(x1, y, "Zeta : ") ; l.DrawLatex(x2, y, "#Zeta");
71 y -= 0.0375 ; l.DrawLatex(x1, y, "Eta : ") ; l.DrawLatex(x2, y, "#Eta");
72 y -= 0.0375 ; l.DrawLatex(x1, y, "Theta : ") ; l.DrawLatex(x2, y, "#Theta");
73 y -= 0.0375 ; l.DrawLatex(x1, y, "Iota : ") ; l.DrawLatex(x2, y, "#Iota");
74 y -= 0.0375 ; l.DrawLatex(x1, y, "Kappa : ") ; l.DrawLatex(x2, y, "#Kappa");
75 y -= 0.0375 ; l.DrawLatex(x1, y, "Lambda : ") ; l.DrawLatex(x2, y, "#Lambda");
76 y -= 0.0375 ; l.DrawLatex(x1, y, "Mu : ") ; l.DrawLatex(x2, y, "#Mu");
77 y -= 0.0375 ; l.DrawLatex(x1, y, "Nu : ") ; l.DrawLatex(x2, y, "#Nu");
78 y -= 0.0375 ; l.DrawLatex(x1, y, "Xi : ") ; l.DrawLatex(x2, y, "#Xi");
79 y -= 0.0375 ; l.DrawLatex(x1, y, "Omicron : ") ; l.DrawLatex(x2, y, "#Omicron");
80 y -= 0.0375 ; l.DrawLatex(x1, y, "Pi : ") ; l.DrawLatex(x2, y, "#Pi");
81 y -= 0.0375 ; l.DrawLatex(x1, y, "Rho : ") ; l.DrawLatex(x2, y, "#Rho");
82 y -= 0.0375 ; l.DrawLatex(x1, y, "Sigma : ") ; l.DrawLatex(x2, y, "#Sigma");
83 y -= 0.0375 ; l.DrawLatex(x1, y, "Tau : ") ; l.DrawLatex(x2, y, "#Tau");
84 y -= 0.0375 ; l.DrawLatex(x1, y, "Upsilon : ") ; l.DrawLatex(x2, y, "#Upsilon");
85 y -= 0.0375 ; l.DrawLatex(x1, y, "Phi : ") ; l.DrawLatex(x2, y, "#Phi");
86 y -= 0.0375 ; l.DrawLatex(x1, y, "Chi : ") ; l.DrawLatex(x2, y, "#Chi");
87 y -= 0.0375 ; l.DrawLatex(x1, y, "Psi : ") ; l.DrawLatex(x2, y, "#Psi");
88 y -= 0.0375 ; l.DrawLatex(x1, y, "Omega : ") ; l.DrawLatex(x2, y, "#Omega");
89
90 // Draw the variations
91 x1 = 0.73; x2 = x1+0.2;
92 y = 0.7500 ; l.DrawLatex(x1, y, "varepsilon : ") ; l.DrawLatex(x2, y, "#varepsilon");
93 y = 0.6375 ; l.DrawLatex(x1, y, "vartheta : ") ; l.DrawLatex(x2, y, "#vartheta");
94 y = 0.2625 ; l.DrawLatex(x1, y, "varsigma : ") ; l.DrawLatex(x2, y, "#varsigma");
95 y = 0.1875 ; l.DrawLatex(x1, y, "varUpsilon : ") ; l.DrawLatex(x2, y, "#varUpsilon");
96 y = 0.1500 ; l.DrawLatex(x1, y, "varphi : ") ; l.DrawLatex(x2, y, "#varphi");
97 y = 0.0375 ; l.DrawLatex(x1, y, "varomega : ") ; l.DrawLatex(x2, y, "#varomega");
98
99 // Save the picture in various formats
100 c1->Print("greek.ps");
101 c1->Print("greek.png");
102 c1->Print("greek.pdf");
103 c1->Print("greek.svg");
104}
Option_t Option_t TPoint TPoint const char x2
Option_t Option_t TPoint TPoint const char x1
The Canvas class.
Definition TCanvas.h:23
To draw Mathematical Formula.
Definition TLatex.h:18
void Print(Option_t *option="") const override
Dump this line with its attributes.
Definition TLine.cxx:419
Double_t y[n]
Definition legend1.C:17
return c1
Definition legend1.C:41
TLine l
Definition textangle.C:4