27#ifndef TMVA_DNN_RMSPROP
28#define TMVA_DNN_RMSPROP
43template <
typename Architecture_t,
typename Layer_t = VGeneralLayer<Architecture_t>,
44 typename DeepNet_t = TDeepNet<Architecture_t, Layer_t>>
47 using Matrix_t =
typename Architecture_t::Matrix_t;
48 using Scalar_t =
typename Architecture_t::Scalar_t;
54 std::vector<std::vector<Matrix_t>>
56 std::vector<std::vector<Matrix_t>>
61 std::vector<std::vector<Matrix_t>>
63 std::vector<std::vector<Matrix_t>>
65 std::vector<std::vector<Matrix_t>>
67 std::vector<std::vector<Matrix_t>>
106template <
typename Architecture_t,
typename Layer_t,
typename DeepNet_t>
112 std::vector<Layer_t *> &layers =
deepNet.GetLayers();
127 Architecture_t::CreateWeightTensors(
fWeightUpdates[i], layers[i]->GetWeights());
137 Architecture_t::CreateWeightTensors(
fBiasUpdates[i], layers[i]->GetBiases());
144 Architecture_t::CreateWeightTensors(
fWorkBiasTensor1[i], layers[i]->GetBiases());
146 Architecture_t::CreateWeightTensors(
fWorkBiasTensor2[i], layers[i]->GetBiases());
151template <
typename Architecture_t,
typename Layer_t,
typename DeepNet_t>
175 auto &dummy = fWorkWeightTensor2[
layerIndex][k];
177 Architecture_t::ConstAdd(dummy, this->GetEpsilon());
178 Architecture_t::SqrtElementWise(dummy);
179 Architecture_t::ReciprocalElementWise(dummy);
183 Architecture_t::ScaleAdd(
accumulation, dummy, this->GetLearningRate());
189 for (
size_t i = 0; i < weights.size(); i++) {
195template <
typename Architecture_t,
typename Layer_t,
typename DeepNet_t>
218 auto &dummy = fWorkBiasTensor2[
layerIndex][k];
221 Architecture_t::ConstAdd(dummy, this->GetEpsilon());
222 Architecture_t::SqrtElementWise(dummy);
223 Architecture_t::ReciprocalElementWise(dummy);
227 Architecture_t::ScaleAdd(
accumulation, dummy, this->GetLearningRate());
233 for (
size_t i = 0; i <
biases.size(); i++) {
size_t size(const MatrixT &matrix)
retrieve the size of a square matrix
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
Scalar_t fRho
The Rho constant used by the optimizer.
typename Architecture_t::Scalar_t Scalar_t
void UpdateWeights(size_t layerIndex, std::vector< Matrix_t > &weights, const std::vector< Matrix_t > &weightGradients)
Update the weights, given the current weight gradients.
~TRMSProp()=default
Destructor.
std::vector< Matrix_t > & GetPastSquaredWeightGradientsAt(size_t i)
std::vector< std::vector< Matrix_t > > fWorkBiasTensor2
working tensor used to keep a temporary copy of bias or bias gradients
std::vector< std::vector< Matrix_t > > fPastSquaredWeightGradients
The sum of the square of the past weight gradients associated with the deep net.
std::vector< std::vector< Matrix_t > > & GetBiasUpdates()
std::vector< std::vector< Matrix_t > > fWorkWeightTensor2
working tensor used to keep a temporary copy of weights or weight gradients
Scalar_t GetEpsilon() const
std::vector< std::vector< Matrix_t > > fWorkBiasTensor1
working tensor used to keep a temporary copy of bias or bias gradients
Scalar_t fMomentum
The momentum used for training.
std::vector< std::vector< Matrix_t > > & GetPastSquaredBiasGradients()
Scalar_t fEpsilon
The Smoothing term used to avoid division by zero.
TRMSProp(DeepNet_t &deepNet, Scalar_t learningRate=0.001, Scalar_t momentum=0.0, Scalar_t rho=0.9, Scalar_t epsilon=1e-7)
Constructor.
std::vector< std::vector< Matrix_t > > fPastSquaredBiasGradients
The sum of the square of the past bias gradients associated with the deep net.
std::vector< std::vector< Matrix_t > > fWeightUpdates
The accumulation of the past Weights for performing updates.
typename Architecture_t::Matrix_t Matrix_t
void UpdateBiases(size_t layerIndex, std::vector< Matrix_t > &biases, const std::vector< Matrix_t > &biasGradients)
Update the biases, given the current bias gradients.
std::vector< Matrix_t > & GetBiasUpdatesAt(size_t i)
std::vector< std::vector< Matrix_t > > & GetWeightUpdates()
std::vector< std::vector< Matrix_t > > fWorkWeightTensor1
working tensor used to keep a temporary copy of weights or weight gradients
std::vector< Matrix_t > & GetWeightUpdatesAt(size_t i)
std::vector< std::vector< Matrix_t > > & GetPastSquaredWeightGradients()
std::vector< std::vector< Matrix_t > > fBiasUpdates
The accumulation of the past Biases for performing updates.
Scalar_t GetMomentum() const
Getters.
std::vector< Matrix_t > & GetPastSquaredBiasGradientsAt(size_t i)
create variable transformations