42   double re = -z.real() * z.real() + z.imag() * z.imag();
 
   43   double im = -2. * z.real() * z.imag();
 
   45   return (z.real() >= 0.) ? (std::complex<double>(re, 
im) * 
faddeeva(std::complex<double>(-z.imag(), z.real())))
 
   46                           : (2. - std::complex<double>(re, 
im) * 
faddeeva(std::complex<double>(z.imag(), -z.real())));
 
 
   51   double re = -z.real() * z.real() + z.imag() * z.imag();
 
   52   double im = -2. * z.real() * z.imag();
 
   54   return (z.real() >= 0.)
 
   55             ? (std::complex<double>(re, 
im) * 
faddeeva_fast(std::complex<double>(-z.imag(), z.real())))
 
   56             : (2. - std::complex<double>(re, 
im) * 
faddeeva_fast(std::complex<double>(z.imag(), -z.real())));
 
 
   61   double re = -z.real() * z.real() + z.imag() * z.imag();
 
   62   double im = -2. * z.real() * z.imag();
 
   64   return (z.real() >= 0.) ? (1. - std::complex<double>(re, 
im) * 
faddeeva(std::complex<double>(-z.imag(), z.real())))
 
   65                           : (std::complex<double>(re, 
im) * 
faddeeva(std::complex<double>(z.imag(), -z.real())) - 1.);
 
 
   70   double re = -z.real() * z.real() + z.imag() * z.imag();
 
   71   double im = -2. * z.real() * z.imag();
 
   73   return (z.real() >= 0.)
 
   74             ? (1. - std::complex<double>(re, 
im) * 
faddeeva_fast(std::complex<double>(-z.imag(), z.real())))
 
   75             : (std::complex<double>(re, 
im) * 
faddeeva_fast(std::complex<double>(z.imag(), -z.real())) - 1.);
 
 
   83   static double itod[20] = {0.0,  1.0,  2.0,  3.0,  4.0,  5.0,  6.0,  7.0,  8.0,  9.0,
 
   84                             10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0};
 
   97   for (i = 1; i <= 
n; i++) {
 
  107   for (
m = 1; 
m < 
n; 
m++) {
 
  108      for (i = 1; i <= 
n - 
m; i++) {
 
  113      dy = (2 * ns) < (
n - 
m) ? 
c[ns + 1] : 
d[ns--];
 
 
  140   dif = std::abs(
x - 
xa[0]);
 
  141   for (i = 1; i <= 
n; i++) {
 
  151   for (
m = 1; 
m < 
n; 
m++) {
 
  152      for (i = 1; i <= 
n - 
m; i++) {
 
  159                      << 
": Zero distance between points not allowed." << std::endl;
 
  166      dy = (2 * ns) < (
n - 
m) ? 
c[ns + 1] : 
d[ns--];
 
 
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
static std::complex< double > erfc(const std::complex< double > z)
complex erfc function
static std::complex< double > erf(const std::complex< double > z)
complex erf function
static std::complex< double > faddeeva(std::complex< double > z)
evaluate Faddeeva function for complex argument
static double interpolate(double yArr[], Int_t nOrder, double x)
static std::complex< double > faddeeva_fast(std::complex< double > z)
evaluate Faddeeva function for complex argument (fast version)
static std::complex< double > erfc_fast(const std::complex< double > z)
complex erfc function (fast version)
static std::complex< double > erf_fast(const std::complex< double > z)
complex erf function (fast version)
STD::complex< double > faddeeva(STD::complex< double > z)
static void cexp(double &re, double &im)
STD::complex< double > faddeeva_fast(STD::complex< double > z)