Logo ROOT  
Reference Guide
 
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Modules Pages
Loading...
Searching...
No Matches
TMVA_SOFIE_Models.py
Go to the documentation of this file.
1### \file
2### \ingroup tutorial_tmva
3### \notebook -nodraw
4### Example of inference with SOFIE using a set of models trained with Keras.
5### This tutorial shows how to store several models in a single header file and
6### the weights in a ROOT binary file.
7### The models are then evaluated using the RDataFrame
8### First, generate the input model by running `TMVA_Higgs_Classification.C`.
9###
10### This tutorial parses the input model and runs the inference using ROOT's JITing capability.
11###
12### \macro_code
13### \macro_output
14### \author Lorenzo Moneta
15
16import ROOT
17from os.path import exists
18
20
21
22## generate and train Keras models with different architectures
23
24import numpy as np
25from tensorflow.keras.models import Sequential
26from tensorflow.keras.layers import Dense
27from tensorflow.keras.optimizers import Adam
28
29from sklearn.model_selection import train_test_split
30
31def CreateModel(nlayers = 4, nunits = 64):
32 model = Sequential()
33 model.add(Dense(nunits, activation='relu',input_dim=7))
34 for i in range(1,nlayers) :
35 model.add(Dense(nunits, activation='relu'))
36
37 model.add(Dense(1, activation='sigmoid'))
38 model.compile(loss = 'binary_crossentropy', optimizer = Adam(learning_rate = 0.001), weighted_metrics = ['accuracy'])
40 return model
41
42def PrepareData() :
43 #get the input data
44 inputFile = str(ROOT.gROOT.GetTutorialDir()) + "/tmva/data/Higgs_data.root"
45
46 df1 = ROOT.RDataFrame("sig_tree", inputFile)
47 sigData = df1.AsNumpy(columns=['m_jj', 'm_jjj', 'm_lv', 'm_jlv', 'm_bb', 'm_wbb', 'm_wwbb'])
48 #print(sigData)
49
50 # stack all the 7 numpy array in a single array (nevents x nvars)
51 xsig = np.column_stack(list(sigData.values()))
52 data_sig_size = xsig.shape[0]
53 print("size of data", data_sig_size)
54
55 # make SOFIE inference on background data
56 df2 = ROOT.RDataFrame("bkg_tree", inputFile)
57 bkgData = df2.AsNumpy(columns=['m_jj', 'm_jjj', 'm_lv', 'm_jlv', 'm_bb', 'm_wbb', 'm_wwbb'])
58 xbkg = np.column_stack(list(bkgData.values()))
59 data_bkg_size = xbkg.shape[0]
60
61 ysig = np.ones(data_sig_size)
62 ybkg = np.zeros(data_bkg_size)
63 inputs_data = np.concatenate((xsig,xbkg),axis=0)
64 inputs_targets = np.concatenate((ysig,ybkg),axis=0)
65
66 #split data in training and test data
67
68 x_train, x_test, y_train, y_test = train_test_split(
69 inputs_data, inputs_targets, test_size=0.50, random_state=1234)
70
71 return x_train, y_train, x_test, y_test
72
73def TrainModel(model, x, y, name) :
74 model.fit(x,y,epochs=10,batch_size=50)
75 modelFile = name + '.h5'
76 model.save(modelFile)
77 return modelFile
78
79### run the models
80
81x_train, y_train, x_test, y_test = PrepareData()
82
83## create models and train them
84
85model1 = TrainModel(CreateModel(4,64),x_train, y_train, 'Higgs_Model_4L_50')
86model2 = TrainModel(CreateModel(4,64),x_train, y_train, 'Higgs_Model_4L_200')
87model3 = TrainModel(CreateModel(4,64),x_train, y_train, 'Higgs_Model_2L_500')
88
89#evaluate with SOFIE the 3 trained models
90
91
92def GenerateModelCode(modelFile, generatedHeaderFile):
94
95 print("Generating inference code for the Keras model from ",modelFile,"in the header ", generatedHeaderFile)
96 #Generating inference code using a ROOT binary file
98 # add option to append to the same file the generated headers (pass True for append flag)
99 model.OutputGenerated(generatedHeaderFile, True)
100 #model.PrintGenerated()
101 return generatedHeaderFile
102
103
104generatedHeaderFile = "Higgs_Model.hxx"
105#need to remove existing header file since we are appending on same one
106import os
107if (os.path.exists(generatedHeaderFile)):
108 weightFile = "Higgs_Model.root"
109 print("removing existing files", generatedHeaderFile,weightFile)
110 os.remove(generatedHeaderFile)
111 os.remove(weightFile)
112
113GenerateModelCode(model1, generatedHeaderFile)
114GenerateModelCode(model2, generatedHeaderFile)
115GenerateModelCode(model3, generatedHeaderFile)
116
117#compile the generated code
118
119ROOT.gInterpreter.Declare('#include "' + generatedHeaderFile + '"')
120
121
122#run the inference on the test data
123session1 = ROOT.TMVA_SOFIE_Higgs_Model_4L_50.Session("Higgs_Model.root")
124session2 = ROOT.TMVA_SOFIE_Higgs_Model_4L_200.Session("Higgs_Model.root")
125session3 = ROOT.TMVA_SOFIE_Higgs_Model_2L_500.Session("Higgs_Model.root")
126
127hs1 = ROOT.TH1D("hs1","Signal result 4L 50",100,0,1)
128hs2 = ROOT.TH1D("hs2","Signal result 4L 200",100,0,1)
129hs3 = ROOT.TH1D("hs3","Signal result 2L 500",100,0,1)
130
131hb1 = ROOT.TH1D("hb1","Background result 4L 50",100,0,1)
132hb2 = ROOT.TH1D("hb2","Background result 4L 200",100,0,1)
133hb3 = ROOT.TH1D("hb3","Background result 2L 500",100,0,1)
134
135def EvalModel(session, x) :
136 result = session.infer(x)
137 return result[0]
138
139for i in range(0,x_test.shape[0]):
140 result1 = EvalModel(session1, x_test[i,:])
141 result2 = EvalModel(session2, x_test[i,:])
142 result3 = EvalModel(session3, x_test[i,:])
143 if (y_test[i] == 1) :
144 hs1.Fill(result1)
145 hs2.Fill(result2)
146 hs3.Fill(result3)
147 else:
148 hb1.Fill(result1)
149 hb2.Fill(result2)
150 hb3.Fill(result3)
151
152def PlotHistos(hs,hb):
155 hs.Draw()
156 hb.Draw("same")
157
158c1 = ROOT.TCanvas()
159c1.Divide(1,3)
160c1.cd(1)
161PlotHistos(hs1,hb1)
162c1.cd(2)
163PlotHistos(hs2,hb2)
164c1.cd(3)
165PlotHistos(hs3,hb3)
166c1.Draw()
167
168## draw also ROC curves
169
170def GetContent(h) :
171 n = h.GetNbinsX()
172 x = ROOT.std.vector['float'](n)
173 w = ROOT.std.vector['float'](n)
174 for i in range(0,n):
175 x[i] = h.GetBinCenter(i+1)
176 w[i] = h.GetBinContent(i+1)
177 return x,w
178
179def MakeROCCurve(hs, hb) :
180 xs,ws = GetContent(hs)
181 xb,wb = GetContent(hb)
182 roc = ROOT.TMVA.ROCCurve(xs,xb,ws,wb)
183 print("ROC integral for ",hs.GetName(), roc.GetROCIntegral())
184 curve = roc.GetROCCurve()
186 return roc,curve
187
188c2 = ROOT.TCanvas()
189
190r1,curve1 = MakeROCCurve(hs1,hb1)
192curve1.Draw("AC")
193
194r2,curve2 = MakeROCCurve(hs2,hb2)
196curve2.Draw("C")
197
198r3,curve3 = MakeROCCurve(hs3,hb3)
200curve3.Draw("C")
201
202c2.Draw()
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
ROOT's RDataFrame offers a modern, high-level interface for analysis of data stored in TTree ,...