1#ifndef TMVA_SOFIE_ROperator_BasicBinary 
    2#define TMVA_SOFIE_ROperator_BasicBinary 
   11namespace Experimental{
 
   16template <
typename T, EBasicBinaryOperator Op1>
 
   21   static const std::string 
Name() { 
return "Add"; }
 
   22   static std::string 
Op(
const std::string & 
t1, 
const std::string 
t2) { 
return t1 + 
" + " + 
t2; }
 
 
   28   static const std::string 
Name() { 
return "Sub"; }
 
   29   static std::string 
Op(
const std::string & 
t1, 
const std::string 
t2) { 
return t1 + 
" - " + 
t2; }
 
 
   35   static const std::string 
Name() { 
return "Mul"; }
 
   36   static std::string 
Op(
const std::string & 
t1, 
const std::string 
t2) { 
return t1 + 
" * " + 
t2; }
 
 
   42   static const std::string 
Name() { 
return "Div"; }
 
   43   static std::string 
Op(
const std::string & 
t1, 
const std::string 
t2) { 
return t1 + 
" / " + 
t2; }
 
 
   49   static const std::string 
Name() { 
return "Pow"; }
 
   50   static std::string 
Op(
const std::string & 
t1, 
const std::string 
t2) { 
return "std::pow(" + 
t1 + 
"," + 
t2 + 
")"; }
 
 
   54template<
typename T, EBasicBinaryOperator Op>
 
   84      auto ret = std::vector<std::vector<size_t>>(1, 
input[0]); 
 
 
   91         throw std::runtime_error(std::string(
"TMVA SOFIE Binary Op Input Tensor ") + 
fNA + 
"is not found in model");
 
   94         throw std::runtime_error(std::string(
"TMVA SOFIE Binary Op Input Tensor ") + 
fNB + 
"is not found in model");
 
  111                  std::default_delete<T[]>());
 
  129                  std::default_delete<T[]>());
 
  150         for (
size_t i = 0; i < 
dataY.size(); i++) {
 
 
  168      std::stringstream out;
 
 
  179         throw std::runtime_error(
"TMVA SOFIE Binary Op called to Generate without being initialized first");
 
  181      std::stringstream out;
 
  188         out << 
SP << 
"// Broadcasting uninitialized tensor " << 
fNA << 
"\n";
 
  194         out << 
SP << 
"// Broadcasting uninitialized tensor " << 
fNB << 
"\n";
 
  200      out << 
SP << 
"for (size_t id = 0; id < " << 
length << 
" ; id++){\n";
 
 
  208         return { std::string(
"cmath") };
 
 
 
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void data
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void input
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h length
void AddIntermediateTensor(std::string tensor_name, ETensorType type, std::vector< Dim > dim_shape)
bool CheckIfTensorAlreadyExist(std::string tensor_name)
void AddConstantTensor(std::string tensor_name, ETensorType type, std::vector< std::size_t > shape, std::shared_ptr< void > data)
const ETensorType & GetTensorType(std::string name) const
bool IsInitializedTensor(const std::string &name) const
const std::vector< size_t > & GetTensorShape(std::string name) const
std::shared_ptr< void > GetInitializedTensorData(std::string tensor_name)
void SetNotWritableInitializedTensor(const std::string &tensor_name)
std::vector< ETensorType > TypeInference(std::vector< ETensorType > input) override
std::vector< size_t > fShapeY
std::string fNBroadcastedA
std::string fNBroadcastedB
void Initialize(RModel &model) override
std::vector< std::vector< size_t > > ShapeInference(std::vector< std::vector< size_t > > input) override
std::vector< size_t > fShapeB
std::string GenerateInitCode() override
std::string Generate(std::string OpName) override
std::vector< std::string > GetStdLibs() override
ROperator_BasicBinary(std::string nameA, std::string nameB, std::string nameY)
std::vector< size_t > fShapeA
std::vector< std::string_view > fInputTensorNames
bool fIsOutputConstant
flag to identify if operator has a constant output (no need to generate code)
const std::string SP
space used to correctly indent the generated C++ code
std::vector< std::string_view > fOutputTensorNames
bool AreSameShape(const std::vector< size_t > &, const std::vector< size_t > &)
std::vector< size_t > UnidirectionalBroadcastShape(std::vector< size_t >, std::vector< size_t >)
std::string ConvertValuesToString(size_t n, const T *data)
std::string ConvertShapeToString(std::vector< size_t > shape)
std::size_t ConvertShapeToLength(std::vector< size_t > shape)
create variable transformations
static std::string Op(const std::string &t1, const std::string t2)
static const std::string Name()
static T Func(T t1, T t2)
static T Func(T t1, T t2)
static std::string Op(const std::string &t1, const std::string t2)
static const std::string Name()
static std::string Op(const std::string &t1, const std::string t2)
static const std::string Name()
static T Func(T t1, T t2)
static const std::string Name()
static std::string Op(const std::string &t1, const std::string t2)
static T Func(T t1, T t2)
static std::string Op(const std::string &t1, const std::string t2)
static T Func(T t1, T t2)
static const std::string Name()