
ROOT Tutorials - Session 10 1

ROOT Tutorials – Session 10

Remote File Access, Networking
SQL & Threads

Fons Rademakers

ROOT Tutorials - Session 10 2

Introduction

The following items will be covered:
Remote ROOT file access
Networking
SQL interface
Threads

ROOT Tutorials - Session 10 3

Remote File Access

ROOT Tutorials - Session 10 4

Remote Access

Several classes deriving from TFile
providing remote file access:

TNetFile performs remote access via the
special rootd daemon
TWebFile performs remote read-only access
via an Apache httpd daemon
TRFIOFile performs remote access via the
rfiod daemon (RFIO is part of the CERN
SHIFT software). RFIO has an interface to the
Castor mass storage system

ROOT Tutorials - Session 10 5

Remote Access (cont.)

TDCacheFile performs remote access via the
dcached daemon which provides access to
the dCache mass storage system developed
by DESY and Fermilab
TChirpFile performs remote access via a Chirp
server which is used in the Condor/VDT Grid
software

ROOT Tutorials - Session 10 6

Access Transparency

TFile *f1 = TFile::Open(“local.root”)

TFile *f2 = TFile::Open(“root://cdfsga.fnal.gov/bigfile.root”)

TFile *f3 = TFile::Open(“rfio:/castor.cern.ch/alice/aap.root”)

TFile *f4 = TFile::Open(“dcache://main.desy.de/h1/run2001.root”)

TFile *f5 = TFile::Open(“chirp://hep.wisc.edu/data1.root”)

TFile *f5 = TFile::Open(“http://root.cern.ch/geom/atlas.root”)

ROOT Tutorials - Session 10 7

The rootd Daemon
Daemon optimized for ROOT file access
Performance typically better than NFS and AFS
Easy to setup without superuser permissions:

rootd –p 5151
Can also be started via (x)inetd

By default listens on port 1094 (assigned by IANA)
Supports anonymous mode

Supports several authentication methods:
Clear text passwd
SRP
Kerberos 5
Globus
SSH
UidGid

ROOT Tutorials - Session 10 8

Authentication

The authentication methods are governed
by two files on the client side:

$ROOTSYS/etc/system.rootrc
$HOME/.rootauthrc

And by one file on the remote side:
$ROOTSYS/etc/system.rootdaemonrc

ROOT Tutorials - Session 10 9

Exercise

Try opening the
/opt/h1data/dstarp1a.root remote file on
the machine of your neighbor

TFile *f =
TFile::Open(“root://pchret23XX//opt/h1data/dstarp1a.root”);

The remote server accepts ssh authentication, make the
change in the system.rootrc so you can connect the file

ROOT Tutorials - Session 10 10

Networking

ROOT Tutorials - Session 10 11

Networking Classes

Provide a simple but complete set of
networking classes

TSocket, TServerSocket, TMonitor,
TInetAddress, TMessage

Operating system independent
Thanks to TSystem

ROOT Tutorials - Session 10 12

Setting Up a Connection

Server side
// Open server socket waiting for connections on specified port
TServerSocket *ss = new TServerSocket(9090, kTRUE);

// Accept a connection and return a full-duplex communication socket
TSocket *sock = ss->Accept();

// Close the server socket (unless we will use it later to wait for
// another connection).
ss->Close();

// Open connection to server
TSocket *sock = new TSocket("localhost", 9090);

Client side

ROOT Tutorials - Session 10 13

Sending Objects

Client Side
TH1 *hpx = new TH1F("hpx","This is the px distribution",100,-4,4);
TMessage mess(kMESS_OBJECT);
mess.WriteObject(hpx);
sock->Send(mess);

TMessage *mess;
while (sock->Recv(mess)) {

if (mess->What() == kMESS_OBJECT) {
if (mess->GetClass()->InheritsFrom(“TH1”)) {

TH1 *h = (TH1 *)mess->ReadObject();
. . .

}
} else if (mess->What() == kMESS_STRING)

. . .
delete mess;

}

Server Side

ROOT Tutorials - Session 10 14

Waiting for Objects

To wait for multiple sockets you can use a
TMonitor object:

TMonitor *mon = new TMonitor;
mon->Add(socket1);
mon->Add(socket2);
…
while (1) {

TMessage *mess;
TSocket *s;

s = mon->Select();
…

}

ROOT Tutorials - Session 10 15

Exercise

See hclient.C, hserv.C
Run hserv.C and 2 hclient.C’s

First start hserv.C, then the hclient.C’s

Ask you neighbor to run hserv.C, modify
your hclient.C so that you will talk to your
neighbors hserv.C

ROOT Tutorials - Session 10 16

GRID Networking - Long Fat Pipes

Long fat pipes are WAN links with a large
bandwidth*delay product
For optimal performance keep pipe full
By default this is not the case

maximum TCP buffer size is 64KB
for a pipe with a 192KB bandwidth*delay
product the pipe is empty 60% of the time

Source Destination
ACK

ROOT Tutorials - Session 10 17

TCP Window Scaling (RFC 1323)

A solution is to use a TCP buffer size equal to
the bandwidth*delay product
This support for large TCP buffers (window
scaling) is described in RFC 1323

Problem: system administrators are needed to
change maximum TCP buffer sizes on source
and destination machines, e.g. for Linux:

echo 200000 > /proc/sys/net/core/rmem_max

Source Destination
ACK

ROOT Tutorials - Session 10 18

Parallel Sockets

Buffer is striped over multiple sockets in
equal parts
Ideal number of parallel sockets depends
on bandwidth*delay product (assuming
default 64KB TCP buffer size). No system
manager needed to tune network

Same performance as with large buffers

Source Destination
ACK

ROOT Tutorials - Session 10 19

Parallel Sockets in ROOT

Parallel socket classes, TPSocket and
TPServerSocket, that derive from TSocket
and TServerSocket

TNetFile and rootd daemon support
parallel sockets

// Open server socket waiting for connections on specified port
TServerSocket *ss = new TPServerSocket(9090, kTRUE);

// Accept a connection and return a full-duplex communication socket
TSocket *sock = ss->Accept();

ROOT Tutorials - Session 10 20

Parallel FTP

The TFTP class supports parallel sockets
and rootd daemon for fast WAN file
transfers (same performance as gridftp
and bbftp)
Supports all standard ftp commands
Anonymous ftp
Performance, CERN - GSI:

wu-ftp: 1.4 MB/s
TFTP: 2.8 MB/s

ROOT Tutorials - Session 10 21

Exercise

Create a TFTP object connecting to your
neighbors machine
Cd to the directory /opt/h1data
Get the file dstarp1a.root

ROOT Tutorials - Session 10 22

Main Networking Features

Objects can be passed by value over a
network connection
Easy multiplexing on multiple sockets via
TMonitor or via the main event loop
Support for non-blocking sockets
Most important socket options settable via
TSocket::SetOption() (buffer sizes, non-
blocking, OOB, keep alive, etc.)

ROOT Tutorials - Session 10 23

SQL Interface

ROOT Tutorials - Session 10 24

SQL Interface

RDBMS access via a set of abstract base
classes

TSQLServer, TSQLResult and TSQLRow

Concrete implementations for MySQL and
Oracle exist

TMySQLServer, TMySQLResult and
TMySQLRow
TOracleServer, TOracleResult and
TOracleRow

ROOT Tutorials - Session 10 25

SQL Interface for TTree’s

Also TTree's can be queried via this
interface

TTreeResult and TTreeRow
A TTreeResult is returned by the
TTree::Query() method
Via these classes it is trivial to access an
RDBMS via the interpreter and scripts
There is also available an ODBC interface
(based on Java’s JDBC) to access
databases

ROOT Tutorials - Session 10 26

SQL Interface Usage
{

TSQLServer *db = TSQLServer::Connect("mysql://localhost/test",
"nobody", "");

TSQLResult *res = db->Query("select count(*) from runcatalog "
"where tag&(1<<2)");

int nrows = res->GetRowCount();
int nfields = res->GetFieldCount();
for (int i = 0; i < nrows; i++) {

TSQLRow *row = res->Next();
for (int j = 0; j < nfields; j++) {

printf("%s\n", row->GetField(j));
}
delete row;

}

delete res;
delete db;

}

ROOT Tutorials - Session 10 27

Performance Comparison

C++/ROOTSQL
CREATE TABLE runcatalog (

dataset VARCHAR(32) NOT NULL,
run INT NOT NULL,
firstevent INT,
events INT,
tag INT,
energy FLOAT,
runtype ENUM('physics'

'cosmics','test'),
target VARCHAR(10),
timef TIMESTAMP NOT NULL,
timel TIMESTAMP NOT NULL,
rawfilepath VARCHAR(128),
comments VARCHAR(80)

)

class RunCatalog : public TObject {
public:

enum ERunType { kPhysics, kCosmics,
kTest };

char fDataSet[32];
Int_t fRun;
Int_t fFirstEvent;
Int_t fEvents;
Int_t fTag;
Float_t fEnergy;
ERunType fRunType;
char fTarget[10];
UInt_t fTimeFirst;
UInt_t fTimeLast;
char fRawFilePath[128];
char fComments[80];

};

ROOT Tutorials - Session 10 28

Performance Comparison
Filling 500000 Entries

MySQL TTree

177 s real-time
0.3 MB/s
54.6 MB DB file

42 s real-time (43 via rootd)
3.4 MB/s
11.5 MB DB file
(compression level 1)

All results on PII 366, 256 MB RAM, RH 6.1

ROOT Tutorials - Session 10 29

Performance Comparison
Select of 2 Columns

MySQL TTree

4.5 s real-time
12.1 MB/s

2.8 s real-time (2.9 via rootd)
4.1 MB/s (19.5 MB/s)

SELECT dataset,rawfilepath FROM runcatalog

WHERE tag&7 AND (run=490001 OR run=300122)

ROOT Tutorials - Session 10 30

Performance Comparison

ROOT TTree's are in this case a factor 4
smaller
Filling time of TTree's is 4.2 times faster
Query time of TTree's is 2 times faster
However, MySQL and especially Oracle
have the typical advantages of: locking,
transactions, roll-back, SQL, etc.

ROOT Tutorials - Session 10 31

More RDBMS Interfaces

In addition to original MySQL interface:
Oracle

by Michael Dahlinger of GSI
http://www.gsi.de/computing/root/OracleAccess.htm

PostgreSQL
by Gian Paolo Ciceri

SAPDB
by Marc Hemberger

RDBC, a version of JDBC on top of ODBC
by Valeriy Onuchin

ROOT Tutorials - Session 10 32

Very Large Databases

A VLDB can be made by using a
combination of the ROOT object store and
an RDBMS
The RDBMS is typically used as catalog to
keep track of the many ROOT object
stores
This is exactly what the POOL project tries
to achieve

ROOT Tutorials - Session 10 33

Threads

ROOT Tutorials - Session 10 34

Threads

Threads allow different tasks to run in a single
process
Threads share the processes address space
Threads are much more convenient to program
than asynchronous tasks
On SMP systems threads can be scheduled to
run on different CPU’s
However, threads are fairly recent additions to
most operating systems

Many “legacy” libraries are not thread safe (C-lib,
X11, etc.)

ROOT Tutorials - Session 10 35

Threads in ROOT

The following thread classes are
supported:

TThread, TMutex, TCondition, TSemaphore,
TRWLock, TLockGuard and TThreadPool

Via a factory pattern most of these classes
have a pointer to the actual machine
dependent implementation (either for
Posix or WinNT):

TPosixThread, TPosixMutex, TPosixCondition

ROOT Tutorials - Session 10 36

Thread Creation Pattern

TThread TThreadImp

TPosixThreadTWiNTThread

1

TThreadFactory

TWiNTThreadFactory

+CreateThreadImp()

TPosixThreadFactory

+CreateThreadImp()

ROOT Tutorials - Session 10 37

ROOT and Thread Safety

ROOT and CINT are not thread safe:
Many globals in CINT
Many globals in ROOT (gDirectory, etc)
No locking in containers

Solution:
Put locks around CINT and container access:

Central lock before calling into CINT
Central lock before calling into X11

And
Store special ROOT globals as thread specific data

ROOT Tutorials - Session 10 38

Thread Safety Implementation

Introduction of TVirtualMutex and
TLockGuard classes in libCore
Introduction of two global mutexes:

gCINTMutex and gContainerMutex

After loading of libThread they will point
to real TMutex objects, 0 otherwise
Mutexes placed with TLockGuard via zero-
cost macro (when not compiled with
thread support)

	ROOT Tutorials – Session 10
	Introduction
	Remote File Access
	Remote Access
	Remote Access (cont.)
	Access Transparency
	The rootd Daemon
	Authentication
	Exercise
	Networking
	Networking Classes
	Setting Up a Connection
	Sending Objects
	Waiting for Objects
	Exercise
	GRID Networking - Long Fat Pipes
	TCP Window Scaling (RFC 1323)
	Parallel Sockets
	Parallel Sockets in ROOT
	Parallel FTP
	Exercise
	Main Networking Features
	SQL Interface
	SQL Interface
	SQL Interface for TTree’s
	SQL Interface Usage
	Performance Comparison
	Performance ComparisonFilling 500000 Entries
	Performance ComparisonSelect of 2 Columns
	Performance Comparison
	More RDBMS Interfaces
	Very Large Databases
	Threads
	Threads
	Threads in ROOT
	Thread Creation Pattern
	ROOT and Thread Safety
	Thread Safety Implementation

