
ROOT Tutorials - Session 11 1

PROOT Tutorials – Session 11

PROOF, GRID, AliEn

Fons Rademakers

Bring the KB to the PB not the PB to the KB

ROOT Tutorials - Session 11 2

Parallel ROOT Facility

The PROOF system allows:
Parallel analysis of trees in a set of files
Parallel analysis of objects in a set of files
Parallel execution of scripts

on clusters of heterogeneous machines
Its design goals are:

Transparency, scalability, adaptability

Prototype developed in 1997 as proof of
concept, full version nearing completion now

ROOT Tutorials - Session 11 3

Parallel Script Execution

root

Remote PROOF Cluster

proof

proof

proof

TNetFile

TFile

Local PC

$ root

ana.C
stdout/obj

node1

node2

node3

node4

$ root

root [0] .x ana.C

$ root

root [0] .x ana.C

root [1] gROOT->Proof(“remote”)

$ root

root [0] tree->Process(“ana.C”)

root [1] gROOT->Proof(“remote”)

root [2] chain->Process(“ana.C”)

ana.C

proof

proof = slave server

proof

proof = master server

#proof.conf
slave node1
slave node2
slave node3
slave node4

*.root

*.root

*.root

*.root

TFile

TFile

ROOT Tutorials - Session 11 4

Data Access Strategies

Each slave get assigned, as much as
possible, packets representing data in
local files
If no (more) local data, get remote data
via rootd and rfio (needs good LAN, like
GB eth)
In case of SAN/NAS just use round robin
strategy

ROOT Tutorials - Session 11 5

PROOF Transparency

Make working on PROOF as similar as
working on your local machine
Return to the client all objects created on
the PROOF slaves

The master server will try to add “partial”
objects coming from the different slaves
before sending them to the client

ROOT Tutorials - Session 11 6

PROOF Scalability

Scalability in parallel systems is
determined by the amount of
communication overhead (Amdahl’s law)
Varying the packet size allows one to tune
the system. The larger the packets the
less communications is needed, the better
the scalability

Disadvantage: less adaptive to varying
conditions on slaves

ROOT Tutorials - Session 11 7

PROOF Adaptability

Adaptability means to be able to adapt to
varying conditions (load, disk activity) on
slaves
By using a “pull” architecture the slaves
determine their own processing rate and
allows the master to control the amount
of work to hand out

Disadvantage: too fine grain packet size
tuning hurts scalability

ROOT Tutorials - Session 11 8

Workflow For Tree Analysis –
Pull Architecture

Initialization

Process

Process

Process

Process

Wait for next
command

Process(“ana.C”)

Pa
ck

et
 g

en
er

at
or

Initialization

Process

Process

Process

Process

Wait for next
command

Master
GetNextPacket()

GetNextPacket()

GetNextPacket()

GetNextPacket()

GetNextPacket()

GetNextPacket()

GetNextPacket()

GetNextPacket()

SendObject(histo)SendObject(histo)
Add

histograms

0,100

200,100

340,100

490,100

100,100

300,40

440,50

590,60

Process(“ana.C”)Slave 1 Slave N

Display
histograms

ROOT Tutorials - Session 11 9

PROOF Error Handling

Handling death of PROOF servers
Death of master

Fatal, need to reconnect

Death of slave
Master can resubmit packets of death slave to
other slaves

Handling of ctrl-c
OOB message is send to master, and
forwarded to slaves, causing soft/hard
interrupt

ROOT Tutorials - Session 11 10

PROOF Authentication

PROOF supports secure and un-secure
authentication mechanisms
Same as for rootd

UsrPwd
SRP
Kerberos
Globus
SSH
UidGid

ROOT Tutorials - Session 11 11

Architecture and Implementation

ROOT Tutorials - Session 11 12

TSelector – The algorithms

Basic ROOT TSelector
// Abbreviated version
class TSelector : public TObject {
Protected:

TList *fInput;
TList *fOutput;

public
void Init(TTree*);
void Begin(TTree*);
void SlaveBegin(TTree *);
Bool_t Process(int entry);
void SlaveTerminate();
void Terminate();

};

ROOT Tutorials - Session 11 13

TDSet – The data

Specify a collection of TTrees or files with
objects

root[0] TDSet *d = new TDSet(“TTree”, “tracks”, “/”);
OR
root[0] TDSet *d = new TDSet(“TEvent”, “”, “/objs”);
root[1] d->Add(“root://rcrs4001/a.root”);
…
root[10] d->Print(“a”);
root[11] d->Process(“mySelector.C”, nentries, first);

Returned by DB or File Catalog query etc.
Use logical filenames (“lfn:…”)

ROOT Tutorials - Session 11 14

Sandbox – The Environment

Each slave runs in its own sandbox
Identical, but independent

Multiple file spaces in a PROOF setup
Shared via NFS, AFS, shared nothing

File transfers are minimized
Cache
Packages

ROOT Tutorials - Session 11 15

Sandbox – The Cache

Minimize the number of File transfers
One Cache per file space

Locking to guarantee consistency
File identity and integrity ensured using

MD5 digest
Time stamps

Transparent via TProof::Sendfile()

ROOT Tutorials - Session 11 16

Sandbox – Package Manager

Provide a collection of files in the sandbox
Binary or Source packages
PAR files: PROOF ARchive. Like Java jar

Tar file, ROOT-INF directory
BUILD.sh
SETUP.C, per slave setting

API to manage and activate packages

ROOT Tutorials - Session 11 17

Implementation Highlights

TProofPlayer class hierarchy
Basic API to process events in PROOF
Implement event loop
Implement proxy for remote execution

TEventIter
Access to TTree or TObject derived collection
Cache file, directory, tree

ROOT Tutorials - Session 11 18

TProofPlayer

Client

TPPRemote

TProof

TProofServ

TProofServ

Slave

TProofServ

Master TPPSlave

TProof

Slave
TPPRemote

TPPSlave

ROOT Tutorials - Session 11 19

Simplified Message Flow

MasterClient Slave(s)

SendFile
SendFile

Process(dset,sel,inp,num,first)
GetEntries

Process(dset,sel,inp,num,first)

GetPacket

ReturnResults(out,log)

ReturnResults(out,log)

ROOT Tutorials - Session 11 20

Dynamic Histogram Binning

Implemented using THLimitsFinder class
Avoid synchronization between slaves
Keep score-board in master

Use histogram name as key
First slave posts limits
Master determines best bin size
Others use these values

ROOT Tutorials - Session 11 21

Merge API

Collect output lists in master server
Objects are identified by name
Combine partial results
Member function: Merge(TCollection *)

Executed via CINT, no inheritance required

Standard implementation for Histograms
Otherwise return the individual objects

ROOT Tutorials - Session 11 22

Setting Up PROOF

ROOT Tutorials - Session 11 23

Setting Up PROOF

Install ROOT system
For automatic execution of daemons add proofd
and rootd to /etc/inetd.conf (or in /etc/xinetd.d)
and /etc/services (not mandatory, servers can
be started by users)

The rootd (1094) and proofd (1093) port numbers
have been officially assigned by IANA

Setup proof.conf file describing cluster
Setup authentication files (globally, users can
override)

ROOT Tutorials - Session 11 24

PROOF Configuration File

PROOF config file. It has a very simple format:
#
node <hostname> [image=<imagename>]
slave <hostname> [perf=<perfindex>]
[image=<imagename>] [port=<portnumber>]
[srp | krb5]
user <username> on <hostname>

node csc02 image=nfs

slave csc03 image=nfs
slave csc04 image=nfs
slave csc05 image=nfs
slave csc06 image=nfs
slave csc07 image=nfs
slave csc08 image=nfs
slave csc09 image=nfs
slave csc10 image=nfs

ROOT Tutorials - Session 11 25

The AliEn GRID

ROOT Tutorials - Session 11 26

AliEn a Lightweight GRID
AliEn (http://alien.cern.ch) is a lightweight alternative to full blown GRID
based on standard components (SOAP, Web services)

Distributed file catalogue as a global file system on a RDBMS
TAG catalogue, as extension
Secure authentication
Central queue manager ("pull" vs "push" model)
Monitoring infrastructure
C/C++/perl API
Automatic software installation with AliKit

The Core GRID Functionality !!
AliEn is routinely used in production for Alice PPR

http://alien.cern.ch/

ROOT Tutorials - Session 11 27

AliEn Components

AliEn
SOAP Server

ADMIN

PROCESSES

Authorisation
Service

alien
(shell,Web)

Client

DBI
Proxy server

File Catalogue

File Catalogue

DB
Driver

File transport
Service

User Application
(C/C++/Java/Perl)

SOAP Client

DB Sync
Service

DISK

File catalogue: global
file system on top of
relational database

Secure authentication
service independent
of underlying
database

Central task queue

API

Services (file
transport, sync)

Perl5

SOAP

Architecture

ROOT Tutorials - Session 11 28

AliEn Components

ALICE
USERS

ALICE
SIM

Tier1

ALICE
LOCAL

|--./
| |--cern.ch/
| | |--user/
| | | |--a/
| | | | |--admin/
| | | | |
| | | | |--aliprod/
| | | |
| | | |--f/
| | | | |--fca/
| | | |
| | | |--p/
| | | | |--psaiz/
| | | | | |--as/
| | | | | |
| | | | | |--dos/
| | | | | |
| | | | | |--local/

|--simulation/
| |--2001-01/
| | |--V3.05/
| | | |--Config.C
| | | |--grun.C

| |--36/
| | |--stderr
| | |--stdin
| | |--stdout
| |
| |--37/
| | |--stderr
| | |--stdin
| | |--stdout
| |
| |--38/
| | |--stderr
| | |--stdin
| | |--stdout

| | | |
| | | |--b/
| | | | |--barbera/

Files, commands (job specification) as well
as job input and output, tags and even

binary package tar files are stored in the
catalogue

File catalogue

ROOT Tutorials - Session 11 29

PROOF and the GRID

ROOT Tutorials - Session 11 30

PROOF Grid Interface

PROOF can use a Grid Resource Broker to
detect which nodes in a cluster can be used in
the parallel session
PROOF can use Grid File Catalogue and
Replication Manager to map LFN’s to PFN’s
PROOF daemons can be started by Grid job
scheduler
PROOF can use Grid Monitoring Services
Access via abstract Grid interface

ROOT Tutorials - Session 11 31

TGrid Class –
Abstract Interface to AliEn

class TGrid : public TObject {
public:

virtual Int_t AddFile(const char *lfn, const char *pfn) = 0;
virtual Int_t DeleteFile(const char *lfn) = 0;
virtual TGridResult *GetPhysicalFileNames(const char *lfn) = 0;
virtual Int_t AddAttribute(const char *lfn,

const char *attrname,
const char *attrval) = 0;

virtual Int_t DeleteAttribute(const char *lfn,
const char *attrname) = 0;

virtual TGridResult *GetAttributes(const char *lfn) = 0;
virtual void Close(Option_t *option="") = 0;

virtual TGridResult *Query(const char *query) = 0;

static TGrid *Connect(const char *grid, const char *uid = 0,
const char *pw = 0);

ClassDef(TGrid,0) // ABC defining interface to GRID services
};

ROOT Tutorials - Session 11 32

Running PROOF Using AliEn

TGrid *alien = TGrid::Connect(“alien”);

TGridResult *res;
res = alien->Query(“lfn:///alice/simulation/2001-04/V0.6*.root“);

TDSet *treeset = new TDSet("TTree", "AOD");
treeset->Add(res);

gROOT->Proof(res); // use files in result set to find remote nodes
treeset->Process(“myselector.C”);

// plot/save objects produced in myselector.C
. . .

ROOT Tutorials - Session 11 33

Future

Ongoing development
Event lists
Friend Trees
Scalability to O(100) nodes
Multi site PROOF sessions
Move from AliEn to ARDA

ROOT Tutorials - Session 11 34

Demo!

The H1 example analysis code
Use output list for histograms
Move fitting to client

13 fold H1 example dataset
52 files
3.5 Gbyte
3.6 Million Events

13 pchret23 machines

	PROOT Tutorials – Session 11
	Parallel ROOT Facility
	Parallel Script Execution
	Data Access Strategies
	PROOF Transparency
	PROOF Scalability
	PROOF Adaptability
	Workflow For Tree Analysis –Pull Architecture
	PROOF Error Handling
	PROOF Authentication
	Architecture and Implementation
	TSelector – The algorithms
	TDSet – The data
	Sandbox – The Environment
	Sandbox – The Cache
	Sandbox – Package Manager
	Implementation Highlights
	TProofPlayer
	Simplified Message Flow
	Dynamic Histogram Binning
	Merge API
	Setting Up PROOF
	Setting Up PROOF
	PROOF Configuration File
	The AliEn GRID
	AliEn a Lightweight GRID
	AliEn Components
	AliEn Components
	PROOF and the GRID
	PROOF Grid Interface
	TGrid Class –Abstract Interface to AliEn
	Running PROOF Using AliEn
	Future
	Demo!

