
ROOT Tutorials - Session 3 1

ROOT Tutorials – Session 3

Internals of ROOT

Fons Rademakers

ROOT Tutorials - Session 3 2

What is ROOT?
The ROOT system is an Object Oriented framework for
large scale data handling applications

Written in C++
Provides, among others,

An efficient hierarchical OO database
A C++ interpreter
Advanced statistical analysis (multi dimensional histogramming,
fitting, minimization and cluster finding algorithms)
Visualization tools
And much, much more (GUI, geometry, networking, image
processing, …)

The user interacts with ROOT via a graphical user interface, the
command line or batch scripts
The command and scripting language is C++, thanks to the
embedded CINT C++ interpreter and large scripts can be
compiled and dynamically loaded

ROOT Tutorials - Session 3 3

Prehistory
In the beginning there was PAW

HBOOK
ZEBRA
KUIP
COMIS
SIGMA

Mini/Micro-DST analysis was done using Ntuples
Ntuples are basically simple tables
Only basic types
No data structures
No cross reference between Ntuples
Successful because simple and efficient

Dead-end
No way to grow to more complex data structures
Difficult to extend
Expensive to maintain
Too many languages: Fortran, KUIP, SIGMA

ROOT Tutorials - Session 3 4

Main Goals for New System
Being able to support full data analysis chain

Raw data, DSTs, mini-DSTs, micro-DSTs
Being able to handle complex structures

Complete objects
Object hierarchies

Support at least the PAW data analysis functionality
Histogramming
Fitting
Visualization

Only one language
C++

Better maintainable
Use OOP

Make the system extensible
Use OO framework technology

ROOT Tutorials - Session 3 5

Object Oriented Frameworks

ROOT Tutorials - Session 3 6

Frameworks
A framework is a collection of cooperating classes that make up a reusable
design solution for a given problem domain.
There are three main differences between frameworks and class libraries:

Behavior versus protocol. Class libraries are essentially collections of
behaviors that you can call when you want those individual behaviors in your
program. A framework, on the other hand, provides not only behavior but also
the protocol or set of rules that govern the ways in which behaviors can be
combined.
Don't call us, we'll call you. With a class library, the code the programmer
writes instantiates objects and calls their member functions. With a framework a
programmer writes code that overrides and is called by the framework. The
framework manages the flow of control among its objects. This relationship is
expressed by the principle: ``Don't call us, we'll call you''.
Implementation versus design. With class libraries programmers reuse only
implementations, whereas with frameworks they reuse design. A framework
embodies the way a family of related classes work together.

ROOT Tutorials - Session 3 7

Calling API vs Sub-classing API

Class Program using
calling API

Class A
method B

Class Y
virtual method Z

Framework

Class

Class
Class

Class newY
virtual method Z

calls

inherits

Program using
sub-classing API

ROOT Tutorials - Session 3 8

Advantages of Frameworks
The benefits of frameworks can be summarized as
follows:

Less code to write. Much of the program's design and
structure, as well as its code, already exist in the framework
More reliable and robust code. Code inherited from a
framework has already been tested and integrated with the rest
of the framework
More consistent and modular code. Code reuse provides
consistency and common capabilities between programs, no
matter who writes them. Frameworks also make it easier to
break programs into smaller pieces
More focus on areas of expertise. Users can concentrate on
their particular problem domain. They don't have to be experts
at writing user interfaces, graphics, or networking to use the
frameworks that provide those services

ROOT Tutorials - Session 3 9

ROOT Overview

ROOT Tutorials - Session 3 10

The Core ROOT Team

ROOT Tutorials - Session 3 11

Project History

Jan 95: Thinking/writing/rewriting/???

November 95: Public seminar, show Root 0.5

Spring 96: decision to use CINT
Jan 97: Root version 1.0

Jan 98: Root version 2.0

Mar 99: Root version 2.21/08 (1st Root workshop FNAL)

Feb 00: Root version 2.23/12 (2nd Root workshop CERN)

Mar 01: Root version 3.00/06
Jun 01: Root version 3.01/05 (3rd Root workshop FNAL)

Jan 02: Root version 3.02/07 (LCG project starts: RTAGs)

Oct 02: Root version 3.03/09 (4th Root workshop CERN)

May 03: Root version 3.05/05

Winter 03: Root version 3.10/02

Spring 04: Root version 4

9 years !!

ROOT Tutorials - Session 3 12

ROOT Statistics –
Supported Platforms

3 major type of OS’es
Unix, Windows, Mac OS X

10 different CPU’s
IA-32, IA-64, Sparc, Alpha,
PA-RISC, PowerPC, MIPS,
ARM, Opteron, …

11 different compilers
Gcc, kcc, ecc, icc, CC, cc,
VC++, …

41 Makefiles
./configure; make

ROOT Tutorials - Session 3 13

ROOT Statistics –
Available Binaries

29 binary
tar balls

ROOT Tutorials - Session 3 14

ROOT Statistics –
Distributions and Number of Users

245,000 binaries
downloaded

>1,000,000 clicks
per month

>100,000 docs
in 3 years

3200 registered
users

950 users
subscribed to

roottalk

ROOT Tutorials - Session 3 15

ROOT Development Process

We follow an Open Source development model
“Release early, release often”

Major releases 3-4 times per year
Minor releases every 2-3 weeks
Daily/nightly builds + regression testing + benchmarking
(rootmarks)

“Let user feedback drive the development”
Bug reporting system
Roottalk mailing list and web forum
Annual workshop
Open cvs repository
Let users become developers

ROOT Tutorials - Session 3 16

ROOT: Framework and Library

User classes

User can define new classes interactively

Either using calling API or sub-classing API

These classes can inherit from ROOT classes

Dynamic linking

Interpreted code can call compiled code

Compiled code can call interpreted code

Macros can be dynamically compiled & linked

This is the normal
operation mode

Interesting feature
for GUIs &

event displays

Script Compiler
root > .x file.C++

ROOT Tutorials - Session 3 17

Dynamic Linking

Experiment
libraries

General
libraries

A Shared Library can be linked dynamically
to a running executable module

- either via explicit loading,
- or automatically via plug-in manager

User
libraries

A Shared Library facilitates the development
and maintenance phases

Application
Executable Module

ROOT Tutorials - Session 3 18

ROOT Library Structure
ROOT libraries are a layered structure
The CORE classes are always required (support for
RTTI, basic I/O and interpreter)
The optional libraries (you load only what you use),
separation between data objects and the high level
classes acting on these objects. Example, a batch job
uses only the histogram library, no need to link
histogram painter library.
Shared libraries reduce the application link time
Shared libraries reduce the application size
ROOT shared libraries can be used with other class
libraries

ROOT Tutorials - Session 3 19

The Libraries
Over 800 classes

1,200,000 lines of
code
CORE (13 Mbytes)
CINT (3 Mbytes)
Green libraries
linked on demand
via plug-in manager
(only a subset
shown)

ROOT Tutorials - Session 3 20

ROOT Abstract Interfaces

The abstract interfaces have two main
functions:

Define a standard protocol
Enhance modularity by minimizing
dependencies between classes and shared
libraries

On last count ROOT has 22 abstract interfaces

ROOT Tutorials - Session 3 21

Example of Abstract Interfaces

TVirtualPadTVirtualPad

TPadTPad

TVirtualPSTVirtualPS TVirtuaXTVirtuaX

TPostScriptTPostScript TGX11TGX11 TGWin32TGWin32

TVirtualTreePlayerTVirtualTreePlayer

TTreePlayerTTreePlayer

TVirtualHistPainterTVirtualHistPainter

THistPainterTHistPainter

TVirtualFitterTVirtualFitter

TFitterTFitter TMinuitTMinuit

TSystemTSystem

TUnixSystemTUnixSystem TWinNTSystemTWinNTSystem

TInterpreterTInterpreter

TCINTTCINT

TGridTGrid

TAlienTAlien TArdaTArda

TFumiliTFumili

TGQtTGQtTSVGTSVG

ROOT Tutorials - Session 3 22

CINT Interpreter

ROOT Tutorials - Session 3 23

CINT

CINT is a C and C++ interpreter
Written by Masaharu Goto and available under an Open
Source license
It implements about 95% of ANSI C and 90% of ANSI
C++
It is robust and complete enough to interpret itself
(90000 lines of C, 5000 lines of C++)
Has good debugging facilities
Has a byte code compiler
In many cases it is faster than tcl, perl and python

ROOT Tutorials - Session 3 24

CINT in ROOT

CINT is used in ROOT:
As command line interpreter
As script interpreter
To generate class dictionaries
To generate function/method calling stubs

The command line, script and programming
language become the same
Large scripts can be compiled for optimal
performance

ROOT Tutorials - Session 3 25

CINT as Interpreter

CINT is used as command line interpreter:

And as script interpreter:

root[0]
root[1]
root[2]

for (int i = 0; i < 10; i++) printf(“Hello\n”)
TF1 *f = new TF1(“f”, “sin(x)/x”, 0, 10)
f->Draw()

bash$ vi script.C
{

for (int i = 0; i < 10; i++) printf(“Hello\n”);
TF1 *f = new TF1(“f”, “sin(x)/x”, 0, 10);
f->Draw();

}
root[0] .x script.C

ROOT Tutorials - Session 3 26

The Command Line
The CINT/ROOT command line support emacs style
editing

ctrl-a, ctrl-e, ctrl-d, left/right arrow keys, etc.
Important feature: <TAB> expansion to expand class
names, method names, file names, etc.

Command history is retained between sessions in the file
~/.root_hist

Navigation: ctrl-p, ctrl-n, up/down arrow keys
Everything you type at the prompt is C++
Except for interpreter escape commands, like

.x, .L, .q, .?, etc.
Do .? to see all interpreter commands

ROOT Tutorials - Session 3 27

CINT Debugger

CINT supports script debugging and tracing:
It uses a gdb like command set:

.b, .p, .s, .c, .t, etc

To trace a script use the .T command
The byte code compiler can be turned on/off:

Off: .O0
On: .O1 to .O4

Again, check available commands with .?

ROOT Tutorials - Session 3 28

ROOT Infrastructure & Basic Services

ROOT Tutorials - Session 3 29

The TObject Base Class

The TObject class provides default behavior and
protocol for almost all objects in the ROOT
system
It provides protocol for:

Persistency (object I/O)
Error handling
Inspection
Drawing, printing
Sorting, hashing

ROOT Tutorials - Session 3 30

The TROOT Class

The TROOT object is the main entry point to the system
It is created as soon as the Core library is being loaded
It initializes the ROOT system
It is a singleton, accessible via the global pointer gROOT
Via gROOT you can find basically every object created by
the system

Provides many global services
TH1F *hpx = (TH1F*) gROOT->FindObject(“hpx”)

ROOT Tutorials - Session 3 31

ROOT Run Configuration File

When TROOT is created it also reads the rootrc files:
$ROOTSYS/etc/system.rootrc
~/.rootrc
./.rootrc

The local one overrides the less local one
It has the format of a typical “resource” file with a
simple syntax
Have a look at $ROOTSYS/etc/system.rootrc to
see what resources are supported

ROOT Tutorials - Session 3 32

Operating System Interface

The underlying OS is abstracted via the TSystem
abstract base class
Accessible via the gSystem singleton
It allows all ROOT and user code
to be OS independent

TSystem

TWinNTSystemTUnixSystem TVMSSystem

ROOT Tutorials - Session 3 33

TSystem Services

TSystem provides:
System event handling

event processing and dispatching
signal handling (TSignalHandler)
file and socket handling (TFileHandler)
timer handling (sync, async) (TTimer)

Process control
fork, exec, wait, …

File system access
file creation and manipulation
directory creation, reading, manipulation

ROOT Tutorials - Session 3 34

More TSystem Services

Environment variable manipulation
getenv, putenv, unsetenv

System logging
syslog interface

Dynamic loading
load, unload, find symbol, …

RPC primivitves
open, close, option setting, read, write, …

Please check TSystem carefully for the right
methods. Keep your code portable.

ROOT Tutorials - Session 3 35

ROOT Collections Classes

The ROOT collections are so called polymorphic
collections
The collections can contain different types of
elements (polymorphism):

Elements must be instances of classes
Elements must be instances of classes
deriving from TObject

Collections themselves derive from TObject. So
you can have collections of collections and
collections can be made persistent

ROOT Tutorials - Session 3 36

Collection Classes Hierarchy

TCollection

TSeqCollection

TList TObjArrayTOrdCollection

TSortedList

TMapTHashTable

THashList TClonesArray

TBtree

Unordered Collections

Ordered Collections

Sorted Collections

Abstract Base Class
Defines methods like:

Add(), Remove(), Clear(),
Delete(), FindObject(),

MakeIterator()

Abstract Base Class
Defines methods like:
AddFirst(), AddLast(),

AddBefore(), AddAfter(),
RemoveFirst(), etc.

ROOT Tutorials - Session 3 37

Iterators
An iterator is used to traverse (walk through) a
collection
Having the iterator separate from the collection allows
you to have several iterators on a single collection at the
same time
Each collection has its own associated iterator class:

TList TListIter
TMap TMapIter

In general you will use the generic TIter wrapper class

ROOT Tutorials - Session 3 38

TIter: The Generic Iterator

A TIter object can be used to iterate over any
collection

TIter it(GetListOfTracks());
while (Track *tr = (Track*) it.Next())

tr->Fit();

TIter next(GetListOfTracks());
while (Track *tr = (Track*) next())

tr->Fit();

The magic is in: TIter::operator()

GetListOfTracks()->ForEach(Track,Fit)();

ROOT Tutorials - Session 3 39

TObject Protocol for Collections

TObject defines basic protocol for collection elements:
IsEqual() used by FindObject(), by default compares addresses

IsSortable() used for sorting, by default false

Compare() used for sorting, by default not usable

Hash() used for hashing, by default address of object

The collections will call these TObject methods to find,
sort and hash elements
By overriding these methods a class can customize its
behavior in a collection

ROOT Tutorials - Session 3 40

Object Ownership

The collection classes always store pointers to
objects, never copies of objects
It is the user’s responsibility to keep track of
ownership class Event : public TObject {

TList *fTracks; // list of all tracks
TList *fVertex1; // subset of tracks
TList *fVertex2; // subset of tracks
. . .

};
Event::Event()
{

fTracks = new TList;
fTracks->SetOwner();
fVertex1 = new TList;
fVertex2 = new TList;

}

ROOT Tutorials - Session 3 41

TClonesArray –
Array of Identical Objects

A collection specially designed for repetitive data analysis tasks, where
normally in a loop many times the same objects are created and deleted

class TClonesArray : public TObjArray {
private:
 TObjArray *fKeep;
 TClass *fClass;
 . . .
 . . .
};

fCont

space for identical
objects of type

fClass Delete() calls dtor of
fClass and clears links
from fCont to fKeep's
fCont

The memory for the objects stored in the array is allocated only once
in the lifetime of the clones array

ROOT Tutorials - Session 3 42

TClonesArray Theory
TObjArray a(10000);
while (Event *ev = (Event *) next()) { // O(100000)

for (int i = 0; i < ev->Ntracks(); i++) { // O(10000)
a[i] = new Track(x,y,z,. . .);
. . .

}
. . .
a.Delete();

}
Considering that a new/delete costs about 70µs, saving O(109)
new/deletes will save about 19 hours

TClonesArray a(“Track”, 10000);
while (Event *ev = (Event *) next()) { // O(100000)

for (int i = 0; i < ev->Ntracks(); i++) { // O(10000)
new(a[i]) Track(x,y,z,. . .);
. . .

}
. . .
a.Delete();

}

ROOT Tutorials - Session 3 43

Templated Containers and STL

Templated containers and STL provide type
safety at compile time, but

They do not solve the problem when the
container has to hold a heterogeneous set of
objects

However, ROOT and CINT have no problem with
STL containers in user’s code
In ROOT version 4 they are fully supported as
first class citizens

ROOT Tutorials - Session 3 44

ROOT Reflection Classes

Using the following meta or reflection classes
you can find out everything about an object at
run-time:

TDictionary

TClass TBaseClass

TDataMem ber

TDataTypeTFunction TGlobal

TMethod TMethodArg

TMethodCall

0..n

0..n

0..n 0..n

1

ROOT Tutorials - Session 3 45

Using Reflection Classes

root [0] TLine l
root [1] TClass *c = l.IsA()
root [2] TList *ml = c->GetListOfMethods()
root [3] TIter next(ml)
root [4] TMethod *m
root [5] while (m = (TMethod*)next()) printf(“%s\n”, m->GetName())
root [6] ml = c->GetListOfDataMembers()
root [7] . . .

ROOT Tutorials - Session 3 46

ROOT Beans

{

TLine *line = new TLine;

line->SetX2(10);

line->SetY2(20);

line->Draw();

}

{
TClass *cl = gROOT->GetClass("TLine");
void *line = cl->New();
TMethod *m;
m = (TMethod*) cl->GetListOfMethods()->FindObject("SetX2");
if (m) {

// use m->GetListOfMethodArgs() to check argument types
TMethodCall mc(cl, "SetX2", "10.0");
mc.Execute(line);

}
m = (TMethod*)cl->GetListOfMethods()->FindObject("SetY2");
if (m) {

TMethodCall mc(cl, "SetY2", "20.0");
mc.Execute(line);

}
TMethodCall mc(cl, "Draw", "");
mc.Execute(line);

}

ROOT Tutorials - Session 3 47

ComponentWare

Using the reflection classes and dynamic library
loading it is very simple to build the equivalent
of “Java Bean” components

Total decoupling, extreme modularity
Embedding
Flexible I/O

Only need to agree on a set of strings that
components must understand

ROOT Tutorials - Session 3 48

Class and Object Tables

At run time one can see all classes for which
RTTI is available:

In addition one can see all TObject derived
objects that have been created:

This last feature requires the rootrc option:
Root.ObjectStat: 1

gClassTable->Print();

gObjectTable->Print();

ROOT Tutorials - Session 3 49

Plug-in Manager
Where are plug-ins used?

For example, to extend the base class TFile to be able to
read RFIO files one needs to load the plug-in library
libRFIO.so which defines the TRFIOFile class
Protocol part of the file name URI triggers loading of
plug-in. In these cases TRFIOFile and TDCacheFile
objects are used, which both derive from TFile

TFile *rf = TFile::Open(“rfio://castor.cern.ch/alice/aap.root”)

TFile *df = TFile::Open(“dcache://main.desy.de/h1/run2001.root”)

ROOT Tutorials - Session 3 50

Plug-in Manager

Previously dependent on “magic strings” in
source, e.g. in TFile.cxx:

Adding case or changing strings requires code
change and recompilation
Not user customizable

if (!strncmp(name, "rfio:", 5)) {

if (gROOT->LoadClass("TRFIOFile", "RFIO")) return 0;

f = (TFile*) gROOT->ProcessLine(Form("new

TRFIOFile(\"%s\",\"%s\",\"%s\",%d)",

name, option, ftitle, compress));

} else if (!strncmp(name, "dcache:", 6)) {

ROOT Tutorials - Session 3 51

Plug-in Manager (cont.)

Plug-in manager solves these problems:

Single if-statement to handle all cases
No magic strings in code anymore

TPluginHandler *h;

if ((h = gROOT->GetPluginManager()->FindHandler("TFile", name))) {

if (h->LoadPlugin() == -1) return 0;

f = (TFile*) h->ExecPlugin(4, name, option, ftitle, compress);

}

ROOT Tutorials - Session 3 52

Plug-in Manager (cont.)
Magic strings moved to system.rootrc file

Adding plug-ins or changing strings does not require
code change and recompilation
Can be customized by user in private .rootrc file

base class regexp plugin class plugin lib ctor or factory

Plugin.TFile: ^rfio: TRFIOFile RFIO "TRFIOFile(const

char*,Option_t*,const char*,Int_t)"

+Plugin.TFile: ^dcache: TDCacheFile DCache "TDCacheFile(const

char*,Option_t*,const char*,Int_t)"

ROOT Tutorials - Session 3 53

Plug-in Manager (cont.)

Currently 34 plug-ins are defined for 21 different
(abstract) base classes
Plug-in handlers can also be registered at run
time, e.g.:

A list of currently defined handlers can be
printed using:

gROOT->GetPluginManager()->AddHandler("TSQLServer",
"^sapdb:","TSapDBServer", "SapDB",
"TSapDBServer(const char*)");

gROOT->GetPluginManager()->Print();

	ROOT Tutorials – Session 3
	What is ROOT?
	Prehistory
	Main Goals for New System
	Object Oriented Frameworks
	Frameworks
	Calling API vs Sub-classing API
	Advantages of Frameworks
	ROOT Overview
	The Core ROOT Team
	Project History
	ROOT Statistics –Supported Platforms
	ROOT Statistics –Available Binaries
	ROOT Statistics –Distributions and Number of Users
	ROOT Development Process
	ROOT: Framework and Library
	Dynamic Linking
	ROOT Library Structure
	The Libraries
	ROOT Abstract Interfaces
	CINT Interpreter
	CINT
	CINT in ROOT
	CINT as Interpreter
	The Command Line
	CINT Debugger
	ROOT Infrastructure & Basic Services
	The TObject Base Class
	The TROOT Class
	ROOT Run Configuration File
	Operating System Interface
	TSystem Services
	More TSystem Services
	ROOT Collections Classes
	Collection Classes Hierarchy
	Iterators
	TIter: The Generic Iterator
	TObject Protocol for Collections
	Object Ownership
	TClonesArray –Array of Identical Objects
	TClonesArray Theory
	Templated Containers and STL
	ROOT Reflection Classes
	Using Reflection Classes
	ROOT Beans
	ComponentWare
	Class and Object Tables
	Plug-in Manager
	Plug-in Manager
	Plug-in Manager (cont.)
	Plug-in Manager (cont.)
	Plug-in Manager (cont.)

