
ROOT Based CMS Framework

Bill Tanenbaum
US-CMS/Fermilab

14/October/2002

14/10/2002 Bill Tanenbaum US-CMS/Fermilab 2

CMS Software Framework

• Objectivity was used for persistency
• Objectivity must be abandoned (long story)
• ROOT/IO chosen as component of replacement
• Problem: How to replace Objectivity with

minimal disruption to CMS software, in a short
time, with limited manpower

• Solution: Emulate much of Objectivity with
ROOT.

14/10/2002 Bill Tanenbaum US-CMS/Fermilab 3

ROOT Based Framework

• Replace Objectivity with ROOT in framework
• All persistency capable classes ROOTified

(including metadata)
• Use STL classes (e.g. vector).
• No ROOT specific classes used, except for

Persistent References (TRef class)
• No redesign of framework
• Foreign classes used extensively

14/10/2002 Bill Tanenbaum US-CMS/Fermilab 4

ROOT Based Framework Details

• Map Objy functionality to ROOT
– Objy Database -> ROOT file
– Objy Container -> ROOT directory (not

Tree/Branch) (Folders not used, either)
– Objy Ref/Handle -> “enhanced” TRef
– Objy ooVArray -> STL <vector> (not ROOT

specific array)

14/10/2002 Bill Tanenbaum US-CMS/Fermilab 5

Details cont.

• Map Objy functionality to ROOT (cont.)
– Objy name scopes -> STL map/multimap
– Objy transaction -> Pseudo “commit” (allows

run resumption from last “commit”).
– Objy session -> NONE
– Objy context -> NONE

14/10/2002 Bill Tanenbaum US-CMS/Fermilab 6

• One programmer not that familiar with framework
• Removing Objectivity references and getting

framework to build successfully (3.5 weeks)
• Replacing stubbed Objectivity with “equivalent”

ROOT functionality in framework (3 weeks)
• Rootifying all persistency capable classes, with

successful framework & application build (2 weeks)
• Testing/Debugging/Refining (3.5 months)

Scale of Effort

14/10/2002 Bill Tanenbaum US-CMS/Fermilab 7

Current Status

• based on latest Objy. based framework release
• needs ROOT 3.03/09
• currently on its own CVS branch
• will become the main deveopment line this week.
• no more Objectivity based releases!

14/10/2002 Bill Tanenbaum US-CMS/Fermilab 8

Performance

• ROOT based framework uses about half the disk
space of Objy based framework for typical output
(using ROOT compression level 1).

• About 6% run-time increase to most critical task,
mostly due to cost of data compression.

• Greater ROOT compression possible with one-
time write-time cost (no change in read time).

14/10/2002 Bill Tanenbaum US-CMS/Fermilab 9

Persistent Object References

• TRef uniquely identifies, but does not
locate, a persistent object on disk.
– ROOT based framework uses a larger class

containing additional information (i.e. file
name, directory name, object name) to handle
this problem. It “works” as long as no file is
moved, renamed, etc...

– POOL will provide a longer term solution

14/10/2002 Bill Tanenbaum US-CMS/Fermilab 10

ROOT Impact on Applications

• A ROOT data dictionary must be generated for any
persistence capable user-defined class,

• A ROOT data dictionary must be generated for any user
defined class used as a template parameter for a persistence
capable class.

• Therefore, many application classes must have ROOT data
dictionaries generated.

• Therefore, the application and ROOT cannot be totally
decoupled.

• ClassDef() not needed- no source code coupling.

14/10/2002 Bill Tanenbaum US-CMS/Fermilab 11

ROOT Impact on Apps. (cont.)

• In generating DATA Dictionaries from header files, not
all legal C++ works. It usually works, but:
– What doesn’t work is not well documented.
– Much of what doesn’t work is not caught by rootcint.

Rather, the produced dictionary does not compile, or
there are link time errors.

– rootcint’s error messages lack detail.
– Workarounds nearly always possible, but not always

obvious.

14/10/2002 Bill Tanenbaum US-CMS/Fermilab 12

“commit” without Transactions

• Purpose: to be able to restart long runs from last
“commit” after a crash or other disruption

• Solution: One “collection” object contains refs to
other persistent objects.
– First write out other objects, and write their keys

without closing file. Then write collection object.
– As a “commit”, write the key of the collection object.
– If crash before the “commit”, all the data since the last

“commit” is overwritten. There is no incomplete data!

14/10/2002 Bill Tanenbaum US-CMS/Fermilab 13

Parallel Runs without Concurrency

• Purpose: to run parallel long jobs without conflict
• Solution:

– First, one short run writes out run independent metadata
(a few minutes). No parallelism needed.

– Then, many parallel event runs write into uniquely
identified files. The metadata is accessed read-only.
These are the long runs handling event data.

– An event run can then be attached to the metadata by a
separate job taking only seconds.

14/10/2002 Bill Tanenbaum US-CMS/Fermilab 14

Summary

• ROOT based framework provides a minimally
disruptive transition from Objectivity.

• Not the final answer: In the near future:
– Possible internal use of ROOT specific classes (e.g.

Trees) for performance/disk space optimization.
– Possible rework to data model to eliminate residual

Objectivity specific optimizations
– Separation of persistency specifics from framework.
– Transition to POOL

