
September, 2002 CSC 2002 1

PROOF - Parallel ROOT Facility

Fons Rademakers

http://root.cern.ch

Bring the KB to the PB not the PB to the KB



September, 2002 CSC 2002 2

PROOF

! Collaboration between core ROOT group 
at CERN and MIT Heavy Ion Group

! Fons Rademakers ! Maarten Ballintijn

! Part of and based on ROOT framework
! uses heavily ROOT networking and 

other infrastructure classes
! Currently no external technologies



September, 2002 CSC 2002 3

Parallel ROOT Facility

! The PROOF system allows:
! parallel analysis of trees in a set of files
! parallel analysis of objects in a set of files
! parallel execution of scripts

on clusters of heterogeneous machines
! Its design goals are:

! transparency, scalability, adaptability

! Prototype developed in 1997 as proof of 
concept, full version nearing completion now 



September, 2002 CSC 2002 4

Parallel Script Execution

root

Remote PROOF Cluster

proof

proof

proof

TNetFile

TFile

Local PC

$ root

ana.C
stdout/obj

node1

node2

node3

node4

$ root

root [0] .x ana.C

$ root

root [0] .x ana.C

root [1] gROOT->Proof(“remote”)

$ root

root [0] tree.Process(“ana.C”)

root [1] gROOT->Proof(“remote”)

root [2] chain.Process(“ana.C”)

ana.C

proof

proof = slave server

proof

proof = master server

#proof.conf
slave node1
slave node2
slave node3
slave node4

*.root

*.root

*.root

*.root

TFile

TFile



September, 2002 CSC 2002 5

Data Access Strategies

! Each slave get assigned, as much as 
possible, packets representing data in 
local files

! If no (more) local data, get remote data 
via rootd and rfio (needs good LAN, like 
GB eth)

! In case of SAN/NAS just use round robin 
strategy



September, 2002 CSC 2002 6

PROOF Transparency

! On demand, make available to the PROOF 
servers any objects created in the client

! Return to the client all objects created on 
the PROOF slaves
! the master server will try to add “partial” 

objects coming from the different slaves 
before sending them to the client



September, 2002 CSC 2002 7

PROOF Scalability

! Scalability in parallel systems is 
determined by the amount of 
communication overhead (Amdahl’s law)

! Varying the packet size allows one to tune 
the system. The larger the packets the 
less communications is needed, the better 
the scalability
! Disadvantage: less adaptive to varying 

conditions on slaves



September, 2002 CSC 2002 8

PROOF Adaptability

! Adaptability means to be able to adapt to 
varying conditions (load, disk activity) on 
slaves

! By using a “pull” architecture the slaves 
determine their own processing rate and 
allows the master to control the amount 
of work to hand out
! disadvantage: too fine grain packet size 

tuning hurts scalability



September, 2002 CSC 2002 9

PROOF Error Handling

! Handling death of PROOF servers
! death of master

! fatal, need to reconnect

! death of slave
! master can resubmit packets of death slave to 

other slaves

! Handling of ctrl-c
! OOB message is send to master, and 

forwarded to slaves, causing soft/hard 
interrupt



September, 2002 CSC 2002 10

PROOF Authentication

! PROOF supports secure and un-secure 
authentication mechanisms
! Un-secure

! mangled password send over network

! Secure
! SRP, Secure Remote Password protocol (Stanford 

Univ.), public key technology
! Kerberos5
! Soon: Globus authentication



September, 2002 CSC 2002 11

PROOF Grid Interface

! PROOF can use a Grid Resource Broker to 
detect which nodes in a cluster can be 
used in the parallel session

! PROOF can use Grid File Catalogue and 
Replication Manager to map LFN’s to chain 
of PFN’s

! PROOF can use Grid Monitoring Services
! Access will be via abstract Grid interface



September, 2002 CSC 2002 12

Running a PROOF Job

// Analyze generic data sets in parallel

gROOT->Proof();
TDSet *objset = new TDSet("MyEvent", "*", "/events");
objset->Add("lfn://alien.cern.ch/alice/prod2002/file1");
. . .
objset->Add(set2003);
objset->Process(“myselector.C++”);

// Analyze TChains in parallel

gROOT->Proof();
TChain *chain = new TChain(“AOD");
chain->Add("lfn://alien.cern.ch/alice/prod2002/file1");
. . .
chain->Process(“myselector.C”);



September, 2002 CSC 2002 13

Different PROOF Scenarios –
Static, stand-alone

! This scheme assumes:
! no third party grid tools
! remote cluster containing data files of interest
! PROOF binaries and libs installed on cluster
! PROOF daemon startup via (x)inetd
! per user or group authentication setup by cluster owner
! static basic PROOF config file

! In this scheme the user knows his data sets are on the specified
cluster. From his client he initiates a PROOF session on the cluster. 
The master server reads the config file and fires as many slaves as 
described in the config file. User issues queries to analyse data in 
parallel and enjoy near real-time response on large queries.

! Pros: easy to setup
! Cons: not flexible under changing cluster configurations, resource 

availability, authentication, etc.



September, 2002 CSC 2002 14

Different PROOF Scenarios –
Dynamic, PROOF in Control

! This scheme assumes:
! grid resource broker, file catalog, meta data catalog, possible replication 

manager
! PROOF binaries and libraries installed on cluster
! PROOF daemon startup via (x)inetd
! grid authentication

! In this scheme the user queries a metadata catalog to obtain the
set of required files (LFN's), then the system will ask the resource 
broker where best to run depending on the set of LFN's, then the 
system initiates a PROOF session on the designated cluster. On the 
cluster the slaves are created by querying the (local) resource 
broker and the LFN's are converted to PFN's. Query is performed.

! Pros: use grid tools for resource and data discovery. Grid 
authentication.

! Cons: require preinstalled PROOF daemons. User must be 
authorized to access resources.



September, 2002 CSC 2002 15

Different PROOF Scenarios –
Dynamic, AliEn in Control

! This scheme assumes:
! AliEn as resource broker and grid environment (taking care of authentication, 

possible via Globus)
! AliEn file catalog, meta data catalog, and replication manager

! In this scheme the user queries a metadata catalog to obtain the
set of required files (LFN's), then hands over the PROOF 
master/slave creation to AliEn via an AliEn job. AliEn will find the 
best resources, copy the PROOF executables and start the PROOF 
master, the master will then connect back to the ROOT client on a 
specified port (callback port was passed as argument to AliEn job). 
In turn the slave servers are started again via the same mechanism. 
Once connections have been setup the system proceeds like in 
example 2.

! Pros: use AliEn for resource and data discovery. No pre-installation 
of PROOF binaries. Can run on any AliEn supported cluster. Fully
dynamic.

! Cons: no guaranteed direct response due to the absence of 
dedicated "interactive" queues.



September, 2002 CSC 2002 16

Different PROOF Scenarios –
Dynamic, Condor in Control

! This scheme assumes:
! Condor as resource broker and grid environment (taking care of authentication, 

possible via Globus)
! Grid file catalog, meta data catalog, and replication manager

! This scheme is basically same as previous AliEn based scheme. 
Except for the fact that in the Condor environment Condor manages 
free resources and as soon as a slave node is reclaimed by its 
owner, it will kill or suspend the slave job. Before any of those 
events Condor will send a signal to the master so that it can restart 
the slave somewhere else and/or re-schedule the work of that slave 
on the other slaves.

! Pros: use grid tools for resource and data discovery. No pre-
installation of PROOF binaries. Can run on any Condor pool. No 
specific authentication. Fully dynamic.

! Cons: no guaranteed direct response due to the absence of 
dedicated "interactive" queues. Slaves can come and go.



September, 2002 CSC 2002 17

TGrid Class –
Abstract Interface to AliEn

class TGrid : public TObject {
public:

virtual Int_t AddFile(const char *lfn, const char *pfn) = 0;
virtual Int_t DeleteFile(const char *lfn) = 0;
virtual TGridResult *GetPhysicalFileNames(const char *lfn) = 0;
virtual Int_t AddAttribute(const char *lfn,

const char *attrname,
const char *attrval) = 0;

virtual Int_t DeleteAttribute(const char *lfn,
const char *attrname) = 0;

virtual TGridResult *GetAttributes(const char *lfn) = 0;
virtual void Close(Option_t *option="") = 0;

virtual TGridResult *Query(const char *query) = 0;

static TGrid *Connect(const char *grid, const char *uid = 0,
const char *pw = 0);

ClassDef(TGrid,0) // ABC defining interface to GRID services
};



September, 2002 CSC 2002 18

Running PROOF Using AliEn

TGrid *alien = TGrid::Connect(“alien”);

TGridResult *res;
res = alien->Query(“lfn:///alice/simulation/2001-04/V0.6*.root“);

TDSet *treeset = new TDSet("TTree", "AOD");
treeset->Add(res);

gROOT->Proof(res); // use files in result set to find remote nodes
treeset->Process(“myselector.C”);

// plot/save objects produced in myselector.C
. . .


