
October 14, 2002 ROOT 2002 Workshop at CERN ROOT at Minos
1

ROOT in the Minos Experiment

Presented at ROOT2002 (CERN)
October 14, 2002

George Irwin - Stanford University

Contributions from:
Robert Hatcher - FNAL
Susan Kasahara - U. of Minnesota
David Petit - U. of Minnesota
Brett Viren - Brookhaven Lab
Nick West - Oxford University

October 14, 2002 ROOT 2002 Workshop at CERN ROOT at Minos
2

Minos - a long baseline neutrino oscillation
experiment

3 Detectors
1. Near Detector (ND) at Fermilab
2. Far Detector (FD) at Soudan, Minnesota
3. Calibration Detector (CalDet) at CERN

Unified software
system must be
modular and
dynamically
configurable.

October 14, 2002 ROOT 2002 Workshop at CERN ROOT at Minos
3

Minos Status

Hardware
• CalDet taking data in CERN test beam
• Far Detector is 2/3 completed - taking cosmic data
• Near detector beginning construction
• Neutrino beam due from Fermilab in 2005
• Planning for a 20 year experiment lifetime

Software
• ROOT-based reconstruction framework analysing data from

CalDet and Far Detector
• MC/Sim framework to be rewritten in C++

October 14, 2002 ROOT 2002 Workshop at CERN ROOT at Minos
4

Remainder of Talk

Highlights a few special ways that Minos uses ROOT:
• Data Model
• Data Dispatcher and its clients
• Database Interface
• TG wrappers

October 14, 2002 ROOT 2002 Workshop at CERN ROOT at Minos
5

Minos: Data Model and I/O

Overview
– Extensive use of ROOT persistency tools: Streaming mechanism, File management, Data

structures (TTree), and Remote data access (both TNetFile and TSocket).

– Data is organized into data streams. A stream is a TTree containing objects of a single
class type extending over 1 or more sequential files. Framework supported streams:

• DAQ data streams:
– Raw event records
– Calibration records
– DAQ monitor records

• Reconstructed event records
• Ntuple (or event summary) records derived from reconstruction data (under development)
• Monte Carlo records

A user may also configure their own data stream at the JobControl script command line.

– All record types derive from a common record base class and have a header deriving from a
common header base class. The minimum data content of the record header is the event
VldContext (event date, time and detector type) used to associate records across the
different data streams.

October 14, 2002 ROOT 2002 Workshop at CERN ROOT at Minos
6

Records and Streams

October 14, 2002 ROOT 2002 Workshop at CERN ROOT at Minos
7

Records and Streams
TRef links between Inter-Stream Records

October 14, 2002 ROOT 2002 Workshop at CERN ROOT at Minos
8

Minos: Data Model and I/O

“Mom” stores records
collected during 1 cycle of

job module processing.

Output Module persists objects to
stream(s) designated to receive

objects of that type.

On output, streams are created to persist objects of a
specific record type.
{

JobC j;
…
// Stream “MyStream” is defined to persist
// records “MyRecord”. Internally, tree
// “MyStream” is created with a single
// branch “MyRecord”, split at level=99.
j.Path(“Demo”).Mod(“Output”).

Cmd(“DefineStream MyStream MyRecord”);

// Enable list of output streams for this job
j.Path(“Demo”).Mod(“Output”).Set(“Streams

=MyStream,…”);

// Direct the trees to an output file. Trees
// may be directed to different output files.
j.Path(“Demo”.Mod(“Output”).Set(“FileName

=demo.root”);
…
}

File A

TTree A

TTree B

TTree C

File B

Mod 1

Vld 2

Mod 2

Mod 4

Job Modules

On input, records from multiple input streams are sequenced by
record VldContext. Records of a common VldContext are loaded into
“Mom” as a single record set.
{

JobC j;
…
// Enable list of input streams.

j.Input.Set(“Streams=MyStream,…”);

Mod 3

Vld 1 Vld 0
// Define input data file(s)
j.Input.AddFile(“demo1.root”);
j.Input.AddFile(“demo2.root”);

// The user may apply a selection cut. This cut is
// applied internally using the TTreeFormula class
// (as in TTree::Draw), and data from required
// branches only is read in to apply cut.
j.Input.Select(“MyStream”,

”((MyHeader*)fHeader)->GetNTrack()>2”);
…
}

October 14, 2002 ROOT 2002 Workshop at CERN ROOT at Minos
9

Minos: Data Model and I/O
Recently, we have been working to remodel the record package and to design an Ntuple record class.

The new record base record class makes use of a templated data member:
template <class T> class RecRecordImp: public RecRecord { // RecRecord is abc class inheriting from TNamed
…
T fHeader;
};

Tests show that we can successfully I/O records from a ROOT TTree created with split level=99 to hold objects of this
templated class type.

RecRecordImp<RecHeader> *record = 0;
fTTree->Branch(“RecRecordImp<RecHeader>”,”RecRecordImp<RecHeader>”,&record, 64000,99);

The Ntuple record class makes use of TClonesArrays. It would be useful to have more flexibility in how these can
be used. In particular, TClonesArrays in a base class do not split properly when a derived class is used to
create the main branch of the TTree.

class Event: public TObject {
…
TClonesArray* array;

};
class SpecialEvent: public Event{

…
};

SpecialEvent* event = 0;
fTTree->Branch(“SpecialEvent”,”SpecialEvent”,&event,64000,99); // fails to split base class TClonesArray

October 14, 2002 ROOT 2002 Workshop at CERN ROOT at Minos
10

Minos: Data Model and I/O (Dispatcher)
The Data Dispatcher serves data from the DAQ
generated output file to near-online clients (local and
remote). The data is served before the data file has
been closed by the DAQ.

Some features of the system:
– The read of an open ROOT data file is

accomplished without the use of file locks. The
Daq regularly saves the TTree to file and updates
the TDirectory keys, and the reader checks these
keys as needed for the availability of a new
TTree. When a collision between the writer and
reader occurs, the reader recognizes that it has a
corrupt data buffer, signaled by an error in
ROOT’s internal unzipping method, and tries
again.

– The servers (parent and child) make use of
ROOT’s TSocket to communicate with clients.

– The client may subscribe to certain subsets of
data and the client’s selection criteria will be
applied server side.

{
JobC j;
j.Input.Set(“Format=DDS”);
j.Input.Set(“DDSServer=ddsserver.host.address”);
j.Input.Set(“Stream=DaqSnarl”); // this tree only is read in by server
j.Input.Select(“DaqSnarl”,”((RawDaqSnarlHeader*)fHeader)->GetTrigSrc()==2”); // applied on server side via TTreeFormula
…

}

October 14, 2002 ROOT 2002 Workshop at CERN ROOT at Minos
11

Minos: Online Monitoring - Principles

Package to check data quality and detector performance in
real-time.

Runs automatically at the CERN and Soudan detector sites.
Based on CDF RunII Online Monitoring framework (see H.

Stadie talk in ROOT2001).
Consists of three processes:

– Producer: receives and analyses data from the Data
Dispatcher. Uses MINOS C++ analysis framework.

– Histogram Server: receives ROOT histograms from the
Producer via socket connection.

– ROOT-based GUI: connects to Histogram Server. Handles
histogram plotting and updates.

GUI is decoupled from Producer/Server:
– several GUIs running at external institutions can connect to

a single Producer (e.g. at Soudan) and monitor the status of
the detector

D
aq

Sn
ar

l

D
aq

M
on

ito
r

Li
gh

t
In

je
ct

io
n

Data
Dispatcher

Online Monitoring Frame

Run number: 8094

Number of snarls: 175

Mean singles rate: 53 kHz

Producer

Online Mo nitoring

Run no: 56 75

Can You

Read This?

Histogram Server
Online Monitoring

Run no: 5675

Can You

Read This?

Raw data
(.root format)

Subscribe to
streams of interest

Main monitoring
process

Socket connection

Monitoring GUI processes

October 14, 2002 ROOT 2002 Workshop at CERN ROOT at Minos
12

Minos: Online Monitoring – Sample output

Online Monitoring GUI

Histogram server
address & port no.

List of available
monitoring histograms

Sample monitoring canvases

October 14, 2002 ROOT 2002 Workshop at CERN ROOT at Minos
13

Minos: Database Interface: Requirements
Purpose

– Provide detector configuration (Geometry, Cabling, Calibration) for event reconstruction.
– Provide standard software configurations (Cuts, Switches) for production jobs.

Concepts
– Context: event date, time and detector (class VldContext).
– Range: A Context extended to a time window (class VldRange).
– TableRow: A single row of a table (sub-class of DbiTableRow).
– Aggregate: A set of TableRows sharing a Range.

Principle Requirements
– Write Access by Range

• Use Case: “Calibrate every channel in this crate, estimate Range for which it remains valid and
store in database.”

– Read Access by Context
• Use Case: “For this event (context) get calibration constants for every channel in every crate.”
• Must be efficient (so have Cache that owns query results for reuse, caller just gets const pointer)

– Database Distribution
• Use Case: “Copy data from source (detector) databases to local mirror databases.”
• Detectors configurations from FNAL (Near det.), Soudan (Far det.), CERN (Calib. det).
• Store in Master Database and mirror to local databases.
• Exchange data at aggregate level between databases, validating exchanges.

October 14, 2002 ROOT 2002 Workshop at CERN ROOT at Minos
14

Minos: Database Interface: Access

Cache of individual
aggregates

Cache of combined
aggregates (just pointers)

reader

Database Table of
Aggregates

Writing: By Range - One Aggregate at a Time

// Set up templated writer
const VldRange& vr; // Range for agg.
Int_t aggNo; // Agg. number.
DbiWriter<MyTableRow> writer(vr,aggNo);

// Fill writer with rows of aggregate.
MyTableRow row0,row1...
writer << row0;
writer << row1;
...

// Commit to Database
writer.Close();

Reading: By Context - Multiple Aggregates at a Time

// Set up templated reader

VldContext vc; // Context from event

DbiResultPtr<MyTableRow> reader(vc);

// Random access to table rows

const MyTableRow* row0 = reader.GetRow(0);

const MyTableRow* row1 = reader.GetRow(1);

Adding New Tables e.g. MyTableRow

Inherit from DbiTableRow with Fill and
Store methods e.g.
void MyTableRow::Fill(DbiResultSet& rs)
{ rs >> fMember1 >> fMember2 >> ...;}

Other Methods to Get at Data e.g.
Float_t GetGain() const { return fMember1; }

writer

October 14, 2002 ROOT 2002 Workshop at CERN ROOT at Minos
15

Minos: Database Interface: Distribution

Databases & Data Flows
– Detector: Source of configuration data.
– Master: Primary source.
– Mirror: Used locally for standard production.
– Warehouse: (eventually) ORACLE as robust

permanent store for all data.
The unit of update is an Aggregate, having:-

– Unique Sequence Number
• To prevent duplication (either ignore or

replace if same Sequence Number).
– Local Insert Date

• Identify changes when exporting updates.
• Roll-back (ignore Insert > roll-back date).

– Creation Date
• Identify replacements (replace if later).
• Validation: Export twice. On import compare

and report differences.

Master
(FNAL)
MySQL

Detector
(e.g. CERN)

MySQL

Mirror
(e.g. Oxford)

MySQL

Updates

Primary Data
Flow

Secondary Data
Flow

Updates

Warehouse
(FNAL)
ORACLE

(Future
Development)

October 14, 2002 ROOT 2002 Workshop at CERN ROOT at Minos
16

Minos: Database Interface: Local Configuration
A “Cascade” of Databases

– A priority-ordered list of databases.
– Upper ones overlay (hide) lower

ones.
Cascade configured at Execution Time

– To try out alternatives.
Heterogeneous DB Technologies

– MySQL.
– ORACLE.
– Text files (but currently only via

MySQL client creating temporary
tables).

– Eventually possibly Postgres?
Relies on ODBC Interface

– to support heterogeneous DB
technologies.

ASCII text files created by user
test out new or non-standard data

Local MySQL mirror
for standard production

Remote ORACLE warehouse
for archived or little used data

Search
order

October 14, 2002 ROOT 2002 Workshop at CERN ROOT at Minos
17

Minos: Database Interface: The ROOT Connection

RDBC (TSQL)

libodbc++

unixODBC

MyODBC ORACLE

odbc wrapper

ROOT interface to ODBC

odbc is the implementation.

ODBC database API

Driver manager, connects
data source to API

MySQL data source

Minos Needs ODBC
– DBI talks to database products through

RDBC (TSQL), Valeriy Onuchin's
extension to ROOT's TSQL.

– Dennis Box (FNAL) is extending odbc
wrapper (from omanush@stendahls.net)
and driver (from EasySoft) for
ORACLE, see:-
http://fndapl.fnal.gov/~dbox/oracle/odbc/

– From there use public domain layers to
DB backend.

RDBC implements a generic “ODBC"
interface to database products

Minos would like ROOT to adopt
and distribute the RDBC extension to
TSQL

October 14, 2002 ROOT 2002 Workshop at CERN ROOT at Minos
18

October 14, 2002 ROOT 2002 Workshop at CERN ROOT at Minos
19

October 14, 2002 ROOT 2002 Workshop at CERN ROOT at Minos
20

October 14, 2002 ROOT 2002 Workshop at CERN ROOT at Minos
21

October 14, 2002 ROOT 2002 Workshop at CERN ROOT at Minos
22

October 14, 2002 ROOT 2002 Workshop at CERN ROOT at Minos
23

October 14, 2002 ROOT 2002 Workshop at CERN ROOT at Minos
24

ROOT in Minos MC/Sim framework design

ROOT Geometric Modeller
• As the Minos geometry representation for MC/SIM and

reconstruction
• With standard tools for track swimming through a segmented

detector
• With visualization capabilities

Concrete implementations of virtual Monte Carlo for G3, G4, …

We hope to see HEP progress in standardizing its particle list and
PDG classes, including reconciliation of StdHep and TParticle.

