
ROOT ' 2002 David Chamont (CMS - LLR) 1

Use of Root I/O Trees
for CMS Crossings

Benefits and deficiencies of Root I/O trees when :
- NOT dealing with TObjects,
- reading the trees entries NOT sequentially,
- processing them NOT one by one.

ROOT ' 2002 David Chamont (CMS - LLR) 2

Outline

3. Goal & scope.
4. Main use-case.
5. Crossing data model.
6. Persistent objects managers.
7. Four persistency strategies.
8. From foreign to Root classes.
9. Implementation issues.
10.Performances.
11.Conclusions.
12.Future work.

ROOT ' 2002 David Chamont (CMS - LLR) 3

Goal & scope

• Evaluate the use of TTree for the persistency
of CMS event data (whose classes heavily
rely on templates and external packages).

• Focus on the generation of crossings (pile-
up of about 200 simulated events chosen
randomly).

• Not covered yet : meta-data and references.

ROOT ' 2002 David Chamont (CMS - LLR) 4

Main Use-Case

signal event (hits) digis

Digitizer

Pom Pom Pom

signal events file minbias events file digis file

minbias event (hits)

minbias events file

ROOT ' 2002 David Chamont (CMS - LLR) 5

Crossing Data Model

• The folders //root/pool/* represent the
events composing the current crossing.

• Each event folder contains collections
of RtbTrackHit, RtbCaloHit,…

• These collections should be kind of
RtbVArray<> :
– RtbCArray<> (home-made C-like array).
– RtbClonesArray<> (wrap a TClonesArray).

ROOT ' 2002 David Chamont (CMS - LLR) 6

Persistent Objects Managers

• Persistency managers are able to transfer
event data (set of RtbVArray<>) between a
TFolder and a TFile.

• We implemented three kinds of RtbVPom :
– RtbDirectPom : attach each RtbVArray<> of the

folder to a branch of a TTree.
– RtbMatrixPom : for each RtbVArray<>, create a

TMatrixD and attach it to a branch of a TTree.
– RtbKeysPom : directly store the TFolder in the TFile,

each time with a different meaningful name.

ROOT ' 2002 David Chamont (CMS - LLR) 7

Four persistency strategies

1. RtbCArray and RtbMatrixPom (matrix)
2. RtbCArray and RtbDirectPom (carray)
3. RtbClonesArray and RtbDirectPom (clones)
4. RtbCArray and RtbKeysPom (keys)

ROOT ' 2002 David Chamont (CMS - LLR) 8

Storage of non-TObjects

ROOT ' 2002 David Chamont (CMS - LLR) 9

Implementation issues

• Tips for scram
– add -p to rootcint (why not the default ?)
– add -fPIC for scram link step
– remove -ansi –pedantic

• Typical problems with Root I/O :
– collections sizes and operator[],
– storage of empty collections,
– redirection of pointers attached to branches,
– tuning of branchs of a Tchain.

ROOT ' 2002 David Chamont (CMS - LLR) 10

Performances

5.88

147
72

106.6
57.7

Clones

6.93

191
95

118.9
63.5

Keys

197
96

153
74

500 events
write time (s)

5.824.57200 random events
read time (s)

119.3
63.8

119.6
63.3

500 events
file size (Mb)

CArrayMatrix

ROOT ' 2002 David Chamont (CMS - LLR) 11

Conclusions

Given the specific use-case & the heavy use of
templates and foreign classes…
…Use of TTree appeared more complex to

tune than “direct” storage.
…It improved slightly the performance.
…It opens the door to ROOT analysis features.
…We failed to really take profit of

TClonesArray.

ROOT ' 2002 David Chamont (CMS - LLR) 12

Future work

• Solve few remaining memory leaks (rather in
CMS digitization code).

• Provide root team with unscramed
demonstration of what we observed.

• Implement a fifth strategy using TObjArray.
• Look inside ROOT classes implementations,

optimize strategies accordingly, and perhaps
change the conclusions.

• Add references between objects.

