
Online & Offline software at H.E.S.S.

♦ The H.E.S.S. Experiment
♦ Data storage & Off-line software
♦ Acquisition software
♦ ROOT Problems/Wishlist

ROOT User Workshop
15 October 2001

Mathieu de Naurois, LPNHE Paris University VI/VII
Christoph Borgmeier, Christian Stegmann, Humboldt University Berlin

http://www.mpi-hd.mpg.de/hfm/HESS/HESS.html

Mathieu de Naurois, LPNHE Paris VI 15 Oct 2002 2

Central trigger

γ

960 pixels camera

The High Energy Stereoscopic System
(H.E.S.S.)

NGC 4261

♦ Observe γ-induced
showers above 100 GeV

♦ Active galactic nuclei
♦ Pulsars & Plerions
♦ Micro-quasars
♦ ...

♦ Stereoscopy for 3D reconstruction
♦ Fast camera & DAQ for threshold
♦ Installed in Namibia (Gamsberg)

Mathieu de Naurois, LPNHE Paris VI 15 Oct 2002 3

Current Status

♦ First telescope operational
since June 2002

♦ Structure for the next 3
♦ Second camera :

early 2003

Mathieu de Naurois, LPNHE Paris VI 15 Oct 2002 4

Data sources @ H.E.S.S.

♦ Camera events: 1kHz
(6MB/s per camera)

♦ ~100 GB/night @ 4 telescopes
♦ Monitoring data

(taken independently)
♦ CCDs
♦ Cloud scanner
♦ Optical Telescopes
♦ Telescope drives
♦

CameraCameraCameraCamera
CameraCameraCameraTracking

PC Farm

Weather
stationsWeather
stations

CameraCameraCameraCCDs

Lidar

RAID
array

...

Mathieu de Naurois, LPNHE Paris VI 15 Oct 2002 5

SASH: (Storage & analysis software at H.E.S.S.)
I – Container hierarchy

HESSArray

TelescopeTelescopeTelescopeTelescope

PixelPixelPixelPixelPixelPixelPixelPixel

PixelPixelPixelPixelPixelPixelPixelTrigger
Sector

PixelPixelPixelPixelPixelPixelPixel...

♦ Fixed container hierarchy

♦ No fixed numbering scheme

♦ All elements accessible
from the top level container
via iterators (no C pointers)
Sash::Pointer<Sash::Pixel> Sash::Telescope::beginPixel()

♦ List, Sets, ... and Iterator
provided for looping over elements
Sash::List<Sash::Pixel> Pixel::Neigbours()

Mathieu de Naurois, LPNHE Paris VI 15 Oct 2002 6

SASH
II – Data access

♦ Each data class knows its container type
♦ A helper template class registers a slot in the container for each data

class
Sash::EnvelopeEntry<T>

♦ Additional named slots allows coexistence of several instances
(⇒ comparison of analysis methods,...)

♦ Data classes are created and accessed by the container
(using CINT)
Container::Handle<T>(parameters) and Get<T>()

♦ Data classes store their creation parameters (argument of Handle<T>)
to enable automatic recreation at file readout

♦ Expandable (user class libraries)

Mathieu de Naurois, LPNHE Paris VI 15 Oct 2002 7

SASH
III – Sash::DataSet

♦ Extension of ROOT TTree

♦ Maps the data class at their proper
location in the container hierarchy

♦ Organises the data from the same
TTree in TFolder (run,events,...)

♦ Provides iterators (iterate on events)
♦ Provides a dependencies mechanism

based on time stamp from several files
(monitor information is loaded for each event)

♦ Uses the branch splitting mechanism for fast access:
data are loaded only when accessed.

event

ADC values

Header

run

Telescope config
Header

monitor
HV

Temperatures
...

Mathieu de Naurois, LPNHE Paris VI 15 Oct 2002 8

SASH
IV – Sash::Makers

♦ Common interface for data manipulation
♦ Receive a Sash::DataSet and operates on it
♦ Full access to the container hierarchy
♦ Can be chained + call-back mechanism

♦ Two specific Makers:
♦ Sash::DataSetIterator: loads an event and

synchronises other DataSets (monitor,…)
♦ Sash::TreeWriter: writes a event to disk

Mathieu de Naurois, LPNHE Paris VI 15 Oct 2002 9

DASH: Data acquisition software

♦ Multi-processes, multi-threaded & distributed acquisition
♦ CORBA (omniORB) for interprocess communication

(⇒ modular, easily expandable)
♦ ROOT for storage & processing
♦ Python/Gtk for control
♦ ROOT or Python/Gtk for display
♦ Building blocks

♦ Buffer
♦ Server
♦ Sender
♦ Processor
♦ ...

♦ Push & Pull

Monitor server

nodeN

node2

Camera1

Camera2

node1

Event Display

pull

Control

ROOT

Event Display

push

Calibration

Mathieu de Naurois, LPNHE Paris VI 15 Oct 2002 10

DASH II – Data Block Processor
♦ Arbitrary byte sequence data (⇒ polymorphism)

♦ CCD images or C Structures
♦ Streamed ROOT objects
♦ Whole folders
♦ Automatic conversion into python arrays if corresponded function

provided
♦ Data processed by Processor_i
♦ Three types of RootProcessor objects:

♦ RootProcessor_i: arbitrary ROOT object, new memory location
for each event

♦ FixedRootProcessor_i<T>: non polymorphic but constant
memory location

♦ HESSArrayProcessor_i: maps the received objects/folders into
the container hierarchy and call the registered Sash::Maker

Mathieu de Naurois, LPNHE Paris VI 15 Oct 2002 11

Dash III - Displays
Access to the ROOT

Sash objects converted to
Python NTuples

by the MonitorServer

♦ Pull mode

♦ Process ask for a folder
or a specific Sash object

♦ Use the HESSArrayProcessor
to run Sash::Maker's for
incoming objects

Mathieu de Naurois, LPNHE Paris VI 15 Oct 2002 12

Summary
♦ Sash implements a general way to combine different ROOT

trees (Sash::DataSet) from different files at a fixed memory
location & automate tasks (Sash::Maker).

♦ Analysis/Calibration software consist of ~ 15 CVS modules
based on Sash, ~ 10 developers
(many people develop their own analysis module)

♦ DASH provides a class hierarchy of building blocks to organize
the H.E.S.S. DAQ in a general way

♦ CORBA protocol ⇒ transparently expandable ressources
♦ Modularity (building blocks connected by CORBA)
♦ Transport of ROOT objects
♦ Highly multithreaded data transport, display and analysis software
♦ Good performances (6MB/s on a single machine)

Mathieu de Naurois, LPNHE Paris VI 15 Oct 2002 13

ROOT Problems/Wishlist
Last year problems:
♦ Namespace support

Fixed
♦ Template support

Almost fixed
♦ STL support

much better
♦ Thread stability

improved

WhishList:
Better thread stability

Threads created by CORBA, not by ROOT.
Too much use of global variables in ROOT

(gFile,fgFitter,...)
Is Qt communication protocol thread-safe?

Support for templates member
functions
class A {

template <class T> f();
};
#pragma link C++ function A::f<MyClass>();

Support for class member type
change in ROOT I/O
(when cast operator or conversion constructor
provided)

Mathieu de Naurois, LPNHE Paris VI 15 Oct 2002 14

Experience with ROOT

♦ Impressive support from the ROOT team:
♦ Quick fixes
♦ Fast developpement of requested features

Thank you

