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Normal Streaming mode
References using C++ pointers

A

TBuffer b;

A.Streamer(b)

Only one copy

of each object

in the graph

saved to buffer
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Normal Streaming mode
References using C++ pointers

TBuffer b1;

A.Streamer(b1)

TBuffer b2;

B.Streamer(b2)

BA

Objects in red

are in b1 and b2

C++ pointer
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Normal Streaming mode
References using TRef pointers

TBuffer b1;

A.Streamer(b1)

TBuffer b2;

B.Streamer(b2)

B

Objects in blue

are only in b1

C++ pointer

TRef
A Bz

z

Set pointer to z with: TRef Bz = z;

Get pointer to z with: z = Bz.GetObject()
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ROOT I/O : An Example

TFile f(“example.root”,”new”);

TH1F h(“h”,”My histogram”,100,-3,3);

h.FillRandom(“gaus”,5000);

h.Write();

TFile f(“example.root”);

TH1F *h = (TH1F*)f.Get(“h”):

h->Draw();

f.Map();

Program Writing

Program Reading

20010831/171903 At:64 N=90 TFile
20010831/171941 At:154 N=453 TH1F CX = 2.09
20010831/171946 At:607 N=2364 StreamerInfo CX = 3.25
20010831/171946 At:2971 N=96 KeysList
20010831/171946 At:3067 N=56 FreeSegments
20010831/171946 At:3123 N=1 END
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Memory <--> Tree
The Tree entry serial number
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T.Fill()

T.GetEntry(6)

T

Memory
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Tree Friends
0123456789101112131415161718

0123456789101112131415161718

0123456789101112131415161718

Public

read

Public

read

User

Write

Entry # 8
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Tree Friends

Root > TFile f1(“tree1.root”);

Root > tree.AddFriend(“tree2”,“tree2.root”)

Root > tree.AddFriend(“tree3”,“tree3.root”);

Root > tree.Draw(“x:a”,”k<c”);

Root > tree.Draw(“x:tree2.x”,”sqrt(p)<b”);

x

Processing time
independent of the
number of friends
unlike table joins

in RDBMS

Collaboration-wide
public read

Analysis group
protected

user
private
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Chains of Trees

0 0 0 0 0 00

11

0

4 5
2

45 4

7

0 12 17 23 26 32 37 45 49

TChain ch(“T”);

ch.Add(“f0.root”);

ch.Add(“f1.root”);

ch.Add(“f2.root”);

ch.Add(“f3.root”);

ch.Add(“f4.root”);

ch.Add(“f5.root”);

ch.Add(“f6.root”);

ch.Add(“f7.root”);

ch.GetEntry(28);

Binary search in table above

find slot 4, local entry 2

T.GetEntry(2) in f4.root

ch.GetEntryWithIndex(12,567);

0 7654321

f0 f2 f3 f4 f5 f6 f7f1
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Existing TRef, TRefArray

! Designed as light weight entities
! Assume large number of TRefs per event
! Very fast dereferencing (direct access tables)
! Cannot (not designed for) find an object in a file

TLongRef, TLongID classes proposed

for references with load on demand
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TRef/TRefArray advantages

! TRef is perfect for referencing objects like hits, 
clusters, tracks that may be > 10000.

! You would not like to have the size of a TRef
bigger than the size of its referenced object !

! A TRef occupies in average 2.5 bytes in the file
! There is no point in providing load on demand 

for one single hit, cluster or track.
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TRef example: Event.h
class Event : public TObject {

private:
char fType[20]; //event type
char *fEventName; //run+event number in character format
int fNtrack; //Number of tracks
int fNseg; //Number of track segments
int fNvertex;
int fMeasures[10];
float fMatrix[4][4];
float *fClosestDistance; //[fNvertex]
EventHeader fEvtHdr;
TClonesArray *fTracks; //->array with all tracks
TRefArray *fHighPt; //array of High Pt tracks only
TRefArray *fMuons; //array of Muon tracks only
TRef fLastTrack; //reference pointer to last track
TRef fWebHistogram; //EXEC:GetWebHistogram
TH1F *fH; //->

public:
...
TH1F *GetHistogram() const {return fH;}
TH1F *GetWebHistogram(Bool_t reload=kFALSE) const {

return (TH1F*)fWebHistogram.GetObject(reload);}

Can also do

load on demand
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Additions to TRef in 3.03/09

! Thanks to Bill Tanenbaum, TRef has been 
extended to support references to 
TFile/TDirectory objects. The TObject part of 
these classes is not written to the file.

! A TDirectory has a TUUID object (and TFile).
! If a TRef points to an object having a TUUID, 

the TUUID information of the referenced object 
is also saved when Streaming the TRef.

! The list of objects having a TUUID is kept in a 
separate map in class TProcessUUID.
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TRef extensions

! The current implementattion of TRef supports 
load on demand (via the comment field in the 
data member declaration).

! This possibility is currently not well documented 
and used. Not clear if we should go in this 
direction?

! We are looking for extending TRef (may be via a 
new class TLongRef) to support load on 
demand. Several agorithms have been 
proposed/rejected.

! More prototyping is required.
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TLongRef ???

! The following slides have been presented during 
an LCG persistency RTAG meeting.

! Conclusion: not much interest to follow this 
proposal.
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Load on demand

! It makes sense for objects like
! large collections of hits, clusters, tracks
! files
! mag field 
! geometry

! Assuming that an event will contain < 100 such 
objects to be requested on demand, there is no 
problem in having fat references (eg 50 bytes)

TLongRef

TLongID
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TLongRef, TLongID

File 1

container X

File 2

container Y

Object A

has a TLongRef

Object B

is a TLongID

Map of TLongIDs
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Object Identification

Pointer to object in memory

File Identification and directory

Access method in file

(Tree, etc)

ID
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TLongID

! An object referenced by a TLongRef must inherit 
from class TLongID

! When a TLongID is created, it is added to one 
single table (map) of LongIDs

! When a TLongID is written to a file, its 
persistent components are written to the file.

! When a TLongID is read, it is added to the map 
of LongIDs.
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TLongRef

! A TLongRef points to an object inheriting from 
TLongID.

! TLongRef attributes are identical to TLongID. In 
addition it includes a pointer to the object.

! When a TLongRef is written, its TLongID 
components are written.

! When a TLongRef is dereferenced, its pointer is 
computed (if not already there) by searching in 
the map of TLongIDs.
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TLongID

class TLongID {

TUUID fUUID;

TString fText1;

TString fText2;

etc…

}

root [0] TUUID u
root [1] u.AsString()
(const char* 0x40476a80)"c62ad97a-78c9-11d6-9e58-4ed58a89beef"

Additional info to be discussed

TUUID unique in time (nanoseconds)

and space

Up to 128 bits

TLongID could be

reduced to TUUID
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TLongRef

class TLongRef {

TUUID fUUID;

TString fWhere;

TString fHow;

etc…

}

Additional info to be discussed

FileID

subdirectory

branch in Tree, etc

A copy of the TUUID in TLongID


