
Persistent Object References in ROOT 1

Persistent Object References
in ROOT I/O

Status & Proposal

ROOT Workshop
CERN- 16 October

René Brun

ROOT2002 Rene Brun Persistent Object References in ROOT 2

Normal Streaming mode
References using C++ pointers

A

TBuffer b;

A.Streamer(b)

Only one copy

of each object

in the graph

saved to buffer

ROOT2002 Rene Brun Persistent Object References in ROOT 3

Normal Streaming mode
References using C++ pointers

TBuffer b1;

A.Streamer(b1)

TBuffer b2;

B.Streamer(b2)

BA

Objects in red

are in b1 and b2

C++ pointer

ROOT2002 Rene Brun Persistent Object References in ROOT 4

Normal Streaming mode
References using TRef pointers

TBuffer b1;

A.Streamer(b1)

TBuffer b2;

B.Streamer(b2)

B

Objects in blue

are only in b1

C++ pointer

TRef
A Bz

z

Set pointer to z with: TRef Bz = z;

Get pointer to z with: z = Bz.GetObject()

ROOT2002 Rene Brun Persistent Object References in ROOT 5

ROOT I/O : An Example

TFile f(“example.root”,”new”);

TH1F h(“h”,”My histogram”,100,-3,3);

h.FillRandom(“gaus”,5000);

h.Write();

TFile f(“example.root”);

TH1F *h = (TH1F*)f.Get(“h”):

h->Draw();

f.Map();

Program Writing

Program Reading

20010831/171903 At:64 N=90 TFile
20010831/171941 At:154 N=453 TH1F CX = 2.09
20010831/171946 At:607 N=2364 StreamerInfo CX = 3.25
20010831/171946 At:2971 N=96 KeysList
20010831/171946 At:3067 N=56 FreeSegments
20010831/171946 At:3123 N=1 END

ROOT2002 Rene Brun Persistent Object References in ROOT 6

Memory <--> Tree
The Tree entry serial number

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

T.Fill()

T.GetEntry(6)

T

Memory

ROOT2002 Rene Brun Persistent Object References in ROOT 7

Tree Friends
0123456789101112131415161718

0123456789101112131415161718

0123456789101112131415161718

Public

read

Public

read

User

Write

Entry # 8

ROOT2002 Rene Brun Persistent Object References in ROOT 8

Tree Friends

Root > TFile f1(“tree1.root”);

Root > tree.AddFriend(“tree2”,“tree2.root”)

Root > tree.AddFriend(“tree3”,“tree3.root”);

Root > tree.Draw(“x:a”,”k<c”);

Root > tree.Draw(“x:tree2.x”,”sqrt(p)<b”);

x

Processing time
independent of the
number of friends
unlike table joins

in RDBMS

Collaboration-wide
public read

Analysis group
protected

user
private

ROOT2002 Rene Brun Persistent Object References in ROOT 9

Chains of Trees

0 0 0 0 0 00

11

0

4 5
2

45 4

7

0 12 17 23 26 32 37 45 49

TChain ch(“T”);

ch.Add(“f0.root”);

ch.Add(“f1.root”);

ch.Add(“f2.root”);

ch.Add(“f3.root”);

ch.Add(“f4.root”);

ch.Add(“f5.root”);

ch.Add(“f6.root”);

ch.Add(“f7.root”);

ch.GetEntry(28);

Binary search in table above

find slot 4, local entry 2

T.GetEntry(2) in f4.root

ch.GetEntryWithIndex(12,567);

0 7654321

f0 f2 f3 f4 f5 f6 f7f1

ROOT2002 Rene Brun Persistent Object References in ROOT 10

Existing TRef, TRefArray

! Designed as light weight entities
! Assume large number of TRefs per event
! Very fast dereferencing (direct access tables)
! Cannot (not designed for) find an object in a file

TLongRef, TLongID classes proposed

for references with load on demand

ROOT2002 Rene Brun Persistent Object References in ROOT 11

TRef/TRefArray advantages

! TRef is perfect for referencing objects like hits,
clusters, tracks that may be > 10000.

! You would not like to have the size of a TRef
bigger than the size of its referenced object !

! A TRef occupies in average 2.5 bytes in the file
! There is no point in providing load on demand

for one single hit, cluster or track.

ROOT2002 Rene Brun Persistent Object References in ROOT 12

TRef example: Event.h
class Event : public TObject {

private:
char fType[20]; //event type
char *fEventName; //run+event number in character format
int fNtrack; //Number of tracks
int fNseg; //Number of track segments
int fNvertex;
int fMeasures[10];
float fMatrix[4][4];
float *fClosestDistance; //[fNvertex]
EventHeader fEvtHdr;
TClonesArray *fTracks; //->array with all tracks
TRefArray *fHighPt; //array of High Pt tracks only
TRefArray *fMuons; //array of Muon tracks only
TRef fLastTrack; //reference pointer to last track
TRef fWebHistogram; //EXEC:GetWebHistogram
TH1F *fH; //->

public:
...
TH1F *GetHistogram() const {return fH;}
TH1F *GetWebHistogram(Bool_t reload=kFALSE) const {

return (TH1F*)fWebHistogram.GetObject(reload);}

Can also do

load on demand

ROOT2002 Rene Brun Persistent Object References in ROOT 13

Additions to TRef in 3.03/09

! Thanks to Bill Tanenbaum, TRef has been
extended to support references to
TFile/TDirectory objects. The TObject part of
these classes is not written to the file.

! A TDirectory has a TUUID object (and TFile).
! If a TRef points to an object having a TUUID,

the TUUID information of the referenced object
is also saved when Streaming the TRef.

! The list of objects having a TUUID is kept in a
separate map in class TProcessUUID.

ROOT2002 Rene Brun Persistent Object References in ROOT 14

TRef extensions

! The current implementattion of TRef supports
load on demand (via the comment field in the
data member declaration).

! This possibility is currently not well documented
and used. Not clear if we should go in this
direction?

! We are looking for extending TRef (may be via a
new class TLongRef) to support load on
demand. Several agorithms have been
proposed/rejected.

! More prototyping is required.

ROOT2002 Rene Brun Persistent Object References in ROOT 15

TLongRef ???

! The following slides have been presented during
an LCG persistency RTAG meeting.

! Conclusion: not much interest to follow this
proposal.

ROOT2002 Rene Brun Persistent Object References in ROOT 16

Load on demand

! It makes sense for objects like
! large collections of hits, clusters, tracks
! files
! mag field
! geometry

! Assuming that an event will contain < 100 such
objects to be requested on demand, there is no
problem in having fat references (eg 50 bytes)

TLongRef

TLongID

ROOT2002 Rene Brun Persistent Object References in ROOT 17

TLongRef, TLongID

File 1

container X

File 2

container Y

Object A

has a TLongRef

Object B

is a TLongID

Map of TLongIDs

ROOT2002 Rene Brun Persistent Object References in ROOT 18

Object Identification

Pointer to object in memory

File Identification and directory

Access method in file

(Tree, etc)

ID

ROOT2002 Rene Brun Persistent Object References in ROOT 19

TLongID

! An object referenced by a TLongRef must inherit
from class TLongID

! When a TLongID is created, it is added to one
single table (map) of LongIDs

! When a TLongID is written to a file, its
persistent components are written to the file.

! When a TLongID is read, it is added to the map
of LongIDs.

ROOT2002 Rene Brun Persistent Object References in ROOT 20

TLongRef

! A TLongRef points to an object inheriting from
TLongID.

! TLongRef attributes are identical to TLongID. In
addition it includes a pointer to the object.

! When a TLongRef is written, its TLongID
components are written.

! When a TLongRef is dereferenced, its pointer is
computed (if not already there) by searching in
the map of TLongIDs.

ROOT2002 Rene Brun Persistent Object References in ROOT 21

TLongID

class TLongID {

TUUID fUUID;

TString fText1;

TString fText2;

etc…

}

root [0] TUUID u
root [1] u.AsString()
(const char* 0x40476a80)"c62ad97a-78c9-11d6-9e58-4ed58a89beef"

Additional info to be discussed

TUUID unique in time (nanoseconds)

and space

Up to 128 bits

TLongID could be

reduced to TUUID

ROOT2002 Rene Brun Persistent Object References in ROOT 22

TLongRef

class TLongRef {

TUUID fUUID;

TString fWhere;

TString fHow;

etc…

}

Additional info to be discussed

FileID

subdirectory

branch in Tree, etc

A copy of the TUUID in TLongID

