

The LCG Pool Project and ROOT I/O

Dirk Duellmann

- •What is Pool?
- Component Breakdown
- Status and Plans

What is Pool?

- Pool of persistent objects for LHC
 - http://lcgapp.cern.ch/project/persist/
- LCG Framework for Object Persistency
 - Targeted at event data but not only event data
 - scalability, navigation, decoupling
 - Hybrid technology approach
 - RDBMS for consistent meta data handling (eg transactions)
 - eg file catalogs, object collections, extensible meta data
 - prototype based on MySQL (and InnoDB in particular)
 - Object persistency via extensible streamer/converter system
 - based on LCG Reflection component (transient object dictionary)
 - prototype uses Root I/O (Tree and TNamed mode)
 - Following the LCG component approach
 - components with well defined responsibilities
 - communicating via public component interfaces

Pool as a LCG component

- Persistency is just one of many projects in the LCG Applications Area
 - Sharing a common architecture and s/w process
 - as described the Blueprint and Persistency RTAG documents
 - Persistency is important...
 - ...but not important enough to allow for uncontrolled direct dependencies eg of experiment code on its implementation
- Common effort in which the experiments take over a major share of the responsibility
 - for defining the overall and detailed architecture
 - for development of Pool components
- During the first internal release
 - contribution from several experiments and IT
 - total ~5 FTE mainly at CERN
- Additional contributors preparing components for upcoming releases

POOL Components

POOL Cache Access

Storage Hierarchy

POOL File Catalog

Logical view

Use Case: Farm Production

- Production manager may pre-register output files with the catalog (eg a "local" MySQL or XML catalog)
 - File ID, physical filename job ID and optionally also logical filenames
- A production job runs and may continue to add files and catalog entries directly.
- During the production the catalog can be used to cleanup files (and their registration) from unsuccessful jobs based on the job ID.
- Once the data quality checks have been passed the production manager decides to publishes the production catalog fragment to the grid based catalog.

File Catalog Scaling Tests

- update and lookup performances look fine
- scalability shown up to a few hundred boxes
- need to understand availability and back in the production context

Use Case: Working in Isolation

- The user extracts a set of interesting files and a catalog fragment describing them from a (central) grid based catalog into a local (eg XML based) catalog.
- After disconnecting the user executes some unchanged jobs navigating through the extracted data.
 - Any new output files are registered into the local catalog
- Once ready for data publishing and connected again the user submits selected catalog fragments into the grid based catalog.

Functionality in the V0.1 release

RootI/O Storage Service

- two operation modes objects in a tree or objects named into directory structure
- provide coherent access to the two very different root optimisation models with the user same code

File Catalog

- two implementation based on MySQL (networked) and XML (local file)
- provide catalog C++ API & command line administration tools

Refs and Cache

- simple cache implementation
- mainly acting as test bed for Ref classes example for integration with experiment caches

Reflection & Conversion

- Full reflection interface
- Some re-factoring of the interface, template and namespace support are being put in place

Release Platform

- POOL V0.1 has been released on October 3rd
 - the cvs release tag is POOL_0_1_0
- Single supported platform so far
 - RedHat 7.2 using gcc 2.95.2
 - Code should also work on rh61 and (partially) on win32/VC6
- Require several external packages hosted by SPI
 - see /afs/cern.ch/sw/lcg/external
 - MySQL (4.0.1-alpha)
 - MySQL++ (1.7.9)
 - Root (3.03)
 - Xerces-C (1.6.0)
- Supported build systems
 - scram and (less complete) cmt

Pool Release Schedule

- September V0.1 Basic Navigation
 - all core components for navigation exist and interoperate
 - FileCatalog, Refs & Cache, Storage Svc, Reflection (limited)
 - some remaining simplifications
 - Assume TObject on read/write simplified conversion
- October V0.2 Collections
 - first collection implementation integrated
 - support implicit and explicit collections on either RDBMS or RootIO
 - persistency for foreign classes working
 - persistency for non-TObject classes without need for user code instrumentation
- November V0.3 Meta Data & Query (first public release)
 - EDG/Globus FileCatalog integrated
 - Meta data annotation and query added
 - for event, event collection and file based meta data

Summary

- The LCG Pool project provides a hybrid store integrating object streaming like Root I/O with RDBMS technology for consistent meta data handling
 - Transparent cross-file (and cross-technology) object navigation via C++ smart pointers
 - Integration with Grid technology (eg EDG/Globus replica catalog)
 - network and grid decoupled working modes
 - Strong emphasis on component decoupling and well defined communication/dependencies
- Pool is still young and will need more time to mature to production quality
 - First internal release V0.1 has just been produced on schedule
 - Public release is expected for (end-of) November
- First larger scale production attempt summer '03

See you next summer in the POOL!

There are times when being a whiz at physics can be a definite drawback.