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Motivation

• Our old measurement system consists of two parts:

? a control and data acquisition program running on a DEC

MicroVax (VMS)

? a lot of PAW-scripts running on an alpha (DIGITAL UNIX)
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Motivation

• Our old measurement system consists of two parts:

? a control and data acquisition program running on a DEC

MicroVax (VMS)

? a lot of PAW-scripts running on an alpha (DIGITAL UNIX)

• Due to some changes to the experimental setup and an increasing

number of hardware failures on the VAX we were encouraged to

develop a new system.

• We came to the decision the it should base on RTLinux and ROOT.
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What is Realtime ?

An Operating System is capable of realtime, when it can react on

dedicated requests within a guaranteed space of time.
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What is Realtime ?

An Operating System is capable of realtime, when it can react on

dedicated requests within a guaranteed space of time.

latency: the time elapsing between the request and the reaction of

the system.

“soft” realtime: the latency is distributed around a –preferably

small– average value. There is no upper limit.

“hard” realtime: There is a maximum latency within the system will

have reacted certainly.
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Linux-Kernel

• Linux differentiates between User- and Kernel-Space

• In contrast to User-Space there’s only one process in

the Kernel. (Kernel-Thread)

• Code must be linked against the entire Kernel.

• This can be done at runtime. (using insmod)
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Linux-Kernel
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RTLinux Extension

• RTLinux implements Threads to the Linux-Kernel.

• The Kernel-Thread (and so the whole Linux System) is

running at lowest priority.

• Linux IRQs are transformed into soft-IRQs and handled

by RTLinux at idle-time.

• latency: 20 µs.
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RTLinux Extension

Graphics from: GettingStarted.html of the RTLinux documentation.
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Interfaces to RTLinux

User-Space Applications can communicate with RTLinux

modules in two different ways:

1. via FIFOs

(/dev/rtf0 - /dev/rtf63)

2. by using shared memory.

mbuff-driver
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Threads in ROOT

Our Application uses FIFOs to communicate with RTLinux. There’s
a separate thread to extract the data from the stream.

ROOT must have been compiled with Thread support.

Starting a new Thread in ROOT:

thread=new TThread(UserFun, UserArgs);
thread->Run();

The starting point of the thread will be the function UserFun with
the prototype

void UserFun(void* UserArgs);
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Threads in ROOT

ROOT classes dealing with threads:

• TThread

• TMutex

• TCondition

• TSemaphore
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C++ API

ELISABET basically consists of three major parts:
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C++ API

ELISABET basically consists of three major parts:

• the realtime-component and the CAMAC-module for hardware access.

• code to access non-realtime based hardware components. (mostly RS-232
programming)

• An application and some additional tools to interface the measurement process
to humans and to display the results respectively analyze the data. Therefore
ROOT is used.

⇒Need of an API to interface the hardware components to ROOT.
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command-module

class commandModule
{
public:
static void SetDAC(byte N, byte A, byte F,

D24WORD dac);
...
static void doRamp(byte N, byte A,

D24WORD startdac,
D24WORD enddac,
D24WORD step,
unsigned long long delta_t,
int hold=0);

static void stopRamp();
};
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CBaseExperiment

class CBaseExperiment
{
friend class CExperimentThread;
public:
CBaseExperiment(byte experiment_type,

unsigned long datapoints,
unsigned long long delta_t);

virtual void start();
virtual void stop();

int save(const char *path);

char * getFileName();
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virtual ~CBaseExperiment();

protected:
virtual void processData(int fdi)=0;
virtual void getType(char * buf)=0;
virtual void printHeader(FILE *f)=0;
virtual void printData(FILE *f)=0;
exp_data exp_block;
TMutex mutex;
int stopFlag;

private:
virtual void Run();
char fileName[256];
};
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CTDSExperiment

class CTDSExperiment:public CBaseExperiment
{
public:
CTDSExperiment(byte ramp_N, byte ramp_A,

D24WORD ramp_start,
D24WORD ramp_end,
D24WORD ramp_step,
unsigned long long time_diff,
unsigned long datapoints,
unsigned long long delta_t,
unsigned long long wait_t,
CTDSMasses massinfo,
byte set_mass_N, byte set_mass_A,
byte qmssignal_N, byte qmssignal_A,
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unsigned long long temp_scan_t,
byte temp_in_N, byte temp_in_A,

byte range0_N,byte range0_A,
byte range1_N,byte range1_A,

byte gain0_N,byte gain0_A,
byte gain1_N,byte gain1_A);

virtual ~CTDSExperiment();

virtual void start();
virtual void stop();

unsigned long getMaxData();

tdsdata operator[](unsigned long j);
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protected:
virtual void processData(int fdi);
virtual void getType(char *buf);
virtual void printHeader(FILE *f);
virtual void printData(FILE *f);

private:
byte r_N;
byte r_A;
D24WORD r_start;
D24WORD r_end;
D24WORD r_off;
unsigned long long r_t_diff;

unsigned long counter;
tdsdata *daten;

};
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An example:TPD
Thermal Programmed Desorption

• Is a very important application in surface science.

• One can determine the number, type and chemical bond strength

of particles covering the surface of a solid by this method.

• howto: driving an exact temperature-ramp; parallely: counting the

desorbing particles with a quadrupole-mass spectrometer (QMS).
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