
ROOT I/O Overview 1

ROOT I/O Overview

CMS-ROOT meeting
CERN- October 10

René Brun
ftp://root.cern.ch/root/cms.ppt

http://root.cern.ch

http://root.cern.ch/root/RootDoc.html

CMS 10 Oct Rene Brun ROOT I/O Overview 2

Plan of talk
! Framework Structure
! The Object Dictionary and the rootcint tool
! Persistency basics:

! Evolution of ROOT I/O
! Basic Object I/O
! CMS PSimHit example
! File Structure
! Streamers
! Automatic Schema Evolution

! Special collection Classes
! Trees

! Event example
! PSimHit example
! Tree Friends
! Chains

! Folders

ROOT I/O Overview 3

Motivations

CMS 10 Oct Rene Brun ROOT I/O Overview 4

Towards the ROOT Framework

Following our many years of experience with the development of the PAW
system, we decided in 1995 to start the design and the implementation of a
system capable of doing at least the same thing in an OO context, but also
to serve as a complete framework from data taking to data analysis.

During a few months, we learnt the basics ingredients of an OO system by
implementing several variants of an histograming package. We quickly
implemented a rudimentary I/O sub system and also some very basic
collection classes. It became rapidly clear to us that a more ambitious
persistency mechanism had to be developed.

There was no point in developing a system supporting only the PAW CWNs
in a world dealing with classes and complex object hierarchies. OODBMS
could have been the solution to our problem, but we were convinced that
the corresponding proposed commercial tools were not appropriate for a
flexible data analysis environment.

CMS 10 Oct Rene Brun ROOT I/O Overview 5

Building a Modular System
Modularity is a buzzword with different meanings.. A modular system is sometimes
presented as a system with many small and independent components. In general such
systems do not have an object bus and the communication between the components is left
to the application using these components.

Systems with a deep hierarchy of components may be difficult to maintain because of too
many interdependencies between the top level and low level modules.

Is a system with well defined interfaces a modular system? Probably not, because too much
emphasis is put on the interfaces at the expense of the object bus. In such systems, the
interfaces may have long argument lists instead of well designed collections and object
folders.

An end user will see a system as modular if the structure is easy to understand, while a
system developer will put more emphasis on the maintenance aspects, probably the two
aspects being strongly related. A modular system can also be seen as a system easy to
integrate into another system.

After many iterations and user feedback, we have gradually
converged to the following framework structure ==>

CMS 10 Oct Rene Brun ROOT I/O Overview 6

ROOT Framework Organization

*.h
...

cint
makecint
new
proofd
proofserv
rmkdepend
root
root.exe
rootcint
root-config
rootd

bin

$ROOTSYS

libCint.so
libCore.so
libEG.so
*libEGPythia.so
*libEGPythia6.so
libEGVenus.so
libGpad.so
libGraf.so
libGraf3d.so
libGui.so
libGX11.so
*libGX11TTF.so
libHist.so
libHistPainter.so
libHtml.so
libMatrix.so
libMinuit.so
libNew.so
libPhysics.so
libPostscript.so
libProof.so
*libRFIO.so
*libRGL.so
libRint.so
*libThread.so
libTree.so
libTreePlayer.so
libTreeViewer.so
*libttf.so
libX3d.so
libXpm.a

Aclock.cxx
Aclock.h
Event.cxx
Event.h
EventLinkDef.h
Hello.cxx
Hello.h
MainEvent.cxx
Makefile
Makefile.in
Makefile.win32
README
TestVectors.cxx
Tetris.cxx
Tetris.h
eventa.cxx
eventb.cxx
eventload.cxx
guitest.cxx
hsimple.cxx
hworld.cxx
minexam.cxx
stress.cxx
tcollbm.cxx
tcollex.cxx
test2html.cxx
tstring.cxx
vlazy.cxx
vmatrix.cxx
vvector.cxx

lib testtutorials include

* Optional
Installation

EditorBar.C
Ifit.C
analyze.C
archi.C
arrow.C
basic.C
basic.dat
basic3d.C
benchmarks.C
canvas.C
classcat.C
cleanup.C
compile.C
copytree.C
copytree2.C
demos.C
demoshelp.C
dialogs.C
dirs.C
ellipse.C
eval.C
event.C
exec1.C
exec2.C
feynman.C
fildir.C
file.C
fillrandom.C
first.C
fit1.C
fit1_C.C

fitslicesy.C
formula1.C
framework.C
games.C
gaxis.C
geometry.C
gerrors.C
gerrors2.C
graph.C
h1draw.C
hadd.C
hclient.C
hcons.C
hprod.C
hserv.C
hserv2.C
hsimple.C
hsum.C
hsumTimer.C
htmlex.C
io.C
latex.C
latex2.C
latex3.C
manyaxis.C
multifit.C
myfit.C
na49.C
na49geomfile.C
na49view.C
na49visible.C

ntuple1.C
oldbenchmarks.C
pdg.dat
psexam.C
pstable.C
rootalias.C
rootenv.C
rootlogoff.C
rootlogon.C
rootmarks.C
runcatalog.sql
runzdemo.C
second.C
shapes.C
shared.C
splines.C
sqlcreatedb.C
sqlfilldb.C
sqlselect.C
staff.C
staff.dat
surfaces.C
tcl.C
testrandom.C
tornado.C
tree.C
two.C
xyslider.C
xysliderAction.C
zdemo.C

CMS 10 Oct Rene Brun ROOT I/O Overview 7

The Libraries

! Over 500 classes

! 650,000 lines of code
! Core (5 Mbytes)
! CINT (1.5 Mbytes)
! All libs (17 Mbytes)
! green libs linked on demand

CMS 10 Oct Rene Brun ROOT I/O Overview 8

Root Libs Structure

! Root libs are a layered structure

! CORE classes always required (support for RTTI, basic
I/O and interpreter.

! The application libraries. You load only what you use.
Separation between Data Objects and the high level
classes acting on these objects. Example, a batch job
uses only the Hist lib, no need to link HistPainter.

! Root shared libs reduce the application link time.
! Root libs are small libraries.
! Root libs can be used with other class libraries.

CMS 10 Oct Rene Brun ROOT I/O Overview 9

Dynamic Linking

Application
Executable Module

Experiment
libraries User

libraries

General
libraries

A Shared Library can be linked dynamically
to a running executable module

A Shared Library facilitates the development
and maintenance phases

ROOT I/O Overview 10

The ROOT Object Dictionary

CMS 10 Oct Rene Brun ROOT I/O Overview 11

The CINT RTTI

! The Run Time Type Information provided by CINT (rootcint)
is the brain of Root. rootcint can be used to parse user classes
and considerably extend the power of Root.

! RTTI is used by the I/O services

! By definition the interpreter is based on it.

! The GUI object context sensitive menus also.

! Also Browsers, Inspectors and html generator

! also Root utilities to draw class diagrams
! rootcint can be used to parse user classes such that user class

functions can be called interactively and code for I/O generated
automatically.

CMS 10 Oct Rene Brun ROOT I/O Overview 12

Rootcint Preprocessor

UserClass1.hUserClass1.hUserClass1.hUserClass1.hUserClass1.hUserClass1.h

rootcint

UserCint.C

C++ code
to create
the RTTI

Interface for
CINT interpreter

Streamers

CMS 10 Oct Rene Brun ROOT I/O Overview 13

Any User class library
with the RTTI info

can be plugged into
a ROOT executable

and its functions
called interactively

idem for I/O

ROOT I/O Overview 14

Object Persistency

CMS 10 Oct Rene Brun ROOT I/O Overview 15

Simple to Complex cases

Histograms

Ntuples
Trees

Local
Event
Store

Distributed
Event
Store

CMS 10 Oct Rene Brun ROOT I/O Overview 16

ROOT + RDBMS Model

histograms

Calibrations

Geometries

Run/File
Catalog

Trees

Event Store

ROOT
files

Oracle
MySQL

CMS 10 Oct Rene Brun ROOT I/O Overview 17

Ideal Persistency

transient

persistent

Automatic
converters

obj1;1, obj1;2,obj1;3
obj2;1, obj2;2

Automatic
schema

evolution

Efficient
storage

compression

Granularity
matching

access
patterns

Remote
access

LAN
WAN

Machine
independent

format

No constraints
on

object model

CMS 10 Oct Rene Brun ROOT I/O Overview 18

Evolution of ROOT I/O
! Hand-written Streamers
! Streamers generated via rootcint
! Support for Class Versions
! Support for ByteCount
! Several attempts to introduce automatic class evolution
! Persistent class Dictionary written to files
! rootcint modified to generate automatic Streamers
! can generate code for “DataObjects” classes in a file
! Support for STL and more complex C++ cases
! Trees take advantage of the new scheme
! Can read files without the classes
! Persistent Reference pointers

3.00

3.01

1995

2001

3.02New

CMS 10 Oct Rene Brun ROOT I/O Overview 19

ROOT I/O : An Example

TFile f(“example.root”,”new”);

TH1F h(“h”,”My histogram”,100,-3,3);

h.FillRandom(“gaus”,5000);

h.Write();

TFile f(“example.root”);

TH1F *h = (TH1F*)f.Get(“h”):

h->Draw();

f.Map();

Program Writing

Program Reading

20010831/171903 At:64 N=90 TFile
20010831/171941 At:154 N=453 TH1F CX = 2.09
20010831/171946 At:607 N=2364 StreamerInfo CX = 3.25
20010831/171946 At:2971 N=96 KeysList
20010831/171946 At:3067 N=56 FreeSegments
20010831/171946 At:3123 N=1 END

CMS 10 Oct Rene Brun ROOT I/O Overview 20

Example with CMS classes
! In the following slides we will use the CMS simulation classes

PSimHit, etc.
! Classes suggested by Vincenzo as exercise.
! Goal: No changes in the class model

! Minor changes in the header files to make these classes ROOT-aware

! Example1: How to generate the dictionary
! Example2: How to write PSimHit objects to a ROOT file (and read)
! Example3: How to write PSimHit objects to a Tree (and read)

ftp://root.cern.ch/root/cmsdemo.tar.gz

CMS 10 Oct Rene Brun ROOT I/O Overview 21

PSimHit.h
#include "LocalPoint.h"
#include "LocalVector.h"
#include "TObject.h"

class DetUnit;

class PSimHit : public TObject {
public:

PSimHit() : theDetUnitId(-1) {}
PSimHit(const Local3DPoint& entry, const Local3DPoint& exit,

float pabs, float tof, float eloss, int particleType,
int detId, unsigned int trackId) :

theEntryPoint(entry), theExitPoint(exit),
.....

float pabs() const {return thePabs;}
float tof() const {return theTof;}
float energyLoss() const {return theEnergyLoss;}
int particleType() const {return theParticleType;}
int detUnitId() const {return theDetUnitId;}
unsigned int trackId() const {return theTrackId;}

private:

// properties
Local3DPoint theEntryPoint; // position
Local3DPoint theExitPoint;
float thePabs; // momentum
float theTof; // Time Of Flight
float theEnergyLoss; // Energy loss
int theParticleType;

// association
int theDetUnitId;
unsigned int theTrackId;

ClassDef(PSimHit,1)

};

#include "LocalTag.h"
#include "Point2DBase.h"
#include "Point3DBase.h"

typedef Point2DBase< float, LocalTag> Local2DPoint;
typedef Point3DBase< float, LocalTag> Local3DPoint;

// Local points are two-dimensional by default
typedef Local3DPoint LocalPoint;

CMS 10 Oct Rene Brun ROOT I/O Overview 22

Point3DBase.h

#include "PV3DBase.h"
#include "Point2DBase.h"
#include "Vector3DBase.h"
#include "TObject.h"

template <class T, class FrameTag>
class Point3DBase : public PV3DBase< T, PointTag, FrameTag> {
public:

typedef PV3DBase< T, PointTag, FrameTag> BaseClass;
typedef Vector3DBase< T, FrameTag> VectorType;
typedef Basic3DVector<T> BasicVectorType;

Point3DBase() {}

Point3DBase(const T& x, const T& y, const T& z) : BaseClass(x, y, z)
{}

…….
ClassDefT(Point3DBase,1)
};
ClassDef2T2(Point3DBase,T,FrameTag)

CMS 10 Oct Rene Brun ROOT I/O Overview 23

Point3DBase.h
#include "Basic3DVector.h"
#include <iosfwd>
#include "TObject.h"

template <class T, class PVType, class FrameType>
class PV3DBase {
public:
typedef Basic3DVector<T> BasicVectorType;

PV3DBase() : theVector() {}
PV3DBase(const T & x, const T & y, const T & z) : theVector(x, y, z) {}
PV3DBase(const Basic3DVector<T>& v) : theVector(v) {}

T x() const { return basicVector().x();}
T y() const { return basicVector().y();}
T mag2() const { return basicVector().mag2();}
T r() const { return basicVector().r();}

……..
protected:
BasicVectorType& basicVector() { return theVector;}

private:
BasicVectorType theVector;

ClassDefT(PV3DBase,1)
};

ClassDef3T2(PV3DBase,T,PVType,FrameType)

CMS 10 Oct Rene Brun ROOT I/O Overview 24

Basic3DVector.h
#include "Basic2DVector.h"
#include <iosfwd>
#include <cmath>
#include "TObject.h"

template < class T>
class Basic3DVector {

public:
// default constructor
Basic3DVector() : theX(0), theY(0), theZ(0){}

Basic3DVector(const T& x, const T& y, const T& z) :
theX(x), theY(y), theZ(z) {}

T x() const { return theX;}
T y() const { return theY;}
T z() const { return theZ;}

…...
private:
T theX;
T theY;
T theZ;

ClassDefT(Basic3DVector,1)
};
ClassDefT2(Basic3DVector,T)

CMS 10 Oct Rene Brun ROOT I/O Overview 25

Running rootcint on PSimHit.h
Building the shared lib

rootcint -f Dict.cxx -c PSimHit.h LinkDef.h
g++ -fPIC -I$ROOTSYS/include -c Dict.cxx
g++ -fPIC -I$ROOTSYS/include -c PSimHit.cxx
g++ -shared -g PSimHit.o Dict.o -o libHit.so

#pragma link off all globals;
#pragma link off all classes;
#pragma link off all functions;

#pragma link C++ class LocalTag+;
#pragma link C++ class PointTag+;
#pragma link C++ class VectorTag+;
#pragma link C++ class Basic2DVector<float>+;
#pragma link C++ class Basic3DVector<float>+;
#pragma link C++ class PV2DBase<float, VectorTag, LocalTag>+;
#pragma link C++ class PV2DBase<float, PointTag, LocalTag>+;
#pragma link C++ class PV3DBase<float, VectorTag, LocalTag>+;
#pragma link C++ class PV3DBase<float, PointTag, LocalTag>+;
#pragma link C++ class Vector2DBase<float, LocalTag>+;
#pragma link C++ class Vector3DBase<float, LocalTag>+;
#pragma link C++ class Point2DBase<float, LocalTag>+;
#pragma link C++ class Point3DBase<float, LocalTag>+;
#pragma link C++ class PSimHit+;

LinkDef.h Classes used by PSimHit
use C++ templates

heavily
All Template instances

must be declared

CMS 10 Oct Rene Brun ROOT I/O Overview 26

Writing CMS PSimHit objects
void demo1() {

//create a new ROOT file
TFile f("demo1.root","recreate");

//Create a PSimHit with the default constructor
PSimHit h1;

//Write it to the file with the key name hit1
h1.Write("hit1");

//Create a normal PSimHit with the entry and exit point
Local3DPoint pentry(1,2,3);
Local3DPoint pexit(10,20,30);
float pabs = 41;
float tof = 1.67e-8;
float eloss = 5.78e-3;
int pType = 12;
int detId = 67;
int trackId = 1234;
PSimHit h2(pentry,pexit,pabs,tof,eloss,pType,detId,trackId);

//Write it to the file with the key name hit2
h2.Write("hit2");

}

CMS 10 Oct Rene Brun ROOT I/O Overview 27

Reading CMS PSimHit objects

void demo2() {
//connect the ROOT file demo1.root in readonly mode

TFile *f = new TFile("demo1.root");

//Read hit2

PSimHit *hit = (PSimHit*)f->Get("hit2");

//print some hit members

cout <<" X1= "<<hit->entryPoint().x()
<<" Y2= "<<hit->exitPoint().y()
<<" pabs= "<<hit.pabs()<<endl;

delete hit;

//Open the ROOT browser and inspect the file

new TBrowser;

//click on "ROOT files", then "demo1.root", with the
//right button, select menu items "Inspect", "DrawClass"
//on hit2

}

CMS 10 Oct Rene Brun ROOT I/O Overview 28

Browsing the file

root [0] TFile f("demo1.root")
root [1] TBrowser b
root [2] f.ls();

root [3] f.Map();

root [4] hit2.Dump();

theEntryPoint ->874a01c position
theEntryPoint.theVector ->874a01c
theEntryPoint.theVector.theX 1
theEntryPoint.theVector.theY 2
theEntryPoint.theVector.theZ 3
theExitPoint ->874a030
theExitPoint.theVector ->874a030
theExitPoint.theVector.theX 10
theExitPoint.theVector.theY 20
theExitPoint.theVector.theZ 30
thePabs 41 momentum
theTof 1.67e-08 Time Of Flight
theEnergyLoss 0.00578 Energy loss
theParticleType 12
theDetUnitId 67
theTrackId 1234
fUniqueID 0 object unique identifier
fBits 50331648 bit field status word

TFile* demo1.root
KEY: PSimHit hit1;1
KEY: PSimHit hit2;1

20011008/091050 At:64 N=86 TFile
20011008/091050 At:150 N=128 KeysList
Address = 278 Nbytes = -27 =====G A P===========
20011008/091050 At:305 N=140 PSimHit
20011008/091050 At:445 N=140 PSimHit
20011008/091050 At:585 N=952 StreamerInfo CX = 2.66
20011008/091050 At:1537 N=64 FreeSegments
20011008/091050 At:1601 N=1 END

The description of
all classes

in a file
is written

in one single record
when the file is closed

StreamerInfo

CMS 10 Oct Rene Brun ROOT I/O Overview 29

ROOT I/O -- Sequential/Flat

Object in
memoryObject in

memoryObject in
memoryObject in

memoryObject in
memory

Streamer

TFile

Object in
memory

ObjectGramTBuffer

Transient Object
is serialized

by the Streamer
No need for

transient/persistent
classes

TWebFile
web server

TNetFile
rootd

TRFIOFile
RFIO daemon

TMapFile
shared memory

sockets

http

CMS 10 Oct Rene Brun ROOT I/O Overview 30

All what you
need to known

to navigate
in a ROOT file

CMS 10 Oct Rene Brun ROOT I/O Overview 31

Root objects or
any User Object can be
stored in ROOT folders

and browsed

CMS 10 Oct Rene Brun ROOT I/O Overview 32

ROOT files can be
structured

like a Unix file system

CMS 10 Oct Rene Brun ROOT I/O Overview 33

A Root file pippa.root
with two levels of

directories

Objects in directory
/pippa/DM/CJ

eg:
/pippa/DM/CJ/h15

CMS 10 Oct Rene Brun ROOT I/O Overview 34

LAN/WAN files

! Files and Directories
! a directory holds a list of named objects

! a file may have a hierarchy of directories (a la Unix)

! ROOT files are machine independent

! built-in compression

! Support for local, LAN and WAN files
! TFile f1("myfile.root")

! TFile f2("http://pcbrun.cern.ch/Renefile.root")

! TFile f3("root://cdfsga.fnal.gov/bigfile.root")

! TFile f4("rfio://alice/run678.root")

Local file

Remote file
access via

a Web server

Remote file
access via

the ROOT daemon
Access to a file
on a mass store

hpps, castor, via RFIO

See Fons
talk

ROOT I/O Overview 35

Streaming Objects

CMS 10 Oct Rene Brun ROOT I/O Overview 36

Old Streamers in 0.90 (1996)
Evolution illustrated with the ROOT class TAxis

class TAxis : public
TNamed,
public TAttAxis {

private:
Int_t fNbins;
Float_t fXmin;
Float_t fXmax;
TArrayF fXbins;

void TAxis::Streamer(TBuffer &b)
{

if (b.IsReading()) {
Version_t v = b.ReadVersion();
TNamed::Streamer(b);
TAttAxis::Streamer(b);
b >> fNbins;
b >> fXmin;
b >> fXmax;
fXbins.Streamer(b);

} else {
b.WriteVersion(TAxis::IsA());
TNamed::Streamer(b);
TAttAxis::Streamer(b);
b << fNbins;
b << fXmin;
b << fXmax;
fXbins.Streamer(b);

}
}

rootcint
TBuffer b;

object.Streamer(b);

TAxis.h Dict.cxx

CMS 10 Oct Rene Brun ROOT I/O Overview 37

Old Streamers in 2.25 (1999)

class TAxis : public TNamed,
public TAttAxis {

private:
Int_t fNbins;
Float_t fXmin;
Float_t fXmax;
TArrayF fXbins;
Int_t fFirst;
Int_t fLast;
TString fTimeFormat;
Bool_t fTimeDisplay;

void TAxis::Streamer(TBuffer &b) {
UInt_t R__s, R__c;
if (b.IsReading()) {

Version_t v = b.ReadVersion(&R__s, &R__c);
TNamed::Streamer(b);
TAttAxis::Streamer(b);
b >> fNbins;
b >> fXmin;
b >> fXmax;
fXbins.Streamer(b);
if (v > 2) {

b >> fFirst;
b >> fLast;

}
if (v > 3) {

b >> fTimeDisplay;
fTimeFormat.Streamer(b);

} else {
SetTimeFormat();

}
b.CheckByteCount(R__s, R__c, TAxis::IsA());

} else {
R__c = b.WriteVersion(TAxis::IsA(), kTRUE);
TNamed::Streamer(b);
TAttAxis::Streamer(b);
b << fNbins;
b << fXmin;
b << fXmax;
fXbins.Streamer(b);
b << fFirst;
b << fLast;
b << fTimeDisplay;
fTimeFormat.Streamer(b);
b.SetByteCount(R__c, kTRUE);

}
}

rootcint

CMS 10 Oct Rene Brun ROOT I/O Overview 38

Problems with Old Streamers
! Experience in several large experiments has shown that a system

based only on automatic code generation with no support for
schema evolution is not a long term solution. A huge maintenance
problem.

! In a system with several hundred (thousand) classes and as many
users, it is difficult to maintain coherent shared libs to support all
possible combinations when accessing collections of old data sets.

! A few attempts (eg in STAR) to support automatic schema evolution
seen as a progress, but not sufficient.

! We have seen a rapidly growing request for reading data sets
without having the original classes.

! Backward compatibility (reading an old data set with new classes) is
a must. Forward compatibility (reading a new data set with old
classes) also a must.

CMS 10 Oct Rene Brun ROOT I/O Overview 39

The ROOT solution
! Minimize reliance on generated code.
! Exploit the powerful CINT Object Dictionary
! Make the process as automatic as possible and as simple as

possible.
! Be as efficient as with the generated code.
! Self-describing data sets.
! Come with a solution that does not prevent the move to another

language in the future.
! Back compatibility with the original system.

! Like upgrading the engine in a running car

Implementing all these features
was a non trivial exercise

and a lot of work

Thanks to our huge users base
for providing many use cases

and testing

CMS 10 Oct Rene Brun ROOT I/O Overview 40

New Streamers in 3.00

class TAxis : public TNamed,
public TAttAxis {

private:
Int_t fNbins;
Double_t fXmin;
Double_t fXmax;
TArrayD fXbins;
Char_t *fXlabels; //!
Int_t fFirst;
Int_t fLast;
TString fTimeFormat;
Bool_t fTimeDisplay;
TObject *fParent; //!

void TAxis::Streamer(TBuffer &b)
{

// Stream an object of class TAxis.

if (b.IsReading())
TAxis::Class()->ReadBuffer(b, this);

else
TAxis::Class()->WriteBuffer(b,this);

}

rootcint

CMS 10 Oct Rene Brun ROOT I/O Overview 41

Support for more complex C++

enum {kSize=10};

char fType[20]; //array of 20 chars
Int_t fNtrack; //number of tracks
Int_t fNvertex; //number of vertices
Int_t fX[kSize]; //an array where dimension is an enum
UInt_t fFlag; //bit pattern event flag
Float_t fMatrix[4][4]; //a two-dim array
Float_t *fDistance; //[fNvertex] array of floats of length fNvertex
Double_t fTemperature; //event temperature
TString *fTstringp; //[fNvertex] array of TString
TString fNames[12]; //array of TString
TAxis fXaxis; //example of class derived from TObject
TAxis fYaxis[3]; //array of objects
TAxis *fVaxis[3]; //pointer to an array of TAxis
TAxis *fPaxis; //[fNvertex] array of TAxis of length fNvertex
TAxis **fQaxis; //[fNvertex] array of pointers to TAxis objects
TDatime fDatime; //date and time
EventHeader fEvtHdr; //example of class not derived from TObject
TObjArray fObjArray; //An object array of TObject*
TClonesArray *fTracks; //-> array of tracks
TH1F *fH; //-> pointer to an histogram
TArrayF fArrayF; //an array of floats
TArrayI *fArrayI; //a pointer to an array of integers

………………..(see next)

CMS 10 Oct Rene Brun ROOT I/O Overview 42

Support for STL

vector<int> fVectorint; //STL vector on ints
vector<short> fVectorshort; //STL vector of shorts
vector<double> fVectorD[4]; //array of STL vectors of doubles
vector<TLine> fVectorTLine; //|| STL vector of TLine objects
vector<TObject> *fVectorTobject; //|| pointer to an STL vector
vector<TNamed> *fVectorTnamed[6]; //|| array of pointers to STL vectors
deque<TAttLine> fDeque; //STL deque
list<const TObject*> fVectorTobjectp; //STL list of pointers to objects
list<string> *fListString; //STL list of strings
list<string *> fListStringp; //STL list of pointers to strings
map<TNamed*,int> fMapTNamedp; //STL map

map<TString,TList*> fMapList; //STL map
map<TAxis*,int> *fMapTAxisp; //pointer to STL map
set<TAxis*> fSetTAxis; //STL set
set<TAxis*> *fSetTAxisp; //pointer to STL set
multimap<TNamed*,int> fMultiMapTNamedp; //STL multimap
multiset<TAxis*> *fMultiSetTAxisp; //pointer to STL multiset
string fString; //C++ standard string
string *fStringp; //pointer to standard C++ string
UShortVector fUshort; //class with an STL vector as base class

CMS 10 Oct Rene Brun ROOT I/O Overview 43

Complex STL use not supported

vector<vector<TAxis *> > fVectAxis; //!STL vector of vectors of TAxis*
map<string,vector<int> > fMapString; //!STL map of string/vector
deque<pair<float,float> > fDequePair; //!STL deque of pair

Use a custom Streamer
for these complex cases

CMS 10 Oct Rene Brun ROOT I/O Overview 44

The ROOT Collection Classes

All ROOT collections support Polymorphism

-TCollection (abstract base class)

-TSeqCollection, TList, THashList

-TMap, TExMap

-TObjArray

TClonesArray is a specialized
collection for arrays of objects of the
same class.

It minimizes the overhead due to
new/delete. Much more efficient than
STL for I/O (see next slides)

TRefArray is an optimized collection
for persistent reference pointers.

See example Event

Tbuffer b;

collection.Streamer(b);

New in
3.02

CMS 10 Oct Rene Brun ROOT I/O Overview 45

The Test suite “bench”
(example on fcdfsgi2 with KAI compiler)

! Test performance of STL vector of objects, vectors of pointers and
same with a TClonesArray of TObjHit deriving from THit

Better compression
with TClonesArray

Better write
with TClonesArray

Much better read
with TClonesArray

CMS 10 Oct Rene Brun ROOT I/O Overview 46

Test suite “bench”

CMS 10 Oct Rene Brun ROOT I/O Overview 47

Self-Describing file

Root > TFile f(“demo1.root”);
Root > f.ShowStreamerInfo();

StreamerInfo for class: PSimHit, version=1
BASE TObject offset= 0 type=66 Basic ROOT object
Local3DPoint theEntryPoint offset= 0 type=62 position
Local3DPoint theExitPoint offset= 0 type=62
float thePabs offset= 0 type= 5 momentum
float theTof offset= 0 type= 5 Time Of Flight
float theEnergyLoss offset= 0 type= 5 Energy loss
int theParticleType offset= 0 type= 3
int theDetUnitId offset= 0 type= 3
unsigned int theTrackId offset= 0 type=13

StreamerInfo for class: Point3DBase<float,LocalTag>, version=1
BASE PV3DBase<float,PointTag,LocalTag> offset= 0 type= 0

StreamerInfo for class: PV3DBase<float,PointTag,LocalTag>, version=1
Basic3DVector<float>theVector offset= 0 type=62

StreamerInfo for class: Basic3DVector<float>, version=1
float theX offset= 0 type= 5
float theY offset= 0 type= 5

float theZ offset= 0 type= 5

CMS 10 Oct Rene Brun ROOT I/O Overview 48

Self-describing files
! Dictionary for persistent classes written to the file when closing the

file.
! ROOT files can be read by foreign readers (eg JavaRoot (Tony

Johnson)
! Support for Backward and Forward compatibility
! Files created in 2003 must be readable in 2015
! Classes (data objects) for all objects in a file can be regenerated via

TFile::MakeProject

Root >TFile f(“demo.root”);

Root > f.MakeProject(“dir”,”*”,”new++”);

CMS 10 Oct Rene Brun ROOT I/O Overview 49

Showing classes in a file
TFile::ShowStreamerInfo
Root > f.ShowStreamerInfo()

CMS 10 Oct Rene Brun ROOT I/O Overview 50

Automatic Schema Evolution

CMS 10 Oct Rene Brun ROOT I/O Overview 51

Auto Schema Evolution (2)

ROOT I/O Overview 52

ROOT Trees

CMS 10 Oct Rene Brun ROOT I/O Overview 53

Ntuples and Trees

! Ntuples
! support PAW-like ntuples and functions

! PAW ntuples/histograms can be imported

! Trees
! Extension of Ntuples for Objects

! Collection of branches (branch has its own buffer)

! Can input partial Event

! Can have several Trees in parallel

! Chains = collections of Trees

CMS 10 Oct Rene Brun ROOT I/O Overview 54

Why Trees ?
! Any object deriving from TObject can be written to a file with an

associated key with object.Write()
! However each key has an overhead in the directory structure in

memory (about 60 bytes). Object.Write is very convenient for
objects like histograms, detector objects, calibrations, but not for but not for
event objects.event objects.

CMS 10 Oct Rene Brun ROOT I/O Overview 55

Why Trees ?

! Trees have been designed to support very large collections of
objects. The overhead in memory is in general less than 4 bytes per
entry.

! Trees allow direct and random access to any entry (sequential
access is the best)

! Trees have branches and leaves. One can read a subset of all
branches. This can speed-up considerably the data analysis
processes.

CMS 10 Oct Rene Brun ROOT I/O Overview 56

Why Trees ?

! PAW ntuples are a special case of Trees.
! Trees are designed to work with complex event objects.
! High level functions like TTree::Draw loop on all entries

with selection expressions.
! Trees can be browsed via TBrowser
! Trees can be analized via TTreeViewer

The PROOF system is designed to process chains

of Trees in parallel in a GRID environment

CMS 10 Oct Rene Brun ROOT I/O Overview 57

Create a TTree Object

A tree is a list of branches.
The TTree Constructor:

! Tree Name (e.g. "myTree")
! Tree Title

TTree *tree = new TTree("T","A ROOT tree");

CMS 10 Oct Rene Brun ROOT I/O Overview 58

Adding a Branch

! Branch name
! Class name
! Address of the pointer to the Object (descendant

of TObject)
! Buffer size (default = 32,000)
! Split level (default = 1)

Event *event = new Event();
myTree->Branch(”eBranch","Event",&event,64000,1);

Many Branch
constructors
Only a few
shown here

CMS 10 Oct Rene Brun ROOT I/O Overview 59

Splitting a Branch

Setting the split level (default = 1)

Split level = 0 Split level = 1

Example:
tree->Branch("EvBr","Event",&ev,64000,0);

CMS 10 Oct Rene Brun ROOT I/O Overview 60

Adding Branches with a List of Variables

! Branch name
! Address: the address of the first item of a

structure.
! Leaflist: all variable names and types
! Order the variables according to their size

Example
TBranch *b = tree->Branch ("Ev_Branch",&event,

"ntrack/I:nseg:nvtex:flag/i:temp/F");

CMS 10 Oct Rene Brun ROOT I/O Overview 61

Adding Branches with a TClonesArray

! Branch name
! Address of a pointer to a

TClonesArray
! Buffer size
! Split level (default = 1)

Example:
tree->Branch("Track_B",&Track,64000,1);

CMS 10 Oct Rene Brun ROOT I/O Overview 62

Filling the Tree

! Create a for loop
! Create Event objects.
! Call the Fill method for the

tree.
myTree->Fill()

CMS 10 Oct Rene Brun ROOT I/O Overview 63

Write the Tree header

The Tree header contains a description of the Tree
! It owns the collection of branches
! Each branch has a buffer (TBasket) partially filled
! TTree::Write writes one single record on the file

tree->Write();

CMS 10 Oct Rene Brun ROOT I/O Overview 64

ROOT I/O -- Split/Cluster

Object in
memoryObject in

memoryObject in
memoryObject in

memoryObject in
memory

Streamer

File

BranchesObject in
memory

Clustering
per attribute
or sub-object

CMS 10 Oct Rene Brun ROOT I/O Overview 65

ROOT I/O -- Split/Cluster
Tree version

Streamer

File

Branches

Tree in memory

Tree entries

In Split mode
objects of the same type
are automatically sorted.

This makes selective reading
much faster

CMS 10 Oct Rene Brun ROOT I/O Overview 66

ROOT I/O - Split - multifile

Object in
memoryObject in

memoryObject in
memoryObject in

memoryObject in
memory

Streamer

File1

File2

File3

Object in
memory

TAGs

Tapes

CMS 10 Oct Rene Brun ROOT I/O Overview 67

Serial mode

Split mode

CMS 10 Oct Rene Brun ROOT I/O Overview 68

Structure designed to support

very large DBs

CMS 10 Oct Rene Brun ROOT I/O Overview 69

The Event class

class Event : public TObject {

private:
char fType[20]; //event type
Int_t fNtrack; //Number of tracks
Int_t fNseg; //Number of track segments
Int_t fNvertex;
UInt_t fFlag;
Float_t fTemperature;
Int_t fMeasures[10];
Float_t fMatrix[4][4];
Float_t *fClosestDistance; //[fNvertex]
EventHeader fEvtHdr;
TClonesArray *fTracks; //->array with all tracks
TRefArray *fHighPt; //array of High Pt tracks only
TRefArray *fMuons; //array of Muon tracks only
TRef fLastTrack; //reference pointer to last track
TH1F *fH; //->

class EventHeader {

private:
Int_t fEvtNum;
Int_t fRun;
Int_t fDate;

See $ROOTSYS/test/Event.h

CMS 10 Oct Rene Brun ROOT I/O Overview 70

The Track class

class Track : public TObject {

private:
Float_t fPx; //X component of the momentum
Float_t fPy; //Y component of the momentum
Float_t fPz; //Z component of the momentum
Float_t fRandom; //A random track quantity
Float_t fMass2; //The mass square of this particle
Float_t fBx; //X intercept at the vertex
Float_t fBy; //Y intercept at the vertex
Float_t fMeanCharge; //Mean charge deposition of all hits
Float_t fXfirst; //X coordinate of the first point
Float_t fXlast; //X coordinate of the last point
Float_t fYfirst; //Y coordinate of the first point
Float_t fYlast; //Y coordinate of the last point
Float_t fZfirst; //Z coordinate of the first point
Float_t fZlast; //Z coordinate of the last point
Float_t fCharge; //Charge of this track
Float_t fVertex[3]; //Track vertex position
Int_t fNpoint; //Number of points for this track
Short_t fValid; //Validity criterion

CMS 10 Oct Rene Brun ROOT I/O Overview 71

Event Builder

void Event::Build(Int_t ev, Int_ntrack, Float_t ptmin) {

Clear();
………..
for (Int_t t = 0; t < ntrack; t++) AddTrack(random,ptmin);

}

Track *Event::AddTrack(Float_t random, Float_t ptmin)
{

// Add a new track to the list of tracks for this event.
// To avoid calling the very time consuming operator new for each track,
// the standard but not well know C++ operator "new with placement"
// is called. If tracks[i] is 0, a new Track object will be created
// otherwise the previous Track[i] will be overwritten.

TClonesArray &tracks = *fTracks;
Track *track = new(tracks[fNtrack++]) Track(random);
//Save reference to last Track in the collection of Tracks

fLastTrack = track;
//Save reference in fHighPt if track is a high Pt track

if (track->GetPt() > ptmin) fHighPt->Add(track);
//Save reference in fMuons if track is a muon candidate

if (track->GetMass2() < 0.11) fMuons->Add(track);
return track;

}

CMS 10 Oct Rene Brun ROOT I/O Overview 72

Tree example Event (write)
void demoe(int nevents) {

//load shared lib with the Event class

gSystem->Load("$ROOTSYS/test/libEvent");

//create a new ROOT file

TFile f("demoe.root",”new");

//Create a ROOT Tree with one single top level branch

int split = 99; //try also split=1 and split=0

int bufsize = 16000;
Event *event = new Event;
TTree T("T","Event demo tree");
T.Branch("event","Event",&event,bufsize,split);

//Build Event in a loop and fill the Tree

for (int i=0;i<nevents;i++) {
event->Build(i);
T.Fill();

}

T.Print(); //Print Tree statistics
T.Write(); //Write Tree header to the file

}

All the examples
can be executed
with CINT
or the compiler

root > .x demoe.C
root > .x demoe.C++

CMS 10 Oct Rene Brun ROOT I/O Overview 73

Tree example Event (read 1)
void demoer() {

//load shared lib with the Event class
gSystem->Load("$ROOTSYS/test/libEvent");

//connect ROOT file
TFile *f = new TFile("demoe.root");

//Read Tree header and set top branch address
Event *event = 0;
TTree *T = (TTree*)f->Get("T");
T->SetBranchAddress("event",&event);

//Loop on events and fill an histogram
TH1F *h = new TH1F("hntrack","Number of tracks",100,580,620);
int nevents = (int)T->GetEntries();
for (int i=0;i<nevents;i++) {

T->GetEntry(i);
h->Fill(event->GetNtrack());

}

h->Draw();

}

Rebuild the full event
in memory

CMS 10 Oct Rene Brun ROOT I/O Overview 74

Tree example Event (read 2)
void demoer2() {

//load shared lib with the Event class
gSystem->Load("$ROOTSYS/test/libEvent");

//connect ROOT file
TFile *f = new TFile("demoe.root");

//Read Tree header and set top branch address
Event *event = 0;
TTree *T = (TTree*)f->Get("T");
T->SetBranchAddress("event",&event);
Tbranch *bntrack = T->GetBranch(“fNtrack”);

//Loop on events and fill an histogram
TH1F *h = new TH1F("hntrack","Number of tracks",100,580,620);
int nevents = (int)T->GetEntries();
for (int i=0;i<nevents;i++) {

bntrack->GetEntry(i);
h->Fill(event->GetNtrack());

}

h->Draw();

}

Read only
one branch

Much faster !

CMS 10 Oct Rene Brun ROOT I/O Overview 75

Tree example Event (read 3)

void demoer3() {
//load shared lib with the Event class
gSystem->Load("$ROOTSYS/test/libEvent");

//connect ROOT file
TFile *f = new TFile("demoe.root");

//Read Tree header
TTree *T = (TTree*)f->Get("T");

//Histogram number of tracks via the TreePlayer
T->Draw(“event->GetNtrack()”);

}

CMS 10 Oct Rene Brun ROOT I/O Overview 76

Writing CMS PSimHit in a Tree
void demo3() {

//create a new ROOT file
TFile f("demo3.root","recreate");

//Create a ROOT Tree with one single top level branch
int split = 99; //you can try split=1 and split=0
int bufsize = 16000;
PSimHit *hit = 0;
TTree T("T","CMS demo tree");
T.Branch("hit","PSimHit",&hit,bufsize,split);

//Create hits in a loop and fill the Tree
TRandom r;
for (int i=0;i<50000;i++) {

delete hit;
Local3DPoint pentry(r.Gaus(0,1), r.Gaus(0,1), r.Gaus(0,10));
Local3DPoint pexit (r.Gaus(0,3), r.Gaus(0,3), r.Gaus(50,20));
float pabs = 100*r.Rndm();
float tof = r.Gaus(1e-6,1e-8);
float eloss= r.Landau(1e-3,1e-7);
int ptype = i%2;
int detId = i%20;
int trackId= i%100;
hit = new PSimHit(pentry,pexit,pabs,tof,eloss,ptype,detId,trackId);

T.Fill();
}

T.Print(); //Print Tree statistics
T.Write(); //Write Tree header to the file

}

CMS 10 Oct Rene Brun ROOT I/O Overview 77

Browsing the PSimHit Tree
split = 0

*Tree :T : CMS demo tree *
*Entries : 50000 : Total = 4703775 bytes File Size = 2207143 *
* : : Tree compression factor = 2.13 *
**
*Br 0 :hit : *
*Entries : 50000 : Total Size= 4703775 bytes File Size = 2207143 *
*Baskets : 295 : Basket Size= 16000 bytes Compression= 2.13 *
..

1 branch only

CMS 10 Oct Rene Brun ROOT I/O Overview 78

Browsing the PSimHit Tree
split = 1

**
*Tree :T : CMS demo tree *
*Entries : 50000 : Total = 5258415 bytes File Size = 2021907 *
* : : Tree compression factor = 2.60 *
**
*Branch :hit *
*Entries : 50000 : BranchElement (see below) *
..
*Br 0 :TObject : *
*Entries : 50000 : Total Size= 697816 bytes File Size = 79579 *
*Baskets : 56 : Basket Size= 16000 bytes Compression= 8.77 *
..
*Br 1 :theEntryPoint : *
*Entries : 50000 : Total Size= 1704437 bytes File Size = 750090 *
*Baskets : 119 : Basket Size= 16000 bytes Compression= 2.27 *
..
*Br 2 :theExitPoint : *
*Entries : 50000 : Total Size= 1704318 bytes File Size = 744721 *
*Baskets : 119 : Basket Size= 16000 bytes Compression= 2.29 *
..
*Br 3 :thePabs : *
*Entries : 50000 : Total Size= 191988 bytes File Size = 170871 *
*Baskets : 12 : Basket Size= 16000 bytes Compression= 1.12 *
..
*Br 4 :theTof : *
*Entries : 50000 : Total Size= 191976 bytes File Size = 145548 *
*Baskets : 12 : Basket Size= 16000 bytes Compression= 1.32 *
..
*Br 5 :theEnergyLoss : *
*Entries : 50000 : Total Size= 191964 bytes File Size = 122761 *
*Baskets : 12 : Basket Size= 16000 bytes Compression= 1.56 *
..
*Br 6 :theParticleType : *
*Entries : 50000 : Total Size= 191988 bytes File Size = 1860 *
*Baskets : 12 : Basket Size= 16000 bytes Compression= 103.22 *
..
*Br 7 :theDetUnitId : *
*Entries : 50000 : Total Size= 191952 bytes File Size = 2298 *
*Baskets : 12 : Basket Size= 16000 bytes Compression= 83.53 *
..
*Br 8 :theTrackId : *
*Entries : 50000 : Total Size= 191976 bytes File Size = 4179 *
*Baskets : 12 : Basket Size= 16000 bytes Compression= 45.94 *
..

9 branches

CMS 10 Oct Rene Brun ROOT I/O Overview 79

Browsing the PSimHit Tree
split = 99

**
*Tree :T : CMS demo tree *

*Entries : 50000 : Total = 2687592 bytes File Size = 1509041 *
* : : Tree compression factor = 1.78 *
**
*Branch :hit *
*Entries : 50000 : BranchElement (see below) *
..
*Br 0 :fUniqueID : *
*Entries : 50000 : Total Size= 191964 bytes File Size = 1272 *
*Baskets : 12 : Basket Size= 16000 bytes Compression= 150.92 *
..
*Br 1 :fBits : *
*Entries : 50000 : Total Size= 191964 bytes File Size = 1260 *
*Baskets : 12 : Basket Size= 16000 bytes Compression= 152.35 *
..
*Br 2 :theEntryPoint : *
*Entries : 50000 : Total Size= 0 bytes File Size = 0 *
*Baskets : 0 : Basket Size= 16000 bytes Compression= 1.00 *
..
*Br 3 :theEntryPoint.theVector.theX : *
*Entries : 50000 : Total Size= 191952 bytes File Size = 177959 *
*Baskets : 12 : Basket Size= 16000 bytes Compression= 1.08 *
..
*Br 4 :theEntryPoint.theVector.theY : *
*Entries : 50000 : Total Size= 191952 bytes File Size = 177934 *
*Baskets : 12 : Basket Size= 16000 bytes Compression= 1.08 *
..
*Br 5 :theEntryPoint.theVector.theZ : *
*Entries : 50000 : Total Size= 191952 bytes File Size = 178312 *
*Baskets : 12 : Basket Size= 16000 bytes Compression= 1.08 *
..
*Br 6 :theExitPoint : *
*Entries : 50000 : Total Size= 0 bytes File Size = 0 *
*Baskets : 0 : Basket Size= 16000 bytes Compression= 1.00 *
..
*Br 7 :theExitPoint.theVector.theX : *
*Entries : 50000 : Total Size= 191988 bytes File Size = 178060 *
*Baskets : 12 : Basket Size= 16000 bytes Compression= 1.08 *
..
*Br 8 :theExitPoint.theVector.theY : *
*Entries : 50000 : Total Size= 191988 bytes File Size = 178072 *
*Baskets : 12 : Basket Size= 16000 bytes Compression= 1.08 *
..
*Br 9 :theExitPoint.theVector.theZ : *
*Entries : 50000 : Total Size= 191988 bytes File Size = 168655 *
*Baskets : 12 : Basket Size= 16000 bytes Compression= 1.14 *
..
*Br 10 :thePabs : *
*Entries : 50000 : Total Size= 191988 bytes File Size = 170871 *
*Baskets : 12 : Basket Size= 16000 bytes Compression= 1.12 *
..
*Br 11 :theTof : *
*Entries : 50000 : Total Size= 191976 bytes File Size = 145548 *
*Baskets : 12 : Basket Size= 16000 bytes Compression= 1.32 *
..
*Br 12 :theEnergyLoss : *
*Entries : 50000 : Total Size= 191964 bytes File Size = 122761 *
*Baskets : 12 : Basket Size= 16000 bytes Compression= 1.56 *
..
*Br 13 :theParticleType : *
*Entries : 50000 : Total Size= 191988 bytes File Size = 1860 *
*Baskets : 12 : Basket Size= 16000 bytes Compression= 103.22 *
..
*Br 14 :theDetUnitId : *
*Entries : 50000 : Total Size= 191952 bytes File Size = 2298 *
*Baskets : 12 : Basket Size= 16000 bytes Compression= 83.53 *

..
*Br 15 :theTrackId : *
*Entries : 50000 : Total Size= 191976 bytes File Size = 4179 *
*Baskets : 12 : Basket Size= 16000 bytes Compression= 45.94 *
.. 16 branches

Double click
produces

this histogram

CMS 10 Oct Rene Brun ROOT I/O Overview 80

Collections of Hits

! A more realistic Tree will have
! A collection of Detectors
! Each detector one or more collection of hits

CMS 10 Oct Rene Brun ROOT I/O Overview 81

36 branches
in Tree T

19 leaves in
branch fDele

CMS 10 Oct Rene Brun ROOT I/O Overview 82

8 Branches of T

8 leaves of branch
Electrons A double-click

to histogram
the leaf

CMS 10 Oct Rene Brun ROOT I/O Overview 83

The Tree Viewer & Analyzer

A very powerful class
supporting

complex cuts,
event lists,

1-d,2-d, 3-d views
parallelism

CMS 10 Oct Rene Brun ROOT I/O Overview 84

Chains

Scenario:
Perform an analysis using multiple

ROOT files. All files are of the
same structure and have the
same tree.

Chains
are collections of

chains or files

Chains can be built
automatically by quering

the run/file catalog

CMS 10 Oct Rene Brun ROOT I/O Overview 85

Chains of Trees

! A TChain is a collection of Trees.
! Same semantics for TChains and TTrees

! root > .x h1chain.C
! root > chain.Process(“h1analysis.C”)

{
//creates a TChain to be used by the h1analysis.C class
//the symbol H1 must point to a directory where the H1 data sets
//have been installed

TChain chain("h42");
chain.Add("$H1/dstarmb.root");
chain.Add("$H1/dstarp1a.root");
chain.Add("$H1/dstarp1b.root");
chain.Add("$H1/dstarp2.root");

}

CMS 10 Oct Rene Brun ROOT I/O Overview 86

Tree Friends

Root > TFile f1(“tree1.root”);

Root > tree.AddFriend(“tree2”,“tree2.root”)

Root > tree.AddFriend(“tree3”,“tree3.root”);

Root > tree.Draw(“x:a”,”k<c”);

Root > tree.Draw(“x:tree2.x”,”sqrt(p)<b”);

x

Processing time
independent of the
number of friends
unlike table joins

in RDBMS

Collaboration-wide
public read

Analysis group
protected

user
private

CMS 10 Oct Rene Brun ROOT I/O Overview 87

The “No Shared Library” case
! There are many applications for which it does not make sense to

read data without the code of the corresponding classes.
! In true OO, you want to exploit Data Hiding and rely on the

functional interface.
! However, there are also cases where the functional interface is not

necessary (PAW ntuples).
! It is nice to be able to browse any type of file without any code.

May be you cannot do much, but it gives some confidence that you
can always read your data sets.

! We have seen a religious debate on this subject.
! Our conclusion was that we had to support these two modes of

operation.
! Support for the “No Shared Lib case” is non trivial

CMS 10 Oct Rene Brun ROOT I/O Overview 88

read/query Trees without the classes

CMS 10 Oct Rene Brun ROOT I/O Overview 89

TFile::MakeProject
Generate the classes

header files
Compile them

make a shared lib
link the shared lib

CMS 10 Oct Rene Brun ROOT I/O Overview 90

TFile::MakeProject

All necessary
header files
are included

Comments
preserved

Can do I/O
Inspect

Browse,etc

ROOT I/O Overview 91

ROOT Folders

CMS 10 Oct Rene Brun ROOT I/O Overview 92

Why Folders ?

This diagram shows a system
without folders. The objects have
pointers to each other to access
each other's data.

Pointers are an efficient way to
share data between classes.
However, a direct pointer creates
a direct coupling between
classes.

This design can become a very
tangled web of dependencies in a
system with a large number of
classes.

CMS 10 Oct Rene Brun ROOT I/O Overview 93

Why Folders ?

In the diagram below, a reference to the data is in the folder and the consumers refer to
the folder rather than each other to access the data.

The naming and search service provided by the ROOT folders hierarchy provides
an alternative. It loosely couples the classes and greatly enhances I/O operations.

In this way, folders separate the data from the algorithms and greatly
improve the modularity of an application by minimizing the class dependencies.

CMS 10 Oct Rene Brun ROOT I/O Overview 94

Posting Data to a Folder
(Producer)

! No changes required in user class structure.
! Build a folder structure with:

! TFolder::AddFolder(TFolder *)

! Post objects or collections to a Folder with:
! TFolder::Add(TObject*)

! A TFolder can contain other folders or any TObject
descendents. In general, users will not post a single
object to a folder, they will store a collection or multiple
collections in a folder. For example, to add an array to a
folder:

! TObjArray *array;

! run_mc->Add(array);

CMS 10 Oct Rene Brun ROOT I/O Overview 95

Reading Data from a Folder
(Consumer)

One can search for a folder or an object in a folder using the TROOT::FindObjectAny
method. FindObjectAny analyzes the string passed as its argument and searches in
the hierarchy until it finds an object or folder matching the name.
With FindObjectAny, you can give the full path name, or the name of the folder.
If only the name of the folder is given, it will return the first instance of that name.

conf = (TFolder*)gROOT->FindObjectAny("/aliroot/Run/Configuration");
or

conf = (TFolder*)gROOT->FindObjectAny("Configuration");

A string-based search is time consuming. If the retrieved object is used frequently or
inside a loop, you should save a pointer to the object as a class data member.
Use the naming service only in the initialization of the consumer class.

CMS 10 Oct Rene Brun ROOT I/O Overview 96

Example: Alice folders

Some of the AliRoot folders shown in the browser:

A ROOT Tree can be automatically
generated from the folder, eg:

TTree T(“T”,”/Event”);

T.Fill();

CMS 10 Oct Rene Brun ROOT I/O Overview 97

ROOT working with Objectivity
http://www.phenix.bnl.gov/WWW/publish/onuchin/rooObjy/

Objy and ROOT
can work together

An interactive interface
developed by Phenix

CMS 10 Oct Rene Brun ROOT I/O Overview 98

ROOT working with Oracle
http://www.phenix.bnl.gov/WWW/publish/onuchin/RDBC/

ODBC
compliant
interface
to Oracle

See also: http://www.gsi.de/computing/root/OracleAccess.htm

CMS 10 Oct Rene Brun ROOT I/O Overview 99

Time to conclude

We have a working system

Used by many people

In many different configurations

but

CMS 10 Oct Rene Brun ROOT I/O Overview 100

General remarks
! In 1995, we had planned less than 50% of ROOT 2001.

! - importance of dictionary, RTTI
! - Automatic Schema Evolution
! - effort in GUI
! - Online requirements (Threads, Timers, Sockets, etc)

! Development of a system is driven by:
! - ideas from authors
! - ideas from users
! - new ideas and techniques in computing
! - OS development. In 1995, push for Windows, Linux not here
! - language developments (eg template support, exception handling, Java)
! - cooperation with other systems (ex Objy, Oracle, Corba, Qt, etc)
! - manpower

Users expect stable and working systems. Quality of a system should
improve with time. Often in contradiction with major developments.

CMS 10 Oct Rene Brun ROOT I/O Overview 101

ROOT: an Evolving System

! The ROOT system has been in continuous
development since 1995 surviving major
changes, major enhancements and an ever
increasing number of users.

! In the same way that Root2001 is far from the
original Root1995, we expect that Root2006
will include many contributions reflecting the
continuous changes and new ideas in the field
of computing.

! This implies a strong cooperation between
software developers in the major experiments.

! Root is being developed in very close
cooperation with a cloud of software
developers in small, medium and large
experiments. Computer scientists from non-
HEP fields are also contributing.

CMS 10 Oct Rene Brun ROOT I/O Overview 102

Download source, Binaries
http://root.cern.ch

22 binary
tar balls
+ source

CMS 10 Oct Rene Brun ROOT I/O Overview 103

Makefiles

! 3 major OS (Unix, Windows, Mac OS/X)
! 10 different compilers

! gcc with many flavors on nearly all platforms,
! Solaris:CC4,5, HPUX:CC:aCC, SGI:CC, AIX:xlC
! Alpha:CXX6, Windows:VC++6
! KAI on SGI, Linux, Solaris

! 37 Makefiles

CMS 10 Oct Rene Brun ROOT I/O Overview 104

ROOT Downloads

129,000 binaries
download

650,000 clicks
per month

30,000 docs
in 12 months

2200 reg users
in roottalk

CMS 10 Oct Rene Brun ROOT I/O Overview 105

ROOT Users in the large experiments

ATLAS 133 WA98 25
ALICE 120 BELLE 22
CDF 88 COMPASS 22
PHENIX 86 KLOE 19
CMS 85 ALEPH 18
STAR 82 OPAL 17
JLAB 77 AUGER 16
D0 70 MINOS 16
BABAR 69 NOMAD 16
H1 48 BRAHMS 15
L3 43 GLAST 14
HERAB 37 AMS 12
NA49 37 NA45 12
LHCB 35 NA48 11
DELPHI 34 AMANDA 10
ZEUS 32
HADES 27
PHOBOS 27

Registered users
in the ROOT system

CMS 10 Oct Rene Brun ROOT I/O Overview 106

ROOT team today

CMS 10 Oct Rene Brun ROOT I/O Overview 107

ROOT Educational Resources at FNAL
http://www-pat.fnal.gov/root/

