
Diploma Thesis

ruby-root

Extending ROOT’s functionality with a Ruby

interpreter interface

Elias Athanasopoulos∗

elathan@phys.uoa.gr

UA/PHYS/HEP/2-2-2005

∗University Of Athens, HEPA Lab

1

Contents

1 Fundamental Introduction 4
1.1 High Energy Physics . 4
1.2 Neutrino Physics . 4
1.3 Neutrino Oscillations . 6

2 Data Analysis in HEP 7
2.1 Introduction to ROOT . 7

3 The MINOS Experiment 8
3.1 MINOS Architecture . 8
3.2 Aims and Goals . 9
3.3 MINOS Software . 10

4 Extending ROOT functionality 10
4.1 Introduction to Ruby . 10
4.2 Introduction to ruby-root . 11
4.3 Installing ruby-root . 11
4.4 Using ruby-root . 12

5 Understanding ruby-root internals 13
5.1 Extending Ruby . 13
5.2 Understanding ROOT dictionaries 15
5.3 mini ruby-root . 15
5.4 ruby-root compiler . 16
5.5 Complex issues . 16

6 Dynamic ruby-root 17
6.1 Introduction to dynamic ruby-root 17
6.2 Dynamic ruby-root internals 18
6.3 The ROOT Ruby module . 19
6.4 Configuration . 19

6.4.1 Building and installing the Ruby module 20
6.4.2 Setting up the environment 20
6.4.3 Running ROOT scripts from Ruby 20
6.4.4 Invoking the Ruby module from ROOT/CINT inter-

preter . 21
6.5 Current status . 22

2

7 Speed Comparison 22
7.1 Ordinary ruby-root . 22
7.2 Ruby module vs PyROOT . 23

8 Case Study 24
8.1 Case Study Description . 24
8.2 Case Study Implementation 25

9 Aknowledgements 28

10 Appendices 28

A References 28

B Migrating from C/C++ to ruby-root 28
B.1 Constructors . 29
B.2 Method Calling . 29
B.3 TApplication . 30
B.4 C++ Explicit Casts . 30
B.5 ROOT Collections . 31
B.6 #to ary . 31
B.7 C++ Enumerations . 31
B.8 C++ Globals . 32
B.9 C++ References . 32
B.10 Function Pointers . 32
B.11 ROOT Trees and TTree#via 33
B.12 Floating values and arithmetic 33
B.13 Boolean checks . 34

C Scripts 34
C.1 Benchmark Scripts . 34
C.2 Case Study Script . 39

3

Abstract

ruby-root aims on providing Ruby bindings for the ROOT Object
Oriented Framework. ROOT is a very popular software solution for
data analysis in the field of High Energy Physics. Using ruby-root you
can have the basic functionality ROOT provides via Ruby; a powerful
modern scripting language.

1 Fundamental Introduction

1.1 High Energy Physics

High Energy Physics (HEP) is considered the most active field in Experimen-
tal Physics. The aim of HEP is to identify the nature of the fundamental
forces and particles of our universe. The basic concept of particle physics
experiments is the acceleration of particles (protons, electrons, etc) which
then collide with each other. The collision can explode the internal structure
of the particles, produce sub particles and give us a better picture of nature’s
structure at the fundamental level. The energy of the colliding particles is
critical, since higher energy means stronger collision and thus a more detailed
picture of the internal particles’ structure. This is the main reason we use
the term ’High Energy’.

The final goal of HEP is to construct a theory for the description of all the
elementary particles and elementary forces of our world. This theory is also
called ’The Standard Model’ (see Figure 1). Currently, the standard model
contains 12 elementary particles and we have knowledge about 4 fundamental
interactions. The 12 elementary particles are the 6 quarks, the electron
and its neutrino, the muon and its neutrino and the tau and its neutrino.
The latter, the neutrino of the tau particle, was discovered in the Donut
experiment.

Last but not least, there is a crucial effort for the discovery of the Higgs
particle, known also as the mass carrier. The discovery of the Higgs particle
will give us strong feelings that the Standard Model’s theory is correct.

1.2 Neutrino Physics

Neutrinos are quite strange particles in the sense that their difficulty to be
observed gives them some interesting properties. Neutrinos can take part

4

Figure 1: The Standard Model

only in weak interactions, such as the well known β-decay. Actually, β-
decay was the first nuclear process that guide the science community to the
discovery of the neutrino particle. During a β-decay a proton becomes a
neutron (or vice versa) and an electron (or positron) is emitted. In order to
have momentum conservation, since the electron’s spectrum is continuous,
another particle must also be emitted. That is the neutrino particle (or an
antineutrino in the case where a bound neutron becomes a proton).

Since β-decay is a process leaded by the weak interaction and since neutri-
nos can interact only in weak interaction processes, we have a major difficulty
to observe and measure neutrino’s properties. For example, there is a crucial
debate about neutrino’s mass. Since, we have no way to measure explicitly,
but rather implicitly via the electron’s properties emitted in a β-decay, a
neutrino’s mass, the only thing we can accomplish is to define some mass
limits. We know that neutrino’s mass is very small, or even zero, but, there
is no strong theoretical reason for the neutrino’s mass to be zero. On the
other hand, there is a strong theoretical reason for the photon’s mass to be
zero.

5

R Experiment
0.60 +- 0.05 Kamiokande (sub-GeV)
0.57 +- 0.07 Kamiokande (multi-GeV)
0.63 +- 0.03 Super-Kamiokande (sub-GeV)
0.65 +- 0.05 Super-Kamiokande (multi-GeV)

Table 1: The ratio R as verified by Kamiokande and Super-Kamiokande[1].

1.3 Neutrino Oscillations

One of the great mysteries in neutrino physics was the anomaly of the atmo-
spheric neutrino’s flux. Large experiments, such as Kamiokande and Super-
Kamiokande, were developed in order to measure the ratio of µ-like to e-like
events from cosmic rays. In order to verify our theory about the flux of
neutrinos from cosmic rays, theoretical Monte-Carlo calculations was per-
formed. So, the goal of the experiments was to verify the quantity given by:
R = (µ/e)data/(µ/e)MC . That is the ratio of the observable events over the
theoretical calculations.

As it was manifestly shown by Kamiokande and Super-Kamiokande (see
Table 1) the ratio is smaller than 1. That is there is an anomaly in the
atmospheric neutrino’s flux and a new concept must be introduced: neutrino
oscillations. That is, neutrinos have the property to interchange themselves.
Thus, neutrinos of one of the three available flavors (namely νe, νµ and ντ)
can oscillate (can change) to another flavor.

Now, if we adapt the neutrino oscillations concept, there is a strong ar-
gument that neutrinos can’t be massless, because massless particles cannot
oscillate. Put another way, observation of oscillation implies that the masses
of the neutrinos involved cannot be equal to one another. Since they cannot
be equal to one another, they cannot both be zero. In fact it is quite likely
that if any neutrinos have non-zero mass, all of them do.

6

2 Data Analysis in HEP

2.1 Introduction to ROOT

ROOT1 is a collection of libraries, implemented in C++, which aims to
provide a complete solution for various scientific tasks such as data analysis
for large experiments in the field of High Energy Physics.

Among other experiments, ROOT is heavily used in MINOS2 experiment,
in various projects at FNAL3 and at SLAC4.

ROOT delivers more than 700 different C++ Classes, ideal for Linear
Algebra, Function Plotting and Fitting, Histogram Presentation and many
more. In addition ROOT provides Classes for system-oriented tasks, such as
GUI widgets, Database Connectivity, Networking facilities and others.

All the above transform ROOT to a complete framework for application
building in C++. However, programming in C++ is not always trivial. Thus,
ROOT comes with a tightly integrated C/C++ Interpreter, CINT5. CINT
can interprete, or compile if speed is an issue, scripts written in C/C++.
CINT can evaluate C/C++ code at run-time and resolve Class information
using a Class dictionary. The latter stands for a special file, which describes
a Class’ behavior.

ROOT comes with special tools for generating at will Class dictionaries.
Thus, every Class which has the appropriate generated dictionary can be
accessible by any C/C++ script, executed via CINT. In addition, the dictio-
nary technology enhances the ROOT framework with full RTTI (Run-Time
Type Information) support. There are ROOT Classes (TClass, TMethod to
name a few) which provide the user information about a Class’ behavior,
inheritance tree, member functions available, etc. This feature is vital in the
development of ruby-root.

1http://root.cern.ch
2http://www-numi.fnal.gov/offline_software/srt_public_context/WebDocs/

Companion/index.html
3http://www-cpd.fnal.gov/CPD/root/
4http://www.slac.stanford.edu/BFROOT/www/doc/workbook/workbook.html
5http://root.cern.ch/root/Cint.html

7

3 The MINOS Experiment

The MINOS (Main Injector Neutrino Oscillation Search) is a first generation,
long baseline neutrino oscillation experiment. MINOS is designed to make
a precise study of the ”atmospheric” neutrino oscillations observed recently
by underground experiments. That is, the main purpose of the MINOS
experiment is to identify neutrino oscillations and if so to measure with great
precision the oscillations parameters.

3.1 MINOS Architecture

MINOS consists of two detectors, namely the Near one and the Far one
detector and it uses the NuMI neutrino beam. The two detectors are located
at distance of 1 km and 735 km from the neutrino source, respectively. The
Near detector weights 980 tons, while the Far one weights 5400 tons[2].

The MINOS experiment will use neutrinos produced in the NuMI beam
line by 120 GeV protons. The beam is generated by the Main Injector at
Fermilab in a fast extraction mode (10 µs). The proton beam is aimed at
the Soudan mine in northern Minnesota, where the Far detector is located.
Because of the earth’s curvature the parent hadron beam has to be pointed
at an angle of 57 mrad.

The resulting hadron beam is focused by specially designed focusing ele-
ments. It travels via a two-magnetic horn system followed by a 700 m long
decay pipe and muon absorber to produce finally the νµ beam. In more de-
tail, the hadron beam is focused and transported through an evacuated decay
pipe, 1 m in radius and 675 m long, before striking a secondary hadron ab-
sorber downstream. The total decay length is 725 m. The dolomite between
the hadron absorber and the Near detector provides sufficient shielding to
range out all the muons produced by π and K in the beam pipe.

As already has been stated, the MINOS experiment utilizes two detec-
tors with the basic structure of a segmented iron-scintillator calorimeter and
magnetized muon spectrometer. The use of two detectors is dictated by the
need to measure neutrino disappearance and to control systematics, while
the primary function of the near detector is to serve as a reference for the
main MINOS detector; the far one.

The fact that both the near and far detector have been constructed as
similar as possible is vital. That is, MINOS tries to measure the neutrinos’
behavior before (Near) and after (Far) they have the chance to oscillate. The

8

Parameter Value
Near detector mass 0.98 (metric) kt total, 0.1 kt fiducial
Far detector mass (2 supermodules) 5.4 (metric) kt total, 3.3 kt fiducial
Steel planes (far detector) 8-m wide, 2.54-cm thick octagons
Magnetic field (far detector) Toroidal, 1.5 T at 2 m radius
Active detector planes Extruded polystyrene scintillator strips
Active detector strips 4.1-cm wide, 1-cm thick, ∼ 8-m long
Near detector distance from decay pipe 290 m
Far detector distance from decay pipe 730 km
Cosmic ray rates 270 Hz in near det., 1 Hz in far det.
Neutrino energy range (3 configurations) 1 to 25 GeV
Detector energy scale calibration 5% absolute, 2% near-far

Detector EM energy scale calibration 23%/
√

(E) (< 5% constant term)

Detector hadron energy resolution 60%/
√

(E) (< 7% constant term)

Detector muon energy resolution < 12% (from curvature or range)
NC-CC event separation Efficiency > 90%, correctable to 99.5%
Electron/π separation Hadron rejection ∼ 103 for εe ∼ 20%
Far det. ν event rate (high-energy beam) 3000 νµ CC events/kt/yr (no oscillations)
Near det. ν event rate (high-energy beam) 20 events/spill in target region
Near-far relative rate uncertainty 20%

Table 2: MINOS experimental parameters with the wide-band (PH2)
beam[1].

results of the two detectors then can be compared to see if oscillations have
been occurred. Having as a reference a second, almost similar technically,
detector (Near) the results of the main Far detector may not be compared
with Monte Carlo predictions but with real data, which is one of the great
advantages of MINOS.

Table 1 summarizes some technical properties of the MINOS architecture.

3.2 Aims and Goals

Briefly, the physics goals of MINOS[1] are:
a) If Nature has chosen not to have neutrino oscillations in the parameter

space accessible to MINOS, we want to be able to demonstrate this fact

9

convincingly over as large an area in oscillation parameter space as possible.
b) If oscillations do exist in the space accessible to MINOS, we want to

convincingly demonstrate their existence, measure the oscillation parameters
with high precision, and determine the oscillation modes. Specifically, we
want to ensure that we can cover the full region of parameter space suggested
by Super-Kamiokande experiment.

3.3 MINOS Software

MINOS is a demanding modern experiment in High Energy Physics and a
rich framework for data analysis must be used in the construction of the
MINOS applications. Thus, the MINOS software group decided to build
the whole software for MINOS data analysis using the ROOT framework.
Although the great majority of the MINOS source code which has already
been implemented and will probably be extended in the near future is written
in C++, ROOT scripts in a pure scripting language, such as Ruby or Python,
might be very handy, especially in every-day jobs. Tasks as it is the collection
of data from remote hosts or data analysis test-cases can easily developed
using Ruby or Python. Since, ROOT’s support for Ruby and Python is
native, scripts written in Ruby or Python can interact with major C++
applications and exchange data.

Also, the ability of writing pluggins in Ruby or Python for the central
MINOS Software Unit if a specific plugin-technology is developed must be
examined.

4 Extending ROOT functionality

4.1 Introduction to Ruby

Ruby6 is a modern scripting language with over 10 years of development.
Ruby combines features from Python7, Perl8 and Smalltalk9, as well as mod-
ern ideas from the field of Programming Languages. Ruby delivers a clean
syntax and a full dynamic and Object Oriented nature. Using Ruby one can

6http://www.ruby-lang.org
7http://www.python.org
8http://www.perl.org
9http://www.smalltalk.org

10

write easily few-lines scripts that can cope with complex system tasks, such
as opening files and manipulating their contents, matching patterns with
regular expressions, connecting to services using sockets and many more.

Ruby is full dynamic typed, so the user is not dealing with complex
definitions and prototyping. Its syntax is quite human-oriented, so as users
with minimal Computer Science experience can learn its syntax and grammar
very easily. In addition, Ruby embeds some powerful pre-built structures,
like Arrays, Hashes and Strings, making programming quite productive.

The idea of extending Ruby and exporting ROOT’s basic functionality
to Ruby looked ideal and thus the idea of ruby-root was born.

4.2 Introduction to ruby-root

ruby-root10 is a compact solution for bridging Ruby and ROOT’s basic func-
tionality. The use of ruby-root offers the user with the ability to write native
Ruby scripts that can take advantages of the components that ROOT’s li-
braries provide.

Not all of the ROOT’s features are available to Ruby via ruby-root, but
the most vital ones that a scientist depends on. Thus, most of the Computer-
related parts of ROOT are not touched, since Ruby provides a rich set of
similar functions; available in a native Ruby fashion.

On the other hand, as it will be shown in the next sections, fundamental
ROOT constructs such as Classes dealing with Collections of Objects and
Strings, to name a few, are converted internally in Ruby constructs, which
can then manipulated by a user quite easier.

4.3 Installing ruby-root

In order to use ruby-root you must have installed Ruby and ROOT in your
system. Assuming you have downloaded ruby-root and you have uncom-
pressed it in a place of your choice, the installation process is the following:

% ruby ./extconf.rb

% make

make install

10http://null.edunet.uoa.gr/~elathan/rr/

11

Keep in mind that the last step needs root privileges.
Since ruby-root comes with already wrapped ROOT classes of a specific

ROOT version, you may have conflicts and failures in the compilation pro-
cess. This means that you must rebuild ruby-root. The rebuilding process is
the following:

% ./rebuild

% make

make install

Rebuilding requires indent(1) installed in your system; a GNU tool to
format the autogenerated C++ code.

4.4 Using ruby-root

Since ruby-root is correctly installed in your system, you can start developing
scripts in Ruby which utilize ROOT’s functionality. The following is a ruby-
root classic ’Hello World’ program:

require ’root’

tapp = TApplication.new "rr: Hello ROOT!"

tc = TCanvas.new "tc", "Hello", 168, 8, 699, 499

pt = TPaveText.new 0.1, 0.1, 0.5, 0.5, "blNDC"

pt.AddText 0, 0, "Hello ROOT from Ruby! :-)"

pt.Draw

tc.Modified

tc.cd

tapp.Run

Assuming the source file is named ’hello.rb’, you can run it using the
command:

% ruby hello.rb

12

5 Understanding ruby-root internals

5.1 Extending Ruby

Ruby is written in C. A rich C API (Application Programming Interface)
exists, in order to extend Ruby with support of external functionality. By
using the Ruby C API the creation of a library with C code known as ’Ruby
extension’ is straight forward. Whenever the user wants to use the new
extension, he/she must use the ’require’ command to load the library in a
Ruby script. After the ’require’ command the script is full aware of the
new functionality. Actually this the reason that our ruby-root script, in the
previous section had as the first line:

require ’root’

This line instructs Ruby to load the ruby-root extension, so as to use
ROOT’s functionality via Ruby.

Now, in order to extend Ruby with ROOT functionality, each ROOT class
must be wrapped in Ruby using the Ruby C API. That is, for every C++
member function of a ROOT class, a C function must be created in order
to call this member function in a fashion Ruby supports. This C function
uses constructs that Ruby supports. Its main purpose, as we will see later in
more details, is to bridge a Ruby method with a C++ ROOT method.

Also, some extra C code must be implemented for the creation of Ruby
classes which encapsulate the ROOT classes behavior.

The following example shows the wrapped TCanvas::cd() member func-
tion. The arguments are translated to the equivalent C ones, and the TCan-
vas::cd() is called.

static VALUE cTCanvas_cd(int argc, VALUE argv[], VALUE self)

{

/* void TCanvas::cd(Int_t subpadnumber=0) */

VALUE arg1;

rb_scan_args(argc, argv, "01", &arg1);

RRCALL(self, TCanvas)->cd(NIL_P(arg1) ?

(Int_t) 0 : NUM2INT(arg1));

13

return self;

}

Let’s explain the above snippet in more detail. The ’VALUE’ construct
belongs to the Ruby C API. Almost everything in Ruby is an object and in
order to manipulate it in C you have to assign a VALUE to it. That is, the
only thing Ruby can understand from a C perspective is VALUEs (which in
reality are pointers to more complicated structures).

Now, in order to exchange data between the Ruby side and the ROOT
side, all ROOT’s data must be converted to VALUEs and vice versa, depend-
ing on the call phase. In our example, the above snippet will be executed
whenever Ruby tries to execute the code below (assuming that ’c’ is a TCan-
vas instance):

c.cd(2)

That is, in the Ruby side the ’2’ parameter is a VALUE, which means
that it must be converted to what the actual ROOT method expects; in our
case to a C integer. So, using rb scan args(), which is another Ruby C API
function, we can map the input arguments to VALUEs (in our case there is
only one argument) and then use some handy Ruby macros to convert the
VALUEs to the right C counterparts. In the above snippet, NUM2INT() is
used in order to convert the VALUE ’2’ to a C integer ’2’.

RRCALL() is a ruby-root macro defined in rrcommon.h:

#define RRCALL(obj, type) \

type *v; \

Data_Get_Struct(rb_iv_get (obj, "__rr__"), type, v); ((type *)(v))

This macro, along with some other similar ones (RRCALL2(), RRMOD-
CALL(), RRMODCALL2(), etc.) are used to make the C code nicer, since
making calls between ROOT and Ruby, requires some heavy C casting.

Ending this technical discussion, we note that NIL P() is another Ruby
macro that will check if the input VALUE is nil.

There is no doubt that wrapping each ROOT class member function using
the Ruby C API is a very difficult and demanding process. That is the main
reason that we tried to describe in detail the wrapping of one ROOT method,
which actually belongs to the family of ROOT methods that is very easy to

14

wrap. Other methods, especially the ones that can be overloaded in the
ROOT side are extremely difficult to be wrapped.

Also, a small change in the ROOT interfaces requires changes in the
wrapped interfaces. The whole process is difficult to be maintained by a
human, so there is a need for developing a machine interface for the automatic
generation of the wrapper code.

ruby-root uses the ROOT dictionary technology to cope with the above
task.

5.2 Understanding ROOT dictionaries

ROOT uses CINT as a user-friendly interface to develop C/C++ scripts with
ROOT functionality. CINT stands for a C/C++ interpreter. A C/C++
interpreter may be slower than a C/C++ compiler, but it is easier to use,
since the execution phase of the user’s code is more interactive.

CINT needs to have all the type information of the C/C++ source at
run-time. That is, when a user executes a member function via CINT, infor-
mation such as the class that the member function belongs to, the arguments
that it takes, its class scope (private, public, protected) and other vital in-
formation must be known at the stage of execution; at run-time.

In order CINT to cope with the above, for each C++ class the user wants
available via CINT, it generates a file called dictionary. This file describes
the class’ behavior. CINT contains a full featured API in order to export
this information to third party programmers. Thus, anyone can have access
to the dictionaries via CINT or even via ROOT (a higher level API) at run-
time. ruby-root uses ROOT’s dictionaries in order to create the wrapper
code.

5.3 mini ruby-root

A utility that uses ROOT’s dictionaries must be constructed in order to
produce automatically the wrapper code. Since Ruby is easier to use than
C/C++ the idea of exporting the ROOT dictionary API to Ruby by hand
and then developing a Ruby script that compiles ROOT’s prototypes to the
Ruby C API is very challenging.

mini ruby-root stands for a small ruby-root distribution that embeds all
the necessary wrapper code for the ROOT’s classes that export the dictio-

15

naries’ information. That is, using mini ruby-root, a Ruby script that has
access to the ROOT dictionaries can be developed.

5.4 ruby-root compiler

rrc stands for the ruby-root compiler. rrc is a Ruby program that aims to
compile ROOT classes to the Ruby C API. As it can be easily understood, rrc
is the most vital part of the ruby-root distribution. It tries to cope with all
the C++ complexity and transform in a universal and generic way a number
of C++ classes to the Ruby C API.

rrc can cope with Multiple Inheritance, Overloaded member functions,
Static member functions and a number of C++ to Ruby type conversions.

The rrc program is invoked during the building of ruby-root and mini
ruby-root must have been built before. The safest way to invoke rrc is via
the ’rebuild’ script which is part of the ruby-root distribution.

5.5 Complex issues

Although a full compact solution for the automatic wrapper code generation
has been developed, there are still parts of ruby-root that require hardcoding.
We can refer to these cases us ’complex issues’ since most of them deal
with tasks that can not be identified by a machine program and a human’s
interpretation is required.

For a short example, consider the following case:

Double_t *GetX() const {return fX;}

The above is the prototype of the GetX() method, which belongs to the
TGraph class. This prototype cannot be wrapped by any machine program,
since GetX() returns an array of doubles, but nobody, except the user, knows
its size in advance. That is, the prototype does not describe exactly the
GetX() behavior but rather a summary of how someone expects that GetX()
works. In order to resolve the exact usage of GetX() the whole TGraph class
must be examined.

A careful TGraph examination, unveils:

Int_t GetN() const {return fNpoints;}

16

Apparently, GetN() will return the size of the array that GetX() returns,
but this can only be resolved by a human that understands how TGraph
works and not by a machine program that processes the prototypes. There
is no way, for a program to conclude that the size of the array GetX() returns
can be computed by calling GetN().

Methods like the GetX() one must be hardcoded:

static VALUE cTGraph_GetX (VALUE self)

{

VALUE arr = rb_ary_new ();

double *x;

RRCALL2(self, TGraph, x)->GetX ();

for (int i = 0; i < v->GetN(); i++)

rb_ary_push (arr, rb_float_new (x[i]));

return arr;

}

All the hardcoded methods are located in the tools/rrhardcode.rb file of
the ruby-root distribution.

6 Dynamic ruby-root

6.1 Introduction to dynamic ruby-root

Although ruby-root embeds a complete solution to generate Ruby C API
compliant code for the ROOT classes, there is still the problem that someone
must collect all the ROOT classes to be wrapped and use the rrc to generate
all the needed code.

The idea of wrapping all the ROOT classes sounds challenging, but the
rrc is not an elegant solution. The task of compiling all the ROOT classes
using rrc is very complex and the produced output is huge in size. On the
other hand, it is almost impossible someone to utilize all the ROOT classes
in a script or an application. That is, an elegant solution that will give the
user access to every ROOT class via Ruby must be developed.

The approach to solve the problem is similar to the one PyROOT11. fol-
lows. There is no wrapper code generation, but a minimal interface that tries

11http://wlav.home.cern.ch/wlav/scripting/

17

to resolve each ROOT method at the run-time of a Ruby script. This means
that all the ROOT/C++ to Ruby and vice versa conversion will happen at
run-time and there will be no wrapper code generation at compile-time.

This approach has as an advantage that every Ruby script can be aware
on all ROOT classes on demand. That is, whenever a user tries to construct
a new instance of a ROOT class and call a method, dynamic ruby-root tries
to resolve the requested method and call it using the CINT API.

Due to the fact that everything is happening at run-time, dynamic ruby-
root is slower than ruby-root. Also, complex issues of ruby-root can not be
handled easily in the dynamic version.

6.2 Dynamic ruby-root internals

In order to have the ability of bridging Ruby and ROOT at run-time two
major issues must be solved. The first one is that Ruby must know in advance
that a ROOT class is instantiated or a ROOT method is called. That is, in
the Ruby side of the extension, all ROOT calls must be added to Ruby at run-
time. For example when the user creates a new TCanvas object, Ruby must
create the appropriate Ruby TCanvas class, which encapsulates the actual
ROOT TCanvas class. As we said, there is no wrapper code generation
at compile-time, so Ruby is completely unaware of ROOT. All the magic
happens at run-time.

The second issue regards to the ROOT side. Whenever the user tries to
create a TCanvas object, Ruby must create the Ruby TCanvas class and call
the ROOT TCanvas’ constructor. Again, at run-time, we have to find a way
to resolve the actual ROOT TCanvas constructor, call it, and give the result
back to Ruby, as a Ruby object.

The first issue is solved using Ruby’s Object#const missing12 and Ob-
ject#method missing methods. Denote that in Ruby ’Object’ is the funda-
mental Object class (i.e. everything inherits from Object).

In order to solve the problem, a DRRAbstractClass is defined which in-
herits from Object and DRRAbstractClass#const missing and DRRAbstr-
aClass#method missing is used to resolve any ROOT call at run-time. So,
whenever the user tries to create a new TCanvas, the const missing method
of DRRAbstractClass is called, and we are in the phase of trying to resolve

12It is common in the Ruby world to refer to methods using the ’#’ character, exactly
as we do using ’::’ in C++. That is, Foo#bar can be seen as the C++ idiom Foo::bar().

18

if TCanvas is an actual ROOT class. Finding if TCanvas is an actual ROOT
class is part of the second major issue. We need the ability to resolve ROOT
code at run-time. In order to accomplish this task we use CINT’s API. That
is, inside the const missing method we ’ask’ CINT if a TCanvas dictionary
is available. If so, we call the TCanvas constructor -again using the CINT
API- and return the new pointer to the Ruby side, as a Ruby object.

In a similar fashion, the method missing method is called whenever the
user tries to call a method of a ROOT class. That is, after the user has created
his/her Ruby TCanvas and tried to call, for example, TCanvas#SetTitle,
method missing will grant control. It will ’ask’ ROOT via the CINT API,
if the actual ROOT TCanvas class has a member function called SetTitle()
and if so it will try to execute it and give back the results to Ruby.

In order to speed up things, since for every call a lot of work must be done
in const missing and method missing of the DRRAbstractClass, dynamic
ruby-root maintains an internal cash of ROOT calls. That is, if the user
asks for a ROOT method, the resolving will be done once, at least in the
Ruby side. Subsequence calls will be from the internal cash. An exception
to this is in overloaded methods. Overloading in dynamic ruby-root is done
by inspecting the input Ruby arguments and by constructing an equivalent
C prototype. If calls in a specific method are done with different prototypes,
that means that the cash mechanism will not be used. That is overloaded
methods are treated just like different methods.

It is important to note that Ruby’s ability to create Classes and methods
at run-time is vital to the implementation of dynamic ruby-root.

6.3 The ROOT Ruby module

Dynamic ruby-root has been adapted officially by the ROOT team, as the
official Ruby interface of ROOT. This means that the latest versions of ROOT
include dynamic ruby-root by default in the distribution. Inside ROOT,
dynamic ruby-root, is called Ruby module. So, whenever we write ’ROOT
Ruby module’ we actually refer to dynamic ruby-root.

In addition to dynamic ruby-root, the Ruby module contains a TRuby
class that gives access to Ruby code via ROOT’s command line interface.
That is, when a user uses the ROOT command line interface, he/she can
execute C++ code or Ruby code via the TRuby interface.

19

6.4 Configuration

Although, ROOT has adapted dynamic ruby-root in the official distribution,
the Ruby module is not activated by default when you build ROOT from
source. Below, we will describe the activation process13.

6.4.1 Building and installing the Ruby module

The Ruby extension module is not built by default when building ROOT
from sources. The user should follow the standard installation instructions
and enable the build of the Ruby module. Ruby version ¿= 1.8 is required.

./configure <arch> --enable-ruby \

[--with-ruby-incdir=<dir>] \

[--with-ruby-libdir=<dir>]

gmake

If you do not specify the inc and lib directories configure will use Ruby
to grab the directories where Ruby’s headers and library are located.

A library called libRuby.so [libRuby.dll] will be created in the $ROOT-
SYS/lib [$ROOTSYS/bin].

6.4.2 Setting up the environment

To work with the Ruby module, the LD LIBRARY PATH [PATH] and RUBYLIB
need to be set in addition to the standard ROOTSYS.

For Unix platforms:

export LD_LIBRARY_PATH=$ROOTSYS/lib:$LD_LIBRARY_PATH

export RUBYLIB=$ROOTSYS/lib:$RUBYLIB

for Windows:

set PATH=%ROOTSYS%/bin;%PATH%

set RUBYLIB=%ROOTSYS%/bin;%RUBYLIB%

13You can always find these instructions on-line at the official ROOT site:
http://root.cern.ch/root/HowtoRuby.html

20

6.4.3 Running ROOT scripts from Ruby

The user should make sure that the ruby command is the one of the in-
stallation that has been used to build the Ruby extension module. If the
RUBYLIB environment variable is set correctly, the user can execute a Ruby
script with ROOT functionality in the following way:

ruby -rlibRuby foo.rb

Another way is to start the Ruby script with the Ruby require command:

require ’libRuby’

An example is as follows:

require ’libRuby’

gROOT.Reset

c1 = TCanvas.new(’c1’, ’Example with Formula’, 200, 10, 700, 500)

#

Create a one dimensional function and draw it

#

fun1 = TF1.new(’fun1’, ’abs(sin(x)/x)’, 0, 10)

c1.SetGridx

c1.SetGridy

fun1.Draw

c1.Update

The user can find a number of examples in the $ROOTSYS/tutorials. To
run them you need to execute the command:

cd $ROOTSYS/tutorials

ruby demo.rb

21

6.4.4 Invoking the Ruby module from ROOT/CINT interpreter

A ROOT user can run any Ruby command and eventually to run IRB, the
Interactive Ruby Shell. The commands to execute are:

root [0] gSystem>Load("libRuby");

root [1] TRuby::Exec("require ’/usr/local/lib/root/libRuby’");

root [2] TRuby::Exec("c1 = TBrowser.new");

root [3] TRuby::Eval("c1.GetName");

root [4] TRuby::Eval("puts c1.GetName");

Browser

root [5] TCanvas *c2 = new TCanvas("ruby test", "test", 10, 10, 100, 100);

root [6] TRuby::Bind(c2, "$c");

root [7] TRuby::Eval("puts $c.GetTitle");

test

root [8] TRuby::Prompt();

root [9] TRuby::Prompt();

irb(main):001:0> print 1

1=> nil

irb(main):002:0>

Notice that whenever you bind a ROOT Object in the Ruby side, you
need to use a global Ruby variable, that is a variable with a leading ”$”.

6.5 Current status

Currently, the Ruby module has been tested on the Linux platform using
GCC. The whole development of ruby-root, dynamic ruby-root and the Ruby
module has been done using Linux/GCC and further development will be on
this platform. Thanks to Axel Naumann14, the Ruby module can be built
under cygwin in the Microsoft Windows platform.

7 Speed Comparison

7.1 Ordinary ruby-root

In this section, we will discuss the speed execution of a Ruby script versus
CINT (C interpreted code) and C compiled code. The Ruby script is executed

14axel@fnal.gov

22

using static ruby-root, that means that the wrapper code has been created
at compile-time and not at run-time. The benchmark script can be found in
Appendix C (stress16.rb). The results are shown in Table 3.

Real Time (secs) CPU Time (secs) Language

48.57 47.10 Ruby
27.21 26.28 C Interpreted
0.19 0.19 C Compiled

Table 3: Speed comparison for static ruby-root.

As it was expected Ruby is slower than CINT and of course it can’t even
been compared with C Compiled code. This is a normal result, since Ruby is
an easy to use scripting language and in order to save time for the developer,
it must spend additional time on doing the actual work. On the other hand,
the script used for the benchmark it is unlikely that it is a realistic one,
since what it does is looping in heavy calculations. Although, scientific jobs
require often complex calculations, it is unlikely that a scientist will perform
such a task in daily work.

Last but not least, execution time is not the only thing we must mea-
sure. Deploy time is also an important factor, especially in our modern ages.
Sometimes, a machine costs less than a developer’s time.

7.2 Ruby module vs PyROOT

In this section we will show the performance of the Ruby module compared
to the Python module (PyROOT).

Real Time (secs) CPU Time (secs) Language

3.03 2.65 Ruby
2.18 1.85 Python

Table 4: Speed comparison between the ROOT Ruby module and PyROOT.

Obviously, PyROOT is faster than the Ruby module. The real reason for
this fact can’t be identified very easily. First of all, there is no official infor-
mation of speed comparison between Python and Ruby, themselves. Even,

23

if Python is ad hoc faster from Ruby, or vice versa, there is no official in-
formation about their C API’s performance. For example, Ruby might be
faster than Python, but its C API might not be as rich and optimized as the
Python one.

On the other hand, PyROOT may be a better implementation of a ROOT
interpreter interface than the Ruby module. Although, a technique of caching
calls inside the Ruby module has been developed, a lot of additional research
must be done, in order to identify spots that lack speed performance and
cost of speed bottlenecks.

However, the fact that there is not a huge speed difference (such as be-
tween ruby-root and CINT, for example) is very promising.

8 Case Study

In this section, we will develop a small Ruby script, in order to see the
practical use of the Ruby interpreter in ROOT. The script can be run using
one of the latest ROOT distributions, which contains the Ruby module. The
equivalent C++ script will not be shown, however we encourage anyone to
try to create a C++ version of the script we will present. We belive it’s quite
hard to accomplish the whole task, especially by writing a few lines of code.

8.1 Case Study Description

Consider you are part of a worldwide collaboration15. Now, a group in the
collaboration has been assigned the task of collecting data from a specific
source and then share the results with the other groups of the collaboration.
This can be done, by collecting the data and then send to the other groups an
e-mail with the results. A better way for the group is to place the collected
data in a public Web server, so the others can visit a Web page everyday,
download the data and make analysis on them. The whole process can be
optimized by using cron jobs, in order the Web page to be everyday updated
by the ’collectors’ group or the data to be downloaded in local places in the
workstations used by the collaboration. Although it’s easy to create a cron
job in a system, in order to have a Web page updated every so on, it is quite
verbose to force the whole collaboration to create their own cron jobs for a

15This is a very real life situation nowadays with the explosion of Internet and modern
communications

24

single download. So, in our case study we will present a way of optimizing
the communication of our theoretical collaboration.

We will substitute the ’collectors’ group, with a script that produces 100
random numbers every time someone executes it by visiting a URL. Our task
is to develop a Ruby script that will transparently fetch the data (the random
numbers), fill a histogram with them and perform a Gaussian fit. The URL
is not hypothetical, it is a real one, as it will be shown in the implementation.
It is a PHP script located in a public Web server on the net, which produces
100 random numbers between -1 and 116. A sample of the data (100 random
numbers between -1 and 1) is the one below:

0.846 -0.645 -0.585 0.033 -0.337 0.474 0.631 -0.184 0.203 -0.281

-0.004 0.94 -0.437 0.084 0.104 -0.285 0.963 -0.903 0.51 -0.711

0.26 -0.583 -0.151 -0.057 -0.968 -0.492 0.562 0.434 0.232 -0.456

-0.36 0.078 -0.1 0.055 -0.89 0.564 -0.472 0.742 -0.62 0.732

-0.539 0.376 0.672 0.024 -0.54 -0.225 0.74 -0.578 -0.128 0.249

-0.288 -0.868 0.667 0.562 0.076 0.699 -0.931 -0.363 0.132 0.301

0.181 0.773 -0.621 -0.919 -0.173 -0.511 0.645 0.356 -0.769 -0.976

0.087 -0.308 0.401 -0.242 0.716 0.861 0.534 0.455 -0.717 -0.594

-0.296 -0.004 -0.462 -0.63 -0.443 0.614 -0.931 -0.374 -0.749 0.202

0.928 0.432 -0.026 -0.694 0.514 0.802 -0.204 0.158 0.157 0.027

Notice the ”br” tag, which is an HTML tag, used to format the data. We
advise you to visit our case study’s URL to have a better feeling on what we
are going to do.

8.2 Case Study Implementation

We will try to develop the Ruby script for the task we described, step by
step. First thing is to load all the Ruby libraries we need using the common
Ruby require command:

require ’libRuby’

require ’net/http’

The first statement loads the ROOT Ruby module. The second one loads
another Ruby library (included by default in any Ruby distribution), which
will help us to fetch our data from the Web server.

16http://null.edunet.uoa.gr/~elathan/rr/demo/rr.php

25

Next step is to create a new TCanvas object, as well as a histogram of
floats. If you are familiar with ROOT, this is probably an every-day task for
you. Doing it in Ruby it is even easier than doing it in C++:

c1 = TCanvas.new("c1","Ruby Module Case Study",200,10,600,400)

c1.SetGrid

main = TH1F.new("main","Main",100,-4,4)

main.SetFillColor kRed

Notice that we can freely omit parentheses. If the above snippet makes
you feel uncomfortable, we advise you to have a look at the B Appendix.

Next step, is to fetch our data, using a single line of Ruby code:

data = Net::HTTP.get(’null.edunet.uoa.gr’,

’/~elathan/rr/demo/rr.php’)

That is, ’data’ is a string that contains all the information we want to
use. Ruby has done all of it for us. It has allocated space, it has made all
the required communication with the Web server and it gave us a string that
contains the 100 random numbers.

Since we are interested only in the numbers we must eliminate the ’br’
tags:

data.gsub!(/\<br\/>/, "")

If you are not aware of Regular Expressions, you might feel uncomfortable
with the above line, which substitutes with an empty string all the ’br’ tags
in our ’data’ string. Regular Expressions is a common technology used in
Computer Science for pattern matching. Analyzing how Regular Expressions
work is beyond of this thesis. ROOT contains its own Regular Expression
library. However, we use Ruby’s native Regular Expression support for eas-
iness.

Now, our ’data’ string has all the numbers we want to insert in our his-
togram separated by spaces. It would be handy to store them in an array:

entries = data.split(" ")

26

’entries’ is an array of 100 strings, each one holding one of our 100 random
numbers in text representation. The way we got ’entries’ is really quite trivial.
We instructed Ruby to split the string in elements, using as a separator the
space character.

Now, we are ready to iterate in our ’entries’ array and fill our histogram:

entries.each do |entry|

main.Fill(entry.to_f)

main.Draw("e1p")

c1.Update

end

The above snippet is a Ruby iterator. Ruby iterates in our ’entries’
array. In each iteration the variable ’entry’ points to the current element of
the ’entries’ array. In each iteration we fill the histogram with the ’entry’
variable and we update the screen. Notice that we use the ’to f’ method in
order to convert the string in a float representation.

Last thing is to perform the fit, to update the screen for the last time and
force ROOT in loop mode, so as to be able to inspect the results:

main.Fit("gaus", "ql")

main.Draw("same")

c1.Modified

c1.Update

gApplication.Run

The whole script is presented in Appendix C. A screenshot of the output
can be seen in Figure 2.

9 Aknowledgements

ROOT’s Ruby Interpreter Interface could never been achieved without the
valuable help and contribution of people from the scientific community. Thus,
I would like to thank sincerely my Supervisor, Associate Professor of the
Physics Department at the University of Athens, Dr. G. Tzanakos, who
encouraged me and helped me during the whole implementation of ruby-
root. Dr. G. Tzanakos was the first one to guide me in the HEP world and
enlight me about the software modern HEP experiments use. He was one of

27

-4 -3 -2 -1 0 1 2 3 4

main
Entries 100
Mean -0.03166
RMS 0.5615

-4 -3 -2 -1 0 1 2 3 40

1

2

3

4

5

6

main
Entries 100
Mean -0.03166
RMS 0.5615

main
Entries 100
Mean -0.03166
RMS 0.5615

Main

Figure 2: ROOT Ruby module case study.

the few people, who believed that I can complete this project. Also, I would
like to ankowledge Rene Brune, Fons Rademakers and Masahuro Goto from
the ROOT teem, who helped me with various technical issues regarding the
ROOT framework, Juan Alcarez for the contribution of some benchmarks
written in Ruby and Axel Naumann for porting ruby-root in the Microsoft
Windows platform. Finaly, I would like to thank all the Ruby programmers
at the ruby-talk mailing list for the critical answers they gave me regarding
technical Ruby aspects.

10 Appendices

A References

[1] Chapter 3 of ”The MINOS Technical Design Report” (#NuMI-L-337)
[2] Minos Status and Physics Goals (George S. Tzanakos)
[3] The Pragmatic Programmer’s Guide (Pickaxe)

28

B Migrating from C/C++ to ruby-root

Assuming you are already familiar with the ROOT framework and you have
used it to construct C/C++ macros or even C/C++ applications which
utilize the ROOT functionality, below we will present a few rules in order to
migrate easily your C/C++ work to Ruby. Each rule might be different for
ruby-root and for the ROOT Ruby module.

B.1 Constructors

Ruby constructors are a little bit different than the C++ ones. The Ruby
equivalent to:

TPad *pad = new TPad();

is:

pad = TPad.new()

Keep in mind, that the parentheses can be omitted.
Availability: Both ruby-root and the ROOT Ruby module support this
rule.

B.2 Method Calling

In C++ there are two ways to call a member function of a class’ instance:

TPad *pad = new TPad();

pad->Draw();

or:

TPad pad;

pad.Draw();

In Ruby there is a global way to call a method of an object. This can
be seen also from the previous rule. However, in order to make it clear, we
present the rule of calling methods in Ruby, here:

29

pad = TPad.new()

pad.Draw()

Keep in mind, that the parentheses can be omitted.
Availability: Both ruby-root and the ROOT Ruby module support this
rule.

B.3 TApplication

If you don’t want your script to end immediately after execution, but loop
until you quit from it, then you have to write:

tapp = TApplication.new "name"

...enter your code here...

tapp.Run

Availability: Both ruby-root and the ROOT Ruby module support this
rule. However, in the ROOT Ruby module, we advise you to use the idiom:

...enter your code here...

gApplication.Run

B.4 C++ Explicit Casts

A common practice for C++ users is to grab objects through C++ explicit
casts, like:

TTree *t1 = (TTree*)f->Get("t1");

In ruby-root, you can do this in the following way:

t1 = f.Get("t1").to_ttree

The rule is to use the method to followed by the ROOT class in lower
case.
Availability: This rule is available only in ruby-root. The equivalent rule
for the ROOT Ruby module is:

30

t1 = f.Get("t1").as("TTree")

In the near future the second idiom will be used for both ruby-root and
the ROOT Ruby module.

B.5 ROOT Collections

All ROOT Collections (TList, TClonesArray, etc.), as well as TArray Classes
are implicitly converted to Ruby arrays and vice versa. Also, everything
which looks in C++ as an array (i.e. Double t *foo) is converted to a Ruby
array and vice versa.

The following example demonstrates this:

bases = TClass.new("TPad").GetListOfBases

bases.each do |b|

p b

end

For a practical use of this rule, see the multigraph.rb script which is part
of the ruby-root testsuite.
Availability: This rule is available only in ruby-root. A substantial effort
to implement this rule in the ROOT Ruby module has been done and in the
near future there is a plan to commit the required code to the ROOT CVS
tree.

B.6 #to ary

Some times a ROOT Collection may embed another ROOT Collection in one
of its slots. In this case you will have to explicit convert the second collection
to a Ruby array using the #to ary method.

The technique is illustrated in the FirstContour.rb script, which is part
of the ruby-root testsuite.
Availability: This rule is available only in ruby-root. A substantial effort
to implement this rule in the ROOT Ruby module has been done and in the
near future there is a plan to commit the required code to the ROOT CVS
tree.

31

B.7 C++ Enumerations

Not all of the enumerations are supported, but you have access to the most
frequently used ones, in the most non-surprising way. I.e. the following is
acceptable:

foo.SetColor kRed

Availability: Both ruby-root and the ROOT Ruby module support this
rule.

B.8 C++ Globals

Heavily used globals such as gStyle, gROOT and others are supported, with
an exception: do not use gBenchmark, since there is a bug. Instead use:

gBenchmark = TBenchmark.new.Start("bench")

Availability: Both ruby-root and the ROOT Ruby module support this
rule.

B.9 C++ References

C++ References are packed and returned as a Ruby array. So a C++ call:

gRandom->Rannor(&x,&y);

will be in ruby-root:

x, y = gRandom.Rannor

If the C++ method returns a value, the latter is the last element of the
returned Ruby array.
Availability: This rule is available only in ruby-root. A substantial effort
to implement this rule in the ROOT Ruby module has been done and in the
near future there is a plan to commit the required code to the ROOT CVS
tree.

32

B.10 Function Pointers

A C/C++ pointer to function is handled in ruby-root as a Ruby user defined
method. So, whenever you want to pass a pointer to function, you can pass
the symbol of your Ruby method in the following fashion:

def background(x, par)

return par[0] + par[1]*x[0] + par[2]*x[0]*x[0]

end

...

backFcn = TF1.new("backFcn", :background, 0, 3, 3)

Notice the leading ”:” when the Ruby method is passed to the TF1 con-
structor.
Availability: This rule is available only in ruby-root. A substantial effort
to implement this rule in the ROOT Ruby module has been done and in the
near future there is a plan to commit the required code to the ROOT CVS
tree.

B.11 ROOT Trees and TTree#via

At the time of writing, ruby-root supports the construction of ROOT Trees
with doubles, strings and integers. In the latter case there is a bug which
leaks the memory. So, use integers in TTrees with care.

ruby-root introduces a new TTree#via method in order to fill a TTree.
The following example demonstrates this:

fill the tree

r = TRandom.new

10000.times do |i|

px, py = r.Rannor

t1.via :SetBranchAddress, :Fill, { "px" => px,

"py" => py,

"pz" => px*px + py*py }

end

For a full example see the treerr.rb and cernbuild.rb scripts, which are
part of the ruby-root testsuite. Constructs like TTree#via will be heavily
used in ruby-root in the near future.

33

Availability: This rule is available only in ruby-root. A substantial effort
to implement this rule in the ROOT Ruby module has been done and in the
near future there is a plan to commit the required code to the ROOT CVS
tree.

B.12 Floating values and arithmetic

Ruby’s representation of floats is ’a.b’, where ’a’ is the integer part and ’b’ the
decimal one. Thus, ’1.’ or ’.1’ is not acceptable. However ruby-root is smart
to accept ’1’ when the original C++ function requires a float argument, but
reject ’1.0’ when the original C++ function requires an integer argument.
Availability: Both ruby-root and the ROOT Ruby module support this
rule.

B.13 Boolean checks

All C++ boolean types are converted to Ruby booleans, but remember that
in Ruby false is only ’false’ and ’nil’. Thus, ’0’ is true! So, keep in mind that
you have to explicit check if a method returned ’0’:

if (i && (i%kUPDATE) == 0) # if 0 is true!

Availability: Both ruby-root and the ROOT Ruby module support this
rule.

C Scripts

C.1 Benchmark Scripts

stress16.rb:

Original port of stress16 ROOT benchmark for RubyRoot

Author: Juan Alcaraz <Juan.Alcaraz@cern.ch>

#

Minor adjustments for ruby-root: elathan

def stress16

34

=begin

Prototype trigger simulation for the LHCb experiment

This test nested loops with the interpreter.

Expected to run fast with the compiler, slow

with the interpreter.

This code is extracted from an original

macro by Hans Dijkstra (LHCb)

The program generates histograms and profile histograms.

A canvas with subpads containing the results is sent

to Postscript.

We check graphics results by counting the number of

lines in the ps file.

=end

nbuf = 153 # buffer size

nlev = 4 # number of trigger levels

nstep = 50000 # number of steps

time needed per trigger

itt = [1000, 4000, 40000, 400000]

acceptance/trigger (last always 0)

a = [0.25, 0.04, 0.25, 0.0]

#-->int i, il, istep, itim[192], itrig[192], it, im, ipass;

#-->float dead, sum[10];

create histogram and array of profile histograms

gRandom.SetSeed

pipe = TH1F.new("pipe", "free in pipeline",

nbuf+1, -0.5, nbuf+0.5)

hp = []

TProfile.Approximate

for i in 0..nlev

s = "buf%d" % i

hp[i] = TProfile.new(s, "in buffers", 1000, 0,

nstep, -1.0, 1000.0)

end

35

dead = 0

sum = [nbuf] + [0]*nbuf

itrig = [0]*nbuf

itim = [0]*nbuf

nsteps = 0...nstep

nbufs = 0...nbuf

nlevs = 0...nlev

for istep in nsteps

evaluate status of buffer

pipe.Fill(sum[0])

if (istep+1)%10 == 0

for i in 0..nlev

hp[i].Fill(Float(istep), sum[i], 1.0)

end

end

ipass = 0

for i in nbufs

it = itrig[i]

if it >= 1

add 25 ns to all times

itim[i] += 25

im = itim[i]

level decisions

for il in nlevs

if it == il+1 and im > itt[il]

if gRandom.Rndm > a[il]

itrig[i] = -1

sum[0] += 1

sum[il+1] -= 1

else

itrig[i] += 1

sum[il+1] -= 1

sum[il+2] += 1

end

end

36

end

elsif ipass == 0

itrig[i] = 1

itim[i] = 25

sum[0] -= 1

sum[1] += 1

ipass += 1

end

end

dead += 1 if ipass == 0

end

end

gbench = TBenchmark.new

gbench.Start("stress16")

stress16

gbench.Show("stress16")

hsum.rb:

ruby-root testsuite

port of the original $ROOT/hsum.C tutorial

(20/01/2004) --elathan <elathan@phys.uoa.gr>

#

original header:

To see the output of this macro,

click begin_html here end_html

Simple example illustrating how to use the C++ interpreter

to fill histograms in a loop and show the graphics results

gROOT.Reset

c1 = TCanvas.new("c1","The HSUM example",200,10,600,400)

c1.SetGrid

37

gBenchmark = TBenchmark.new.Start("hsum")

Create some histograms.

total = TH1F.new("total","This is the total distribution",100,-4,4)

main = TH1F.new("main","Main contributor",100,-4,4)

s1 = TH1F.new("s1","This is the first signal",100,-4,4)

s2 = TH1F.new("s2","This is the second signal",100,-4,4)

total.Sumw2 # this makes sure that the sum of

squares of weights will be stored

total.SetMarkerStyle(21)

total.SetMarkerSize(0.7)

main.SetFillColor(16)

s1.SetFillColor(42)

s2.SetFillColor(46)

slider = nil

Fill histograms randomly

rnd = TRandom.new.SetSeed

kUPDATE = 500

10000.times do |i|

xmain = rnd.Gaus(-1,1.5)

xs1 = rnd.Gaus(-0.5,0.5)

xs2 = rnd.Landau(1,0.15)

main.Fill(xmain)

s1.Fill(xs1,0.3)

s2.Fill(xs2,0.2)

total.Fill(xmain)

total.Fill(xs1,0.3)

total.Fill(xs2,0.2)

if (i && (i%kUPDATE) == 0)

if (i == kUPDATE)

total.Draw("e1p")

main.Draw("same")

s1.Draw("same")

s2.Draw("same")

38

c1.Update

slider = TSlider.new("slider","test",

4.2,0,4.6,total.GetMaximum,38)

slider.SetFillColor(46)

end

slider.SetRange(0,i/10000.0) if slider

c1.Modified

c1.Update

end

end

slider.SetRange(0,1)

total.Draw("sameaxis") # to redraw axis hidden by the fill area

c1.Modified

gBenchmark.Show("hsum")

gApplication.Run

C.2 Case Study Script

require ’libRuby’

require ’net/http’

c1 = TCanvas.new("c1","Ruby Module Case Study",200,10,600,400)

c1.SetGrid

main = TH1F.new("main","Main",100,-4,4)

main.SetFillColor kRed

data = Net::HTTP.get(’null.edunet.uoa.gr’,

’/~elathan/rr/demo/rr.php’)

data.gsub!(/\<br\/>/, "")

entries = data.split(" ")

entries.each do |entry|

main.Fill(entry.to_f)

main.Draw("e1p")

c1.Update

39

end

main.Fit("gaus", "ql")

main.Draw("same")

c1.Modified

c1.Update

gApplication.Run

40

