

U
sers G

uide 3.1d
D

ecem
ber, 2001

C
om

m
ents to: rootdoc@

root.cern.ch

 The R
O

O
T U

ser's G
uide:

Authors: R
ené Brun/C

ER
N

, Fons R
adem

akers, Suzanne Panacek/FN
AL,

D
am

ir Buskulic/U
niversite de Savoie/LAPP, Jörn Adam

czew
ski/G

SI, M
arc

H
em

berger/G
SI, N

ick W
est/O

xford

Editor: Suzanne Panacek/FN
AL

Special Thanks to: Philippe C
anal/FN

AL, Andrey Kubarovsky/FN
AL

Version 3.01
U

p to version 3.1a, the U
ser's G

uide version num
bers w

ere independent of
the softw

are version num
bers. W

ith the release of R
O

O
T 3.01 w

e adopted
the convention to m

atch the softw
are version num

ber. H
ence the U

ser's
G

uide version 3.01x docum
ents R

O
O

T version 3. All U
sers G

uide versions
0.x docum

ent R
O

O
T tw

o.

Preface
D

ecem
ber 2001 - version 3.1d

i

 Preface

In late 1994, w
e decided to learn and investigate O

bject O
riented

program
m

ing and C
++ to better judge the suitability of these relatively new

techniques for scientific program

m
ing. W

e knew
 that there is no better w

ay to
learn a new

 program
m

ing environm
ent than to use it to w

rite a program
 that

can solve a real problem
. After a few

 w
eeks, w

e had our first histogram
m

ing
package in C

++. A few
 w

eeks later w
e had a rew

rite of the sam
e package

using the, at that tim
e, very new

 tem
plate features of C

++. Again, a few

w
eeks later w

e had another rew
rite of the package w

ithout tem
plates since

w
e could only com

pile the version w
ith tem

plates on one single platform

using a specific com
piler. Finally, after about four m

onths w
e had a

histogram
m

ing package that w
as faster and m

ore efficient than the w
ell-

know
n FO

R
TR

AN
 based H

BO
O

K a histogram
m

ing package. This gave us
enough confidence in the new

 technologies to decide to continue the
developm

ent. Thus w
as born R

O
O

T.

Since its first public release at the end of 1995, R
O

O
T has enjoyed an ever-

increasing popularity. C
urrently it is being used in all m

ajor H
igh Energy and

N
uclear Physics laboratories around the w

orld to m
onitor, to store and to

analyze data. In the other sciences as w
ell as the m

edical and financial
industries, m

any people are using R
O

O
T. W

e estim
ate the current user base

to be around several thousand people.

In 1997, Eric R
aym

ond analyzed in his paper "The C
athedral and the Bazaar"

the developm
ent m

ethod that m
akes Linux such a success. The essence of

that m
ethod is: "release early, release often and listen to your custom

ers".
This is precisely how

 R
O

O
T is being developed. O

ver the last five years,
m

any of our "custom
ers" becam

e co-developers. H
ere w

e w
ould like to thank

our m
ain co-developers and contributors:

M
asaharu G

oto w
ho w

rote the C
IN

T C
++ interpreter. C

IN
T has becom

e an
essential part of R

O
O

T. D
espite being 8 tim

e zones ahead of us, w
e often

have the feeling he is sitting in the room
 next door.

Valery Fine w
ho ported R

O
O

T to W
indow

s and w
ho also contributed largely

to the 3-D
 graphics and geom

etry packages.

N
enad Buncic w

ho developed the H
TM

L docum
entation generation system

and integrated the X3D

 view
er in R

O
O

T.

Philippe C
anal w

ho developed the autom
atic com

piler interface to C
IN

T. In
addition to a large num

ber of contributions to m
any different parts of the

system
, Philippe is also the R

O
O

T support coordinator at FN
AL.

Suzanne Panacek w
ho is the m

ain author of this m
anual. Suzanne is also

very active in preparing tutorials and giving lectures about R
O

O
T.

Further, w
e w

ould like to thank the follow
ing people for their m

any
contributions, bug fixes, bug reports and com

m
ents:

ii
D

ecem
ber 2001 - version 3.1d

Preface

M
aarten Ballintijn, Stephen Bailey, D

am
ir Buskulic, Federico C

arm
inati, M

at
D

obbs, R
utger v.d. Eijk, Anton Fokin, N

ick van Eijndhoven, G
eorge

H
eintzelm

an, M
arc H

em
berger, C

hristian H
olm

 C
ristensen, Jacek M

.
H

oleczek, Stephan Kluth, M
arcel Kunze, C

hristian Lacunza, M
atthew

 D
.

Langston, M
ichal Lijow

ski, Peter M
alzacher, D

ave M
orrison, Eddy

O
fferm

ann, Pasha M
urat, Valeriy O

nuchin, Victor Perevoztchikov, Sven
R

avndal, R
einer R

ohlfs, G
unther R

oland, Andy Salnikov, O
tto Schaile,

Alexandre V. Vaniachine, Torre W
enaus and H

ans W
enzel, and m

any m
ore

w
ho have also contributed

You all helped in m
aking R

O
O

T a great experience.

H
appy R

O
O

Ting!

R
ene Brun & Fons R

adem
akers

G
eneva, August 2000.

 Table of C
ontents

D
ecem

ber 2001 - version 3.1d
iii

Table of C
ontents

Preface
i

Table of C
ontents

iii

1
Introduction

1
The R

O
O

T M
ailing List..1

C
ontact Inform

ation..2
C

onventions U
sed in This B

ook
...2

The Fram
ew

ork...3
W

hat is a Fram
ew

ork?..3
W

hy O
bject-O

riented?..4
Installing R

O
O

T..4
The O

rganization of the R
O

O
T Fram

ew
ork

...6
$R

O
O

TSY
S/bin..7

$R
O

O
TSY

S/lib...7
$R

O
O

TSY
S/tutorials..9

$R
O

O
TSY

S/test...9
$R

O
O

TSY
S/include...10

$R
O

O
TSY

S/<library>..10
H

ow
 to Find M

ore Inform
ation...11

2
G

etting Started
13

Start and Q
uit a R

O
O

T Session
..13

Exit R
O

O
T..15

First Exam
ple: U

sing the G
U

I..15
Second Exam

ple: B
uilding a M

ulti-pad C
anvas...19

Printing the C
anvas...19

The R
O

O
T C

om
m

and Line...20
C

IN
T Extensions..20

H
elpful H

ints for C
om

m
and Line Typing

....................................20
M

ulti-line C
om

m
ands...21

C
onventions..21

C
oding C

onventions...21
M

achine Independent Types...22
TO

bject...22
G

lobal V
ariables...23
gR

O
O

T
...23

gFile..23
gD

irectory...23
gPad..24
gR

andom
...24

gEnv..24
H

istory File...24
Environm

ent Setup..25

iv
D

ecem
ber 2001 - version 3.1d

Table of C
ontents

The Script Path
...25

Logon and Logoff Scripts...25
Tracking M

em
ory Leaks...26

C
onverting H

B
O

O
K

/PA
W

 files..26

3
H

istogram
s

29
The H

istogram
 C

lasses..29
C

reating H
istogram

s...30
Fixed or V

ariable B
in Size..31

B
in num

bering convention..31
R

e-binning
..32

Filling H
istogram

s..32
A

utom
atic R

e-binning O
ption

..32
R

andom
 N

um
bers and H

istogram
s...33

A
dding, D

ividing, and M
ultiplying...33

Projections..34
D

raw
ing H

istogram
s...34

Setting the Style..34
D

raw
 O

ptions..36
Statistics D

isplay...37
Setting Line, Fill, M

arker, and Text A
ttributes...38

Setting Tick M
arks on the A

xis..38
G

iving Titles to the X
, Y

 and Z A
xis..38

The SC
A

Tter Plot O
ption

...39
The A

R
R

ow
 O

ption
..39

The B
O

X
 O

ption...39
The ER

R
or B

ars O
ptions..39

The C
O

Lor O
ption..40

The TEX
T O

ption...41
The C

O
N

Tour O
ptions..42

The LEG
O

 O
ptions...43

The SU
R

Face O
ptions..44

The Z O
ption: D

isplay the C
olor Palette on the Pad...................................45

Setting the color palette..45
D

raw
ing a Sub-range of a 2-D

 H
istogram

 (the [cutg] O
ption)...................46

D
raw

ing O
ptions for 3-D

 H
istogram

s...46
Superim

posing H
istogram

s w
ith D

ifferent Scales......................................47
M

aking a C
opy of an H

istogram
...48

N
orm

alizing H
istogram

s...48
Saving/R

eading H
istogram

s to/from
 a file..48

M
iscellaneous O

perations...48
Profile H

istogram
s..49

The TProfile C
onstructor..49

Exam
ple of a TProfile...51

D
raw

ing a Profile w
ithout Error B

ars...52
C

reate a Profile from
 a 2D

 H
istogram

..52
C

reate a H
istogram

 from
 a Profile..52

G
enerating a Profile from

 a TTree..52
2D

 Profiles..52
Exam

ple of a TProfile2D
 histogram

...53

4
G

raphs
55

TG
raph..55

C
reating G

raphs..55
G

raph D
raw

 O
ptions...55

C
ontinuous line, A

xis and Stars (A
C

*)...56
B

ar G
raphs (A

B
)...57

Filled G
raphs (A

F)..57
M

arker O
ptions...58

 Table of C
ontents

D
ecem

ber 2001 - version 3.1d
v

Superim
posing tw

o G
raphs...59

TG
raphErrors..60

TG
raphA

sym
m

Errors..61
TM

ultiG
raph

...62
Fitting a G

raph..62
Setting the G

raph's A
xis Title...63

Zoom
ing a G

raph..63

5
Fitting H

istogram
s

65
The Fit Panel...65
The Fit M

ethod
...66

Fit w
ith a Predefined Function..67

Fit w
ith a U

ser- D
efined Function

..67
C

reating a TF1 w
ith a Form

ula...67
C

reating a TF1 w
ith Param

eters...67
C

reating a TF1 w
ith a U

ser Function..68
Fixing and Setting B

ounds for Param
eters..69

Fitting Sub R
anges..70

Exam
ple: Fitting M

ultiple Sub R
anges...70

A
dding Functions to The List...71

C
om

bining Functions..71
A

ssociated Function..73
A

ccess to the Fit Param
eters and R

esults..74
A

ssociated Errors..74
Fit Statistics...74

6
A Little C

++
75

C
lasses, M

ethods and C
onstructors...75

Inheritance and D
ata Encapsulation..76

C
reating O

bjects on the Stack and H
eap...78

7
C

IN
T the C

++ Interpreter
83

W
hat is C

IN
T?..83

The R
O

O
T C

om
m

and Line Interface
...85

The R
O

O
T Script Processor...87

U
n-nam

ed Scripts...87
N

am
ed Scripts...88

R
esetting the Interpreter Environm

ent..90
A

 Script C
ontaining a C

lass D
efinition...91

D
ebugging Scripts...93

Inspecting O
bjects...94

R
O

O
T/C

IN
T Extensions to C

++...95
A

C
LiC

 - The A
utom

atic C
om

piler of Libraries for C
IN

T
..........................96

U
sage..96

Interm
ediate Steps and Files...97

M
oving betw

een Interpreter and C
om

piler...................................98
Setting the Include Path..99

8
O

bject O
w

nership
101

O
w

nership by C
urrent D

irectory (gD
irectory)..101

O
w

nership by the M
aster TR

O
O

T O
bject (gR

O
O

T)................................102
The C

ollection of Specials..102
O

w
nership by O

ther O
bjects...103

O
w

nership by the U
ser..103

The kC
anD

elete B
it..103

The kM
ustC

leanup B
it..104

vi
D

ecem
ber 2001 - version 3.1d

Table of C
ontents

9
G

raphics and the G
raphical U

ser Interface
107

D
raw

ing O
bjects...107

Interacting w
ith G

raphical O
bjects...107

M
oving, R

esizing and M
odifying O

bjects..................................108
Selecting O

bjects..109
C

ontext M
enus: the R

ight M
ouse B

utton
...................................110

Executing Events w
hen a C

ursor passes on top of an O
bject.....112

G
raphical C

ontainers: C
anvas and Pad...114

The C
oordinate System

s of a Pad...116
C

onverting betw
een C

oordinates System
s..................................118

D
ividing a Pad into Sub-pads...118

U
pdating the Pad

..120
M

aking a Pad Transparent..120
Setting the Log Scale is a Pad A

ttribute
.....................................121

G
raphical O

bjects..121
Lines, A

rrow
s, and G

eom
etrical O

bjects....................................122
Text and Latex M

athem
atical Expressions.................................126

Exam
ple 1...129

Exam
ple 2...130

Exam
ple 3...131

Text in Labels and TPaves..132
Sliders...134

A
xis...136

A
xis O

ptions and C
haracteristics..137

A
xis Title..137

D
raw

ing A
xis independently of G

raphs or H
istogram

s..............137
O

rientation of tick m
arks on axis..138

Label Position...138
Label O

rientation..138
Tick M

ark Label Position
...139

Label Form
atting

..139
O

ptional G
rid..139

A
xis B

inning O
ptim

ization...139
Tim

e Form
at...139

A
xis Exam

ple 1:...141
A

xis Exam
ple 2:...142

G
raphical O

bjects A
ttributes...143

Text A
ttributes..143

Line A
ttributes..148

Fill A
ttributes..149

C
olor and C

olor Palettes...150
The G

raphical Editor...153
C

opy/Paste W
ith D

raw
C

lone..155
C

opy/Paste Program
m

atically...156
Legends...157
The PostScript Interface..158

Special C
haracters..159

M
ultiple Pictures in a PostScript File: C

ase 1
............................160

M
ultiple Pictures a PostScript File: C

ase 2.................................161
C

reate or M
odify a Style...161

10
Folders And Tasks

165
Folders..165
W

hy U
se Folders?...165

H
ow

 to U
se Folders..166

C
reating a Folder H

ierarchy
...166

Posting D
ata to a Folder (Producer)..167

R
eading D

ata from
 a Folder (C

onsum
er)....................................167

Tasks...168

 Table of C
ontents

D
ecem

ber 2001 - version 3.1d
vii

Execute and D
ebug Tasks...171

11
Input/O

utput
173

The Physical Layout of R
O

O
T Files...173

The File H
eader..175

The Top D
irectory D

escription...175
The H

istogram
 R

ecords..175
The C

lass D
escription List (Stream

erInfo List)..........................176
The List of K

eys and The List of Free B
locks............................178

File R
ecovery..178

The Logical R
O

O
T File: TFile and TK

ey...178
The C

urrent D
irectory...182

O
bjects in M

em
ory and O

bjects on D
isk....................................183

Saving H
istogram

s to D
isk

...185
H

istogram
s and the C

urrent D
irectory..187

Saving O
bjects to D

isk
...188

Saving C
ollections to D

isk
...188

A
 TFile O

bject going O
ut of Scope..188

R
etrieving O

bjects from
 D

isk...189
Subdirectories and N

avigation..189
Stream

ers..192
Stream

ing Pointers..192
A

utom
atically G

enerated Stream
ers...193

Transient D
ata M

em
bers (//!)...194

The Pointer To O
bjects (//->)..194

V
ariable Length A

rray..194
Prevent Splitting (//||)...195
Stream

ers W
ith Special A

dditions..195
W

riting O
bjects...196

Ignore O
bject Stream

ers...197
Stream

ing a TC
lonesA

rray
...197

Schem
a Evolution

...199
The Stream

erInfo C
lass..200

Exam
ple: TH

1 Stream
erInfo...201

The Stream
erInfoElem

ent C
lass...201

O
ptim

ized Stream
erInfo

...202
A

utom
atic Schem

a Evolution...202
M

anual Schem
a Evolution..203

B
uilding C

lass D
efinitions W

ith The Stream
erInfo....................203

Exam
ple: M

akeProject..203
M

igrating to R
O

O
T 3..207

C
om

pression and Perform
ance

...208
A

ccessing R
O

O
T Files R

em
otely via a rootd

...209
TN

etFile U
R

L
...209

R
em

ote A
uthentication

...209
A

 Sim
ple Session..210

The rootd D
aem

on..210
Starting rootd via inetd

...211
C

om
m

and Line A
rgum

ents for rootd
......................................211

R
eading R

O
O

T Files via A
pache W

eb Server..211
U

sing the G
eneral TFile::O

pen() Function.................................212

12
Trees

213
W

hy should you U
se a Tree?..213

A
 Sim

ple TTree...214
Show

 A
n Entry w

ith TTree::Show
..215

Print the tree structure w
ith TTree::Print..215

Scan a V
ariable the tree w

ith TTree::Scan..216
The Tree V

iew
er...216

viii
D

ecem
ber 2001 - version 3.1d

Table of C
ontents

C
reating and Saving Trees..219

C
reating a Tree from

 a Folder H
ierarchy....................................220

A
utosave...220

B
ranches..220

A
dding a B

ranch to hold a List of V
ariables...221

A
dding a TB

ranch to hold an O
bject..222

Setting the Split-level...223
Exem

pt a D
ata M

em
ber from

 Splitting.......................................225
A

dding a B
ranch to hold a TClonesA

rray
..................................225

Identical B
ranch N

am
es..225

A
dding a B

ranch w
ith a Folder...226

A
dding a B

ranch w
ith a TList...226

Exam
ples For W

riting and R
eading Trees..226

Exam
ple 1: A

 Tree w
ith Sim

ple V
ariables..227

W
riting the Tree..227

V
iew

ing the Tree..228
R

eading the Tree...230
Exam

ple 2: A
 Tree w

ith a C
 Structure..231

W
riting The Tree..233

A
nalysis..235

Exam
ple 3: A

dding Friends to Trees..237
A

dding a B
ranch to an Existing Tree..237

TTree::A
ddFriend...237

Exam
ple 4: A

 Tree w
ith an Event C

lass...241
The Event C

lass..241
The EventH

eader C
lass...242

The Track C
lass..242

W
riting the Tree..243

R
eading the Tree...244

Trees in A
nalysis...246

Sim
ple A

nalysis using TTree::D
raw

...246
U

sing Selection w
ith TTree:D

raw
..247

U
sing TC

ut O
bjects in TTree::D

raw
...248

A
ccessing the H

istogram
 in B

atch M
ode....................................249

U
sing D

raw
 O

ptions in TTree::D
raw

...249
Superim

posing tw
o H

istogram
s..250

Setting the R
ange in TTree::D

raw
..250

TTree::D
raw

 Exam
ples...250

Filling a H
istogram

...258
Projecting a H

istogram
...259

U
sing TTree::M

akeC
lass..260

U
sing TTree::M

akeSelector..265
Perform

ance B
enchm

arks...266
Im

pact of C
om

pression on I/O
..267

C
hains...268

TC
hain::A

ddFriend...269

13
Adding a C

lass
271

The R
ole of TO

bject...271
Introspection, R

eflection and R
un Tim

e Type Identification
.....271

C
ollections..272

Input/O
utput..272

Paint/D
raw

..272
G

etD
raw

O
ption

..272
C

lone/D
raw

C
lone...272

B
row

se..272
SavePrim

itive..273
G

etO
bjectInfo

...273
IsFolder...273

 Table of C
ontents

D
ecem

ber 2001 - version 3.1d
ix

B
it M

asks and U
nique ID

...273
M

otivation...274
The D

efault C
onstructor..275

rootcint: The C
IN

T D
ictionary G

enerator...276
A

dding a C
lass w

ith a Shared Library
..280

The LinkD
ef.h File...281

A
dding a C

lass w
ith A

C
LiC

...283

14
C

ollection C
lasses

285
U

nderstanding C
ollections..285

G
eneral C

haracteristics...285
D

eterm
ining the C

lass of C
ontained O

bjects..286
Types of C

ollections...286
O

rdered C
ollections (Sequences)..287

Sorted C
ollesction...287

U
nordered C

ollections..287
Iterators: Processing a C

ollection..287
Foundation C

lasses...288
TC

ollection...288
TIterator..288

A
 C

ollectable C
lass...289

The TIter G
eneric Iterator...290

The TList C
ollection...292

Iterating over a TList...293
The TO

bjA
rray C

ollection..294
TC

lonesA
rray � A

n A
rray of Identical O

bjects..295
The Idea B

ehind TC
lonesA

rray..295
Tem

plate C
ontainers and STL

..296

15
Physics Vectors

299
The Physics V

ector C
lasses..299

TV
ector3...300

D
eclaration / A

ccess to the com
ponents.....................................300

O
ther C

oordinates...301
A

rithm
etic / C

om
parison

..301
R

elated V
ectors...302

Scalar and V
ector Products...302

A
ngle betw

een Tw
o V

ectors...302
R

otation around A
xes...302

R
otation around a V

ector..302
R

otation by TR
otation

..302
Transform

ation from
 R

otated Fram
e..302

TR
otation

..303
D

eclaration, A
ccess, C

om
parisons...303

R
otation A

round A
xes..303

R
otation around A

rbitrary A
xis..304

R
otation of Local A

xes...304
Inverse R

otation..304
C

om
pound R

otations..304
R

otation of TV
ector3..305

TLorentzV
ector...306

D
eclaration..306

A
ccess to C

om
ponents..306

V
ector C

om
ponents in non-C

artesian C
oordinates.....................307

A
rithm

etic and C
om

parison O
perators.......................................308

M
agnitude/Invariant m

ass, beta, gam
m

a, scalar product............308
Lorentz B

oost...308
R

otations...309
M

iscellaneous...309

x
D

ecem
ber 2001 - version 3.1d

Table of C
ontents

TLorentzR
otation..310

D
eclaration..310

A
ccess to the m

atrix C
om

ponents/C
om

parisons........................311
Transform

ations of a Lorentz R
otation.......................................311

Transform
ation of a TLorentzV

ector..312
Physics V

ector Exam
ple

...312

16
The Tutorials and Tests

313
$R

O
O

TSY
S/tutorials..313

$R
O

O
TSY

S/test..314
Event � A

n Exam
ple of a R

O
O

T A
pplication315

stress - Test and B
enchm

ark...318
guitest � A

 G
raphical U

ser Interface
..320

17
Exam

ple Analysis
321

Explanation
...321

Script...324

18
N

etw
orking

329
Setting up a C

onnection..329
Sending O

bjects over the N
etw

ork
...330

C
losing the C

onnection...331
A

 Server w
ith M

ultiple Sockets..332

19
W

riting a G
raphical User Interface

333
The N

ew
 R

O
O

T G
U

I C
lasses...333

X
C

lass'95
..333

R
O

O
T Integration

...334
A

bstract G
raphics B

ase C
lass TG

X
W

..334
Further changes:...335

A
 Sim

ple Exam
ple..336

MyMainFrame
..336

Laying out the Fram
e..337

A
dding A

ctions...338
The R

esult...338
The W

idgets in D
etail...338

Exam
ple: W

idgets and the Interpreter...339
R

Q
uant Exam

ple...340
R

eferences...340

20
Autom

atic H
TM

L D
ocum

entation
341

21
PR

O
O

F: Parallel Processing
343

22
Threads

345
Threads and Processes..345

Process Properties...345
Thread Properties..346
The Initial Thread

...346
Im

plem
entation of Threads in R

O
O

T
...346

Installation
..346

C
lasses..347

TThread for Pedestrians..347
Loading:..348
C

reating:...348
R

unning:...348

D

ecem
ber 2001 - version 3.1d

xi

TThread in M
ore D

etail..349
A

synchronous A
ctions..349

Synchronous A
ctions: TC

ondition..349
X

lib connections...350
C

anceling a TThread...351
A

dvanced TThread: Launching a M
ethod in a Thread

.............................352
K

now
n Problem

s...354
G

lossary
..354
Process..354
Thread...354
C

oncurrency..354
Parallelism

..354
R

eentrant...354
Thread-specific data..355
Synchronization..355
C

ritical Section
...355

M
utex..355

Sem
aphore..355

R
eaders/W

riter Lock...355
C

ondition V
ariable..355

M
ultithread safe levels..356

D
eadlock...356

M
ultiprocessor..356

List of Exam
ple files...357

Exam
ple m

hs3
..357

Exam
ple conditions..357

Exam
ple TM

hs3
...357

Exam
ple C

alcPiThread...357

23
Appendix A: Install and B

uild R
O

O
T

359
R

O
O

T C
opyright and Licensing A

greem
ent:...359

Installing R
O

O
T..360

C
hoosing a V

ersion...360
Installing Precom

piled B
inaries..361

Installing the Source
...361

M
ore B

uild O
ptions..362

Setting the Environm
ent V

ariables...363
D

ocum
entation to D

ow
nload

..364

24
Index

367

 Introduction
D

ecem
ber 2001 - version 3.1d

1

1 Introduction

In the m
id 1990's, R

ené Brun and Fons R
adem

akers had m
any years of

experience developing interactive tools and sim
ulation packages. They had

lead successful projects such as PAW
, PIAF, and G

EAN
T, and they knew

 the
tw

enty-year-old FO
R

TR
AN

 libraries had reached their lim
its. Although still

very popular, these tools could not scale up to the challenges offered by the
Large H

adron C
ollider, w

here the data is a few
 orders of m

agnitude larger
than anything seen before.

At the sam
e tim

e, com
puter science had m

ade leaps of progress especially in
the area of O

bject O
riented D

esign, and R
ené and Fons w

ere ready to take
advantage of it.

R
O

O
T w

as developed in the context of the N
A49 experim

ent at C
ER

N
. N

A49
has generated an im

pressive am
ount of data, around 10 Terabytes per run.

This rate provided the ideal environm
ent to develop and test the next

generation data analysis.

O
ne cannot m

ention R
O

O
T w

ithout m
entioning C

IN
T its C

++ interpreter.
C

IN
T w

as created by M
asa G

oto in Japan. It is an independent product,
w

hich R
O

O
T is using for the com

m
and line and script processor.

R
O

O
T w

as, and still is, developed in the "Bazaar style", a term
 from

 the book
"The C

athedral and the Bazaar" by Eric S. R
aym

ond. It m
eans a liberal,

inform
al developm

ent style that heavily leverages the diverse and deep talent
of the user com

m
unity. The result is that physicists developed R

O
O

T for
them

selves, this m
ade it specific, appropriate, useful, and over tim

e refined
and very pow

erful.

W
hen it com

es to storing and m
ining large am

ount of data, physics plow
s the

w
ay w

ith its Terabytes, but other fields and industry follow
 close behind as

they acquiring m
ore and m

ore data over tim
e, and they are ready to use the

true and tested technologies physics has invented. In this w
ay, other fields

and industries have found R
O

O
T useful and they have started to use it also.

The developm
ent of R

O
O

T is a continuous conversation betw
een users and

developers w
ith the line betw

een the tw
o blurring at tim

es and the users
becom

ing co-developers.

In the bazaar view
, softw

are is released early and frequently to expose it to
thousands of eager co-developers to pound on, report bugs, and contribute
possible fixes. M

ore users find m
ore bugs, because m

ore users add different
w

ays of stressing the program
. By now

, after six years, m
any, m

any users
have stressed R

O
O

T in m
any w

ays, and it is quiet m
ature. M

ost likely, you
w

ill find the features you are looking for, and if you have found a hole, you
are encouraged to participate in the dialog and post your suggestion or even
im

plem
entation on roottalk, the R

O
O

T m
ailing list.

The R
O

O
T M

ailing List
You can subscribe to roottalk, the R

O
O

T M
ailing list by registering at the

R
O

O
T w

eb site: http://root.cern.ch/root/R
egistration.phtm

l.

2
D

ecem
ber 2001 - version 3.1d

Introduction

This is a very active list and if you have a question, it is likely that it has been
asked, answ

ered, and stored in the archives. Please use the search engine
to see if your question has already been answ

ered before sending m
ail to

root talk.

You can brow
se the roottalk archives at:

http://root.cern.ch/root/roottalk/AboutR
ootTalk.htm

l.

You can send your question w
ithout subscribing to: roottalk@

root.cern.ch

C
ontact Inform

ation
This book w

as w
ritten by several authors. If you w

ould like to contribute a
chapter or add to a section, please contact us. This is the first and early
release of this book, and there are still m

any om
issions. H

ow
ever, w

e w
anted

to follow
 the R

O
O

T tradition of releasing early and often to get feedback early
and catch m

istakes. W
e count on you to send us suggestions on additional

topics or on the topics that need m
ore docum

entation. Please send your
com

m
ents, corrections, questions, and suggestions to rootdoc@

root.cern.ch.

W
e attem

pt to give the user insight into the m
any capabilities of R

O
O

T. The
book begins w

ith the elem
entary functionality and progresses in com

plexity
reaching the specialized topics at the end.

The experienced user looking for special topics m
ay find these chapters

useful: N
etw

orking, W
riting a G

raphical U
ser Interface, Threads, and

PR
O

O
F: Parallel Processing.

Because this book w
as w

ritten by several authors, you m
ay see som

e
inconsistencies and a "change of voice" from

 one chapter to the next. W
e felt

w
e could accept this in order to have the expert explain w

hat they know
 best.

C
onventions U

sed in This B
ook

W
e tried to follow

 a style convention for the sake of clarity. H
ere are the few

styles w

e used.

To show
 source code in scripts or source files:

{ cout << " Hello" << endl;
 float x = 3.;
 float y = 5.;
 int i = 101;
 cout <<" x = "<<x<<" y = "<<y<<" i = "<<i<< endl;
}

To show
 the R

O
O

T com
m

and line, w
e show

 the R
O

O
T prom

pt w
ithout

num
bers. In the interactive system

, the R
O

O
T prom

pt has a line num
ber (root

[12]), for the sake of sim
plicity w

e left off the line num
ber.

Bold m
onotype font indicates text for you to enter at verbatim

.

root[] TLine l
root[] l.Print()
TLine X1=0.000000 Y1=0.000000 X2=0.000000 Y2=0.000000

Italic bold m
onotype font indicates a global variable, for exam

ple
gDirectory.

 Introduction
D

ecem
ber 2001 - version 3.1d

3

W
e also used the italic bold font to highlight the comments in the code

listing.

W
hen a variable term

 is used, it is show
n betw

een angled brackets. In the
exam

ple below
 the variable term

 <library> can be replaced w
ith any library in

the $R
O

O
TSYS directory.

$ROOTSYS/<library>/inc

The Fram
ew

ork
R

O
O

T is an object-oriented fram
ew

ork aim
ed at solving the data analysis

challenges of high-energy physics. There are tw
o key w

ords in this definition,
object oriented and fram

ew
ork. First, w

e explain w
hat w

e m
ean by a

fram
ew

ork and then w
hy it is an object-oriented fram

ew
ork.

W
hat is a Fram

ew
ork?

Program
m

ing inside a fram
ew

ork is a little like living in a city. Plum
bing,

electricity, telephone, and transportation are services provided by the city. In
your house, you have interfaces to the services such as light sw

itches,
electrical outlets, and telephones. The details, for exam

ple the routing
algorithm

 of the phone sw
itching system

, are transparent to you as the user.
You do not care, your are only interested in using the phone to com

m
unicate

w
ith your collaborators to solve your dom

ain specific problem
s.

Program
m

ing outside of a fram
ew

ork m
ay be com

pared to living in the
country. In order to have transportation and w

ater, you w
ill have to build a

road and dig a w
ell. To have services like telephone and electricity you w

ill
need to route the w

ires to your hom
e. In addition, you cannot build som

e
things yourself. For exam

ple, you cannot build a com
m

ercial airport on your
patch of land. From

 a global perspective, it w
ould m

ake no sense for
everyone to build their ow

n airport. You see you w
ill be very busy building the

infrastructure (or fram
ew

ork) before you can use the phone to com
m

unicate
w

ith your collaborators and have a drink of w
ater at the sam

e tim
e.

In softw
are engineering, it is m

uch the sam
e w

ay. In a fram
ew

ork the basic
utilities and services, such as I/O

 and graphics, and are provided. In addition,
R

O
O

T being a H
EP analysis fram

ew
ork, it provides a large selection of H

EP
specific utilities such as histogram

s and fitting. The draw
back of a fram

ew
ork

is that you are constrained to it, as you are constraint to use the routing
algorithm

 provided by your telephone service. You also have to learn the
fram

ew
ork interfaces, w

hich in this analogy is the sam
e as learning how

 to
use a telephone.

If you are interested in doing physics, a good H
EP fram

ew
ork w

ill save you
m

uch w
ork.

Below
 is a list of the m

ore com
m

only used com
ponents of R

O
O

T:

��
C

om
m

and Line Interpreter
��

H
istogram

s and Fitting
��

G
raphic U

ser Interface w
idgets

��
2D

 G
raphics

��
I/O

��

C
ollection C

lasses
��

Script Processor

There are also less com
m

only used com
ponents, these are:

��
3D

 G
raphics

4
D

ecem
ber 2001 - version 3.1d

Introduction

��
Parallel Processing (PR

O
O

F)
��

R
un Tim

e Type Identification (R
TTI)

��
Socket and N

etw
ork C

om
m

unication
��

Threads

A
dvantages of Fram

ew
orks

The benefits of fram
ew

orks can be sum
m

arized as follow
s:

��
Less code to w

rite : The program
m

er should be able to use and reuse
the m

ajority of the code. Basic functionality, such as fitting and
histogram

m
ing are im

plem
ented and ready to use and custom

ize.
��

M
ore reliable and robust code: C

ode inherited from
 a fram

ew
ork has

already been tested and integrated w
ith the rest of the fram

ew
ork.

��
M

ore consistent and m
odular code : C

ode reuse provides consistency
and com

m
on capabilities betw

een program
s, no m

atter w
ho w

rites them
.

Fram
ew

orks also m
ake it easier to break program

s into sm
aller pieces.

��
M

ore focus on areas of expertise: U
sers can concentrate on their

particular problem
 dom

ain. They don't have to be experts at w
riting user

interfaces, graphics, or netw
orking to use the fram

ew
orks that provide

those services.

W
hy O

bject-O
riented?

O
bject-O

riented Program
m

ing offers considerable benefits com
pared to

Procedure-O
riented Program

m
ing:

��
Encapsulation enforces data abstraction and increases opportunity for
reuse.

��
Sub classing and inheritance m

ake it possible to extend and m
odify

objects.
��

C
lass hierarchies and containm

ent hierarchies provide a flexible
m

echanism
 for m

odeling real-w
orld objects and the relationships am

ong
them

.
��

C
om

plexity is reduced because there is little grow
th of the global state,

the state is contained w
ithin each object, rather than scattered through

the program
 in the form

 of global variables.
��

O
bjects m

ay com
e and go, but the basic structure of the program

rem

ains relatively static, increases opportunity for reuse of design.

Installing R
O

O
T

The installation and building of R
O

O
T is described in Appendix A: Install and

Build R
O

O
T. You can dow

nload the binaries (7 M
B to 11 M

B depending on
the platform

), or the source (about 3.4 M
B). R

O
O

T can be com
piled by the

G
N

U
 g++ com

piler on m
ost U

nix platform
s.

R
O

O
T is currently running on the follow

ing platform
s:

��
Intel x86 Linux (g++, egcs and KAI/KCC)

��
Intel Itanium Linux (g++)

��
HP HP-UX 10.x (HP CC and aCC, egcs1.2 C++ compilers)

��
IBM AIX 4.1 (xlc compiler and egcs1.2)

��
Sun Solaris for SPARC (SUN C++ compiler and egcs)

��
Sun Solaris for x86 (SUN C++ compiler)

��
Sun Solaris for x86 KAI/KCC

��
Compaq Alpha OSF1 (egcs1.2 and DEC/CXX)

 Introduction
D

ecem
ber 2001 - version 3.1d

5

��
Compaq Alpha Linux (egcs1.2)

��
SGI Irix (g++ , KAI/KCC and SGI C++ compiler)

��
Windows NT and Windows95 (Visual C++ compiler)

��
Mac MkLinux and Linux PPC (g++)

��
Hitachi HI-UX (egcs)

��
LynxOS

��
MacOS (CodeWarrior, no graphics)

6
D

ecem
ber 2001 - version 3.1d

Introduction

The O
rganization of the R

O
O

T Fram
ew

ork
N

ow
 w

e know
 in abstract term

s w
hat the R

O
O

T fram
ew

ork is, let's look at the
physical directories and files that com

e w
ith the installation of R

O
O

T.

You m
ay w

ork on a platform
 w

here your system
 adm

inistrator has already
installed R

O
O

T. You w
ill need to follow

 the specific developm
ent

environm
ent for your setup and you m

ay not have w
rite access to the

directories. In any case, you w
ill need an environm

ent variable called
ROOTSYS, w

hich holds the path of the top directory.

> echo $ROOTSYS
/home/root

In the ROOTSYS directory are exam
ples, executables, tutorials, header files,

and if you opted to dow
nload the source it is also here. The directories of

special interest to us are bin, tutorials, lib, test, and include. The
diagram

 on the next page show
s the contents of these directories.

*.h...
cint
m

akecint
new
proofd
proofserv
rm

kdepend
root
root.exe
rootcint
root-config
rootd

bin

$R
O

O
TSYS

libC
int.so

libC
ore.so

libEG
.so

*libEG
Pythia.so

*libEG
Pythia6.so

libEG
V

enus.so
libG

pad.so
libG

raf.so
libG

raf3d.so
libG

ui.so
libG

X
11.so

*libG
X

11TTF.so
libH

ist.so
libH

istPainter.so
libH

tm
l.so

libM
atrix.so

libM
inuit.so

libN
ew

.so
libPhysics.so
libPostscript.so
libProof.so
*libR

FIO
.so

*libR
G

L.so
libR

int.so
*libThread.so
libTree.so
libTreePlayer.so
libTreeV

iew
er.so

*libttf.so
libX

3d.so
libX

pm
.a

A
clock.cxx

A
clock.h

Event.cxx
Event.h
EventLinkD

ef.h
H

ello.cxx
H

ello.h
M

ainEvent.cxx
M

akefile
M

akefile.in
M

akefile.w
in32

R
EA

D
M

E
TestV

ectors.cxx
Tetris.cxx
Tetris.h
eventa.cxx
eventb.cxx
eventload.cxx
guitest.cxx
hsim

ple.cxx
hw

orld.cxx
m

inexam
.cxx

stress.cxx
tcollbm

.cxx
tcollex.cxx
test2htm

l.cxx
tstring.cxx
vlazy.cxx
vm

atrix.cxx
vvector.cxx

lib
test

tutorials
include

* O
ptional

Installation

EditorB
ar.C

Ifit.C
analyze.C
archi.C
arrow

.C
basic.C
basic.dat
basic3d.C
benchm

arks.C
canvas.C
classcat.C
cleanup.C
com

pile.C
copytree.C
copytree2.C
dem

os.C
dem

oshelp.C
dialogs.C
dirs.C
ellipse.C
eval.C
event.C
exec1.C
exec2.C
feynm

an.C
fildir.C
file.C
fillrandom

.C
first.C
fit1.C
fit1_C

.C

fitslicesy.C
form

ula1.C
fram

ew
ork.C

gam
es.C

gaxis.C
geom

etry.C
gerrors.C
gerrors2.C
graph.C
h1draw

.C
hadd.C
hclient.C
hcons.C
hprod.C
hserv.C
hserv2.C
hsim

ple.C
hsum

.C
hsum

Tim
er.C

htm
lex.C

io.C
latex.C
latex2.C
latex3.C
m

anyaxis.C
m

ultifit.C
m

yfit.C
na49.C
na49geom

file.C
na49view

.C
na49visible.C

ntuple1.C
oldbenchm

arks.C
pdg.dat
psexam

.C
pstable.C
rootalias.C
rootenv.C
rootlogoff.C
rootlogon.C
rootm

arks.C
runcatalog.sql
runzdem

o.C
second.C
shapes.C
shared.C
splines.C
sqlcreatedb.C
sqlfilldb.C
sqlselect.C
staff.C
staff.dat
surfaces.C
tcl.C
testrandom

.C
tornado.C
tree.C
tw

o.C
xyslider.C
xysliderA

ction.C
zdem

o.C
h1analysis.C

 Introduction
D

ecem
ber 2001 - version 3.1d

7

$R
O

O
TSYS/bin

The bin directory contains several executables.

-
root show

s the R
O

O
T splash screen and calls root.exe.

-
root.exe is the executable that root calls, if you use a debugger such
as gdb, you w

ill need to run root.exe directly.
-

rootcint is the utility R
O

O
T uses to create a class dictionary for C

IN
T.

-
rmkdepend is a m

odified version of makedepend that w
orks for C

++. It
is used by the R

O
O

T build system
.

-
root-config is a script returning the needed com

pile flags and
libraries for projects that com

pile and link w
ith R

O
O

T.
-

cint is the C
++ interpreter executable that is independent of R

O
O

T.
-

makecint is the pure C
IN

T version of rootcint. It is used to generate
a dictionary. It is used by som

e of C
IN

T's install scripts to generate
dictionaries for external system

 libraries.
-

proofd is a sm
all daem

on used to authenticate a user of R
O

O
T's

parallel processing capability (PR
O

O
F).

-
proofserv is the actual PR

O
O

F process, w
hich is started by proofd

after a user, has successfully been authenticated.
-

rootd is the daem
on for rem

ote R
O

O
T file access (see TNetFile).

$R
O

O
TSYS/lib

There are several w
ays to use R

O
O

T, one w
ay is to run the executable by

typing root at the system
 prom

pt another w
ay is to link w

ith the R
O

O
T

libraries and m
ake the R

O
O

T classes available in your ow
n program

.

H
ere is a short description for each library, the ones m

arked w
ith a * are only

installed w
hen the options specified them

.

-
libCint.so is the C

++ interpreter (C
IN

T).
-

libCore.so is the Base classes
-

libEG.so is the abstract event generator interface classes
-

*libEGPythia.so is the Pythia5 event generator interface
-

*libEGPythia6.so is the Pythia6 event generator interface
-

libEGVenus.so is the Venus event generator interface
-

libGpad.so is the pad and canvas classes w
hich depend on low

 level
graphics

-
libGraf.so is the 2D

 graphics prim
itives (can be used independent of

libGpad.so)
-

libGraf3d.so is the3D
 graphics prim

itives
-

libGui.so is the G
U

I classes (depend on low
 level graphics)

-
libGX11.so is the low

 level graphics interface to the X11 system

-
*libGX11TTF.so is an add on library to libGX11.so providing

TrueType fonts
-

libHist.so is the histogram
 classes

-
libHistPainter.so is the histogram

 painting classes
-

libHtml.so is the H
TM

L docum
entation generation system

-

libMatrix.so is the m
atrix and vector m

anipulation
-

libMinuit.so - The M
IN

U
IT fitter

-
libNew.so is the special global new

/delete, provides extra m
em

ory
checking and interface for shared m

em
ory (optional)

-
libPhysics.so is the physics quantity m

anipulation classes
(TLorentzVector, etc.)

-
libPostScript.so is the PostScript interface

8
D

ecem
ber 2001 - version 3.1d

Introduction

-
libProof.so is the parallel R

O
O

T Facility classes
-

*libRFIO.so is the interface to C
ER

N
 R

FIO
 rem

ote I/O
 system

.
-

*libRGL.so is the interface to O
penG

L.
-

libRint.so is the interactive interface to R
O

O
T (provides com

m
and

prom
pt).

-
*libThread.so is the Thread classes.

-
libTree.so is the TTree object container system

.
-

libTreePlayer.so is the TTree draw
ing classes.

-
libTreeViewer.so is the graphical TTree query interface.

-
libX3d.so is the X3D

 system
 used for fast 3D

 display.

Library D
ependencies

The libraries are designed and organized to m
inim

ize dependencies, such
that you can include just enough code for the task at hand rather than having
to include all libraries or one m

onolithic chunk.

The core library (libCore.so) contains the essentials; it needs to be
included for all R

O
O

T applications. In the diagram
, you see that libCore is

m
ade up of Base classes, C

ontainer classes, M
eta inform

ation classes,
N

etw
orking classes, O

perating system
 specific classes, and the ZIP

algorithm
 used for com

pression of the R
O

O
T files.

The C
IN

T library (libCint.so) is also needed in all R
O

O
T applications, but

libCint can be used independently of libCore, in case you only need the
C

++ interpreter and not R
O

O
T. That is the reason these tw

o are separate.

A program
 referencing only TObject only needs libCore and libCint.

This includes the ability to read and w
rite R

O
O

T objects, and there are no
dependencies on graphics, or the G

U
I.

 Introduction
D

ecem
ber 2001 - version 3.1d

9

 A batch program
, one that does not have a graphic display, w

hich creates,
fills, and saves histogram

s and trees, only needs the core (libCore and
libCint), libHist and libTree. If other libraries are needed, R

O
O

T
loads them

 dynam
ically. For exam

ple if the TreeViewer is used,
libTreePlayer and all the libraries the TreePlayer box below

 has an
arrow

 to, are loaded also. In this case: GPad, Graf3d, Graf,
HistPainter, Hist, and Tree. The difference betw

een libHist and
libHistPainter is that the form

er needs to be explicitly linked and the
latter w

ill be loaded autom
atically at runtim

e w
hen needed. In the diagram

,
the dark boxes outside of the core are autom

atically loaded libraries, and the
light colored ones are not autom

atic. O
f course, if one w

ants to access an
autom

atic library directly, it has to be explicitly linked also.

An exam
ple of a dynam

ically linked library is Minuit. To create and fill
histogram

s you need to link libHist. If the code has a call to fit the
histogram

, the "Fitter" w
ill check if Minuit is already loaded and if not it w

ill
dynam

ically load it.

$R
O

O
TSYS/tutorials

The tutorials directory contains m
any exam

ple scripts. They assum
e som

e
basic know

ledge of R
O

O
T, and for the new

 user w
e recom

m
end reading the

chapters: H
istogram

s and Input/O
utput before trying the exam

ples. The m
ore

experienced user can jum
p to chapter The Tutorials and Tests to find m

ore
explicit and specific inform

ation about how
 to build and run the exam

ples.

$R
O

O
TSYS/test

The test directory contains a set of exam
ples that represent all areas of the

fram
ew

ork. W
hen a new

 release is cut, the exam
ples in this directory are

com
piled and run to test the new

 release's backw
ard com

patibility.

W
e see these source files:

-
hsimple.cxx - Sim

ple test program
 that creates and saves som

e
histogram

s
-

MainEvent.cxx - Sim
ple test program

 that creates a R
O

O
T Tree

object and fills it w
ith som

e sim
ple structures but also w

ith com
plete

histogram
s. This program

 uses the files Event.cxx, EventCint.cxx
and Event.h. An exam

ple of a procedure to link this program
 is in

bind_Event. N
ote that the Makefile invokes the rootcint utility to

generate the C
IN

T interface EventCint.cxx.
-

Event.cxx - Im
plem

entation for classes Event and Track
-

minexam.cxx - Sim
ple test program

 to test data fitting.
-

tcollex.cxx - Exam
ple usage of the R

O
O

T collection classes
-

tcollbm.cxx - Benchm
arks of R

O
O

T collection classes
-

tstring.cxx - Exam
ple usage of the R

O
O

T string class
-

vmatrix.cxx - Verification program
 for the TMatrix class

-
vvector.cxx - Verification program

 for the TVector class
-

vlazy.cxx - Verification program
 for lazy m

atrices.
-

hworld.cxx - Sm
all program

 show
ing basic graphics.

-
guitest.cxx - Exam

ple usage of the R
O

O
T G

U
I classes

-
Hello.cxx - D

ancing text exam
ple

-
Aclock.cxx - Analog clock (a la X11 xclock)

-
Tetris.cxx - The fam

ous Tetris gam
e (using R

O
O

T basic graphics)
-

stress.cxx - Im
portant R

O
O

T stress testing program
.

10
D

ecem
ber 2001 - version 3.1d

Introduction

The $ROOTSYS/test directory is a gold m
ine of R

O
O

T-w
isdom

 nuggets,
and w

e encourage you to explore and exploit it. H
ow

ever, w
e recom

m
end

that the new
 user read the chapters:. The chapter Tutorials and Tests, has

instructions on how
 to build all the program

s and goes over the exam
ples

Event and stress.

$R
O

O
TSYS/include

The include directory contains all the header files, this is especially
im

portant because the header files contain the class definitions.

$R
O

O
TSYS/<library>

The directories w
e explored above are available w

hen dow
nloading the

binaries or the source. W
hen dow

nloading the source you also get a directory
for each library w

ith the corresponding header and source files. Each library
directory contains an inc and src subdirectory. To see w

hat classes are in
a library, you can check the <library>/inc directory for the list of class
definitions. For exam

ple, the physics library contains these class definitions:

> ls -m $ROOTSYS/physics/inc
CVS, LinkDef.h, TLorentzRotation.h, TLorentzVector.h,
TRotation.h, TVector2.h, TVector3.h

 Introduction
D

ecem
ber 2001 - version 3.1d

11

H
ow

 to Find M
ore Inform

ation
The R

O
O

T w
eb site has up to date docum

entation. The R
O

O
T source code

autom
atically generates this docum

entation, so each class is explicitly
docum

ented on its ow
n w

eb page, w
hich is alw

ays up to date w
ith the latest

official release of R
O

O
T. The class index w

eb pages can be found at
http://root.cern.ch/root/htm

l/C
lassIndex.htm

l. Each page contains a class
description, and an explanation of each m

ethod. It show
s the class it w

as
derived from

 and lets you jum
p to the parent class page by clicking on the

class nam
e. If you w

ant m
ore detail, you can even see the source. In addition

to this, the site contains tutorials, "H
ow

 To's", and a list of publications and
exam

ple applications.

 G
etting Started

D
ecem

ber 2001 - version 3.1d
13

 2 G
etting Started

W
e begin by show

ing you how
 to use R

O
O

T interactively. There are tw
o

exam
ples to click through and learn how

 to use the G
U

I. W
e continue by

using the com
m

and line, and explaining the coding conventions, global
variables and the environm

ent setup.

If you have not installed R
O

O
T, you can do so by follow

ing the instructions in
the appendix, or on the R

O
O

T w
eb site:

http://root.cern.ch/root/Availability.htm
l

 Start and Q
uit a R

O
O

T Session
To start R

O
O

T you can type root at the system
 prom

pt. This starts up C
IN

T
the R

O
O

T com
m

and line C
/C

++ interpreter, and it gives you the R
O

O
T

prom
pt (root [0]).

% root

 * *
 * W E L C O M E to R O O T *
 * *
 * Version 2.25/02 21 August 2000 *
 * *
 * You are welcome to visit our Web site *
 * http://root.cern.ch *
 * *

 CINT/ROOT C/C++ Interpreter version 5.14.47, Aug 12 2000
Type ? for help. Commands must be C++ statements.
Enclose multiple statements between { }.
root [0]

14
D

ecem
ber 2001 - version 3.1d

G
etting Started

It is possible to launch R
O

O
T w

ith som
e com

m
and line options, as show

n
below

:

% root -/?
Usage: root [-l] [-b] [-n] [-q] [file1.C ... fileN.C]
 Options:
 -b : run in batch mode without graphics
 -n : do not execute logon and logoff macros as
 specified in .rootrc
 -q : exit after processing command line script files
 -l : do not show the image logo (splash sceen)

�b: R
un in batch m

ode, w
ithout graphics display. This m

ode is useful in case
one does not w

ant to set the D
ISPLAY or cannot do it for som

e reason.

�n: U
sually, launching a R

O
O

T session w
ill execute a logon script and

quitting w
ill execute a logoff script. This option prevents the execution of

these tw
o scripts.

It is also possible to execute a script w
ithout entering a R

O
O

T session. O
ne

sim
ply adds the nam

e of the script(s) after the R
O

O
T com

m
and. Be w

arned:
after finishing the execution of the script, R

O
O

T w
ill norm

ally enter a new

session.

�q: exit after processing com
m

and line script files. R
etrieving previous

com
m

ands and navigating on the C
om

m
and Line.

For exam
ple if you w

ould like to run a script in the background, exit after
execution, and redirect the output into a file, use the follow

ing syntax:

root -b -q myMacro.C > myMacro.log

For a quicker execution (i.e. com
piled speed rather than interpreted speed),

you can build a shared library w
ith AC

LiC
 (see the C

hapter on C
IN

T) and
then use the shared library on the com

m
and line.

root -b -q myMacro.so > myMacro.log

R
O

O
T's pow

erful C
/C

++ interpreter gives you access to all available R
O

O
T

classes, global variables, and functions via a com
m

and line. By typing C
++

statem
ents at the prom

pt, you can create objects, call functions, execute
scripts, etc. For exam

ple:

root[] 1+sqrt(9)
(double)4.000000000000e+00
root[]for (int i = 0; i<5; i++) cout << "Hello" << i << endl
Hello 0
Hello 1
Hello 2
Hello 3
Hello 4
root[] .q

 G
etting Started

D
ecem

ber 2001 - version 3.1d
15

Exit R
O

O
T

To quit the com
m

and line type .q.

root[] .q

First Exam
ple: U

sing the G
U

I
In this exam

ple, w
e show

 how
 to use a function object, and change its

attributes using the G
U

I. Again, start R
O

O
T:

N
ote: The G

U
I on M

S-W
indow

s looks and w
orks a little different from

 the one
on U

N
IX. W

e are w
orking on porting the new

 G
U

I class to W
indow

s. O
nce

they are available, the G
U

I w
ill be changed to be identical to the one in U

N
IX.

In this book, w
e used the U

N
IX G

U
I.

% root
� root[] TF1 f1("func1", "sin(x)/x", 0, 10)
root[] f1.Draw()

You should see som
ething like this:

 D

raw
ing a function is interesting, but it is not unique to a function. Evaluating

and calculating the derivative and integral are w
hat one w

ould expect from
 a

function. TF1, the function class defines these m
ethods for us.

root [] f1.Eval(3)
(Double_t)4.70400026866224020e-02
root [] f1.Derivative(3)
(Double_t)(-3.45675056671992330e-01)
root [] f1.Integral(0,3)
(Double_t)1.84865252799946810e+00
root [] f1.Draw()

16
D

ecem
ber 2001 - version 3.1d

G
etting Started

N
ote that by default TF1::Paint, the m

ethod that draw
s the function,

com
putes 100 equidistant points to draw

 it. You can set the num
ber of points

to a higher value w
ith the TF1::SetNpx() m

ethod:

root[] f1s.SetNpx(2000);

C
lasses, M

ethods and C
onstructors

O
bject oriented program

m
ing introduces objects, w

hich have data m
em

bers
and m

ethods.

The line TF1 f1("func1", "sin(x)/x", 0, 10) creates an object
nam

ed f1 of the class TF1 that is a one-dim
ensional function. The type of an

object is called a class. The object is called an instance of a class. W
hen a

m
ethod builds an object, it is called a constructor.

TF1 f1("func1", "sin(x)/x", 0, 10)

In our constructor, w
e used

sin(x)/x, w
hich is the function to use, and 0

and 10 are the lim
its. The first param

eter, f
u
n
c
1

is the nam
e of the object

f1. M
ost objects in R

O
O

T have a nam
e. R

O
O

T m
aintains a list of objects

that can be searched to find any object by its given nam
e (in our exam

ple
func1).
The syntax to call an object's m

ethod, or if one prefers, to m
ake an object do

som
ething is:

object.method_name(parameters)

This is the usual w
ay of calling m

ethods in C
++. The dot can be replaced by

" ->" if object is a pointer. In com
piled code, the dot M

U
ST be replaced by

a "->" if object is a pointer.

object_ptr->method_name(parameters)

So now
, w

e understand the tw
o lines of code that allow

ed us to draw
 our

function. f1.Draw() stands for �call the m
ethod Draw associated w

ith the
object f1 of class TF1�. W

e w
ill see the advantages of using objects and

classes very soon.

O
ne point, the R

O
O

T fram
ew

ork is an object oriented fram
ew

ork; how
ever

this does not prevent the user from
 calling plain functions. For exam

ple, m
ost

sim
ple scripts have functions callable by the user.

U
ser interaction

If you have quit the fram
ew

ork, try to draw
 the function sin(x)/x again.

N
ow

, w
e can look at som

e interactive capabilities. Every object in a w
indow

(w

hich is called a C
anvas) is in fact a graphical object in the sense that you

can grab it, resize it, and change som
e characteristics w

ith a m
ouse click.

For exam
ple, bring the cursor over the x-axis. The cursor changes to a hand

w
ith a pointing finger w

hen it is over the axis. N
ow

, left click and drag the
m

ouse along the axis to the right. You have a very sim
ple zoom

.

W
hen you m

ove the m
ouse over any object, you can get access to selected

m
ethods by pressing the right m

ouse button and obtaining a context m
enu. If

you try this on the function (TF1), you w
ill get a m

enu show
ing available

m
ethods. The other objects on this canvas are the title a TPaveText, the x

and y-axis, w
hich are TAxis objects, the fram

e a TFrame, and the canvas a

 G
etting Started

D
ecem

ber 2001 - version 3.1d
17

TCanvas. Try clicking on these and observe the context m
enu w

ith their
m

ethods.

For the function, try for exam

ple to select the SetRange m
ethod and put -10,

10 in the dialog box fields. This is equivalent to executing the m
em

ber
function f1.SetRange(-10,10) from

 the com
m

and line prom
pt, follow

ed
by f1.Draw().
H

ere are som
e other options you can try. For exam

ple, select the
DrawPanel item

 of the popup m
enu.

You w
ill see a panel like this:

18
D

ecem
ber 2001 - version 3.1d

G
etting Started

Try to resize the bottom
 slider and click D

raw
. You can zoom

 your graph. If
you click on "lego2" and "D

raw
", you w

ill see a 2D
 representation of your

graph:

This 2D

 plot can be rotated interactively. O
f course, R

O
O

T is not lim
ited to

1D
 graphs - it is possible to plot real 2D

 functions or graphs. There are
num

erous w
ays to change the graphical options/colors/fonts w

ith the various
m

ethods available in the popup m
enu.

Line attributes
Text attributes

Fill attributes

O
nce the picture suits your w

ishes, you m
ay w

ant to see the code you should
put in a script to obtain the sam

e result. To do that, choose the "Save as
canvas.C

" option in the "File" m
enu. This w

ill generate a script show
ing the

various options. N
otice that you can also save the picture in PostScript or

G
IF form

at.

O
ne other interesting possibility is to save your canvas in native R

O
O

T
form

at. This w
ill enable you to open it again and to change w

hatever you like,
since all the objects associated to the canvas (histogram

s, graphs) are saved
at the sam

e tim
e.

 G
etting Started

D
ecem

ber 2001 - version 3.1d
19

Second Exam
ple: B

uilding a M
ulti-pad C

anvas
Let�s now

 try to build a canvas (i.e. a w
indow

) w
ith several pads. The pads

are sub-w
indow

s that can contain other pads or graphical objects.

root[] TCanvas *MyC = new TCanvas("MyC","Test canvas",1)
root[] MyC->Divide(2,2)

O
nce again, w

e called the constructor of a class, this tim
e the class

TCanvas. The difference w
ith the previous constructor call is that w

e w
ant to

build an object w
ith a pointer to it.

N
ext, w

e call the m
ethod Divide of the TCanvas class (that is

TCanvas::Divide()), w
hich divides the canvas into four zones and sets

up a pad in each of them
.

root[] MyC->cd(1)
root[] f1->Draw()

N
ow

, the function f1 w
ill be draw

n in the first pad. All objects w
ill now

 be
draw

n in that pad. To change the active pad, there are three w
ays:

C
lick on the m

iddle button of the m
ouse on an object, for exam

ple a pad. This
sets this pad as the active one

U
se the m

ethod TCanvas::cd w
ith the pad num

ber, as w
as done in the

exam
ple above:

root[] MyC->cd(3)

Pads are num
bered from

 left to right and from
 top to bottom

.

Each new
 pad created by TCanvas::Divide has a nam

e, w
hich is the

nam
e of the canvas follow

ed by _1, _2, etc. For exam
ple to apply the m

ethod
cd() to the third pad, you w

ould w
rite:

root[] MyC_3->cd()

The third pad w
ill be selected since you called TPad::cd() for the object

MyC_3. R
O

O
T autom

atically found the pad that w
as nam

ed MyC_3 w
hen

you typed it on the com
m

and line (see R
O

O
T/C

IN
T Extensions to C

++).

The obvious question is: w
hat is the relation betw

een a canvas and a pad? In
fact, a canvas is a pad that spans through an entire w

indow
. This is nothing

else than the notion of inheritance. The TPad class is the parent of the
TCanvas class.

Printing the C
anvas

To print a canvas click on the File m
enu and select Print. This w

ill create
a postscript file containing the canvas. The file is nam

ed
<canvasname>.ps. Then you can send the postscript file to your printer.

20
D

ecem
ber 2001 - version 3.1d

G
etting Started

The R
O

O
T C

om
m

and Line
W

e have briefly touched on how
 to use the com

m
and line, and you probably

saw
 that there are different types of com

m
ands.

1.C
IN

T com
m

ands start w
ith �.�

 root [].?
 //this command will list all the CINT commands
 root [].l <filename>
 //load [filename]
 root [].x <filename>
 //load [filename] and execute function [filename]

2.SH
ELL com

m
ands start w

ith �.!� for exam
ple:

root [] .! ls

3. C
++ com

m
ands follow

 C
++ syntax (alm

ost)

root [] TBrowser *b = new TBrowser()

C
IN

T Extensions
W

e can see that som
e things are not standard C

++. The C
IN

T interpreter has
several extensions. See the section R

O
O

T/C
IN

T Extensions to C
++ in

chapter C
IN

T the C
++ Interpreter

H
elpful H

ints for C
om

m
and Line Typing

The interpreter know
s all the classes, functions, variables, and user defined

types. This enables R
O

O
T to help the user com

plete the com
m

and line. For
exam

ple w
e do not know

 yet anything about the TLine class. W
e can use

the Tab feature to get help. W
here <TAB> m

eans type the <TAB> key. This
lists all the classes starting w

ith TL.

root [] l = new TL<TAB>
TLeaf
TLeafB
TLeafC
TLeafD
TLeafF
TLeafI
TLeafObject
TLeafS
TLine
TLatex
TLegendEntry
TLegend
TLink
TList
TListIter
TLazyMatrix
TLazyMatrixD

This lists the different constructors and param
eters for TLine.

 G
etting Started

D
ecem

ber 2001 - version 3.1d
21

root [] l = new TLine(<TAB>
TLine TLine()
TLine TLine(Double_t x1, Double_t y1, Double_t x2, Double_t y2)
TLine TLine(const TLine& line)

M
ulti-line C

om
m

ands
You can use the com

m
and line to execute m

ulti-line com
m

ands. To begin a
m

ulti-line com
m

and you m
ust type a single left curly bracket {, and to end it

you m
ust type a single right curly bracket }.

 For exam
ple:

root[] {
end with '}'> Int_t j = 0;
end with '}'> for (Int_t i = 0; i < 3; i++)
end with '}'> {
end with '}'> j= j + i;
end with '}'> cout <<"i = " <<i<<", j = " <<j<<endl;
end with '}'> }
end with '}'> }
i = 0, j = 0
i = 1, j = 1
i = 2, j = 3

It is m
ore convenient to edit scripts than the com

m
and line, and if your m

ulti
line com

m
ands are getting unm

anageable you m
ay w

ant to start a script
instead.

C
onventions

In this paragraph, w
e w

ill explain som
e of the conventions used in R

O
O

T
source and exam

ples.

C
oding C

onventions
From

 the first days of R
O

O
T developm

ent, it w
as decided to use a set of

coding conventions. This allow
s a consistency throughout the source code.

Learning these w
ill help you identify w

hat type of inform
ation you are dealing

w
ith and enable you to understand the code better and quicker. O

f course,
you can use w

hatever convention you w
ant but if you are going to subm

it
som

e code for inclusion into the R
O

O
T sources you w

ill need to use these.
These are the coding conventions:

��
C

lasses begin w
ith T:

TTree, TBrowser
��

N
on-class types end w

ith _t:
Int_t

��
D

ata m
em

bers begin w
ith f:

fTree
��

M
em

ber functions begin w
ith a capital: Loop()

��
C

onstants begin w
ith k:

kInitialSize, kRed
��

G
lobal variables begin w

ith g:
gEnv

��
Static data m

em
bers begin w

ith fg:
fgTokenClient

��
Enum

eration types begin w
ith E:

EColorLevel
��

Locals and param
eters begin w

ith

a low

er case:

 nbytes

��
G

etters and setters begin w
ith

G
et and Set:

SetLast(), GetFirst()

22
D

ecem
ber 2001 - version 3.1d

G
etting Started

M
achine Independent Types

D
ifferent m

achines m
ay have different lengths for the sam

e type. The m
ost

fam
ous exam

ple is the int type. It m
ay be 16 bits on som

e old m
achines

and 32 bits on som
e new

er ones.

To ensure the size of your variables, use these pre defined types in R
O

O
T:

��
Char_t

 Signed C
haracter 1 byte

��
Uchar_t

 U
nsigned C

haracter 1 byte
��

Short_t
 Signed Short integer 2 bytes

��
UShort_t

 U
nsigned Short integer 2 bytes

��
Int_t

 Signed integer 4 bytes
��

UInt_t
 U

nsigned integer 4 bytes
��

Long_t
 Signed long integer 8 bytes

��
ULong_t

 U
nsigned long integer 8 bytes

��
Float_t

 Float 4 bytes
��

Double_t
 Float 8 bytes

��
Bool_t

 Boolean (0=false, 1=true)

If you do not w
ant to save a variable on disk, you can use int or Int_t, the

result w
ill be the sam

e and the interpreter or the com
piler w

ill treat them
 in

exactly the sam
e w

ay.

TO
bject

In R
O

O
T, alm

ost all classes inherit from
 a com

m
on base class called

TObject. This kind of architecture is also used in the Java language. The
TObject class provides default behavior and protocol for all objects in the
R

O
O

T system
. The m

ain advantage of this approach is that it enforces the
com

m
on behavior of the derived classes and consequently it ensures the

consistency of the w
hole system

.

TObject provides protocol, i.e. (abstract) m
em

ber functions, for:

��
O

bject I/O
 (Read(), Write())

��
Error handling (Warning(), Error(), SysError(), Fatal())

��
Sorting (IsSortable(), Compare(), IsEqual(), Hash())

��
Inspection (Dump(), Inspect())

��
Printing (Print())

��
D

raw
ing (Draw(), Paint(), ExecuteEvent())

��
Bit handling (SetBit(), TestBit())

��
M

em
ory allocation (operator new and delete, IsOnHeap())

��
Access to m

eta inform
ation (IsA(), InheritsFrom())

��
O

bject brow
sing (Browse(), IsFolder())

See "The R
ole of TO

bject" in the chapter "Adding a C
lass".

 G
etting Started

D
ecem

ber 2001 - version 3.1d
23

G
lobal Variables

R
O

O
T has a set of global variables that apply to the session. For exam

ple,
gDirectory alw

ays holds the current directory, and gStyle holds the
current style. All global variables begin w

ith �g� follow
ed by a capital letter.

gR
O

O
T

The single instance of TR
O

O
T is accessible via the global gROOT and holds

inform
ation relative to the current session. By using the gROOT pointer you

get the access to basically every object created in a R
O

O
T program

. The
TR

O
O

T object has several lists pointing to the m
ain R

O
O

T objects.

The C
ollections of gR

O
O

T
D

uring a R
O

O
T session, the gR

O
O

T keeps a series of colletions to m
anage

objects. These can be accessed w
ith the gROOT::GetListOf m

ethods.

gROOT->GetListOfClasses()
gROOT->GetListOfColors()
gROOT->GetListOfTypes()
gROOT->GetListOfGlobals()
gROOT->GetListOfGlobalFunctions()
gROOT->GetListOfFiles()
gROOT->GetListOfMappedFiles()
gROOT->GetListOfSockets()
gROOT->GetListOfCanvases()
gROOT->GetListOfStyles()
gROOT->GetListOfFunctions()
gROOT->GetListOfSpecials()
gROOT->GetListOfGeometries()
gROOT->GetListOfBrowsers()
gROOT->GetListOfMessageHandlers()

These m
ethods return a TSeqCollection, m

eaning a collection of objects,
and they can be used to do list operations such as finding an object, or
traversing the list and calling a m

ethod for each of the m
em

bers. See the
TCollection class description for the full set of m

ethods supported for a
collection.

For exam
ple, to find a canvas called c1:

root[] gROOT->GetListOfCanvases()->FindObject("c1")

This returns a pointer to a TObject, and before you can use it as a canvas
you w

ill need cast it to a TCanvas*.

gFile
gFile is the pointer to the current opened file.

gD
irectory

gD
irectory is a pointer to the current directory. The concept and role of a

directory is explained in chapter Input/O
utput.

24
D

ecem
ber 2001 - version 3.1d

G
etting Started

gPad
A graphic object is alw

ays draw
n on the active pad. It is convenient to access

the active pad, no m
atter w

hat it is. For that w
e have gPad that is alw

ays
pointing to the active pad. For exam

ple, if you w
ant to change the fill color of

the active pad to blue, but you do not know
 its nam

e, you can use gPad.

root[] gPad->SetFillColor(38)
To get the list of colors, if you have an open canvas, click in the "View

" m
enu,

selecting the "C
olors" entry.

gR
andom

gRandom is a pointer to the current random

 num
ber generator. By default, it

points to a TRandom object. Setting the seed to 0 im
plies that the seed w

ill be
generated from

 the tim
e. Any other value w

ill be used as a constant.

The follow
ing basic random

 distributions are provided:
 Gaus(mean, sigma)
 Rndm()
 Landau(mean, sigma)
 Poisson(mean)
 Binomial(ntot,prob)
You can custom

ize your R
O

O
T session by replacing the random

 num
ber

generator. You can delete gRandom and recreate it w
ith your ow

n:

root[] delete gRandom;
root[] gRandom = new TRandom3(0); //seed=0

TRandom3 derives from
 TRandom and is a very fast generator w

ith higher
periodicity.

gEnv
gEnv is the global variable (of type TEnv) w

ith all the environm
ent settings

for the current session. This variable is set by reading the contents of a
.rootrc file (or $ROOTSYS/etc/system.rootrc) at the beginning of the
session. See "Environm

ent Setup" below
 for m

ore inform
ation.

H
istory File

You can use the up and dow
n arrow

 at the com
m

and line, to access the
previous and next com

m
and. The com

m
ands are recorded in the history file

$HOME/.root_hist. It contains the last 100 com
m

ands. It is a text file, and
you can edit and cut and paste from

 it.

You can specify the history file in the system.rootrc file (see below
), by

setting the Rint.History option. You can also turn off the com
m

and
logging in the system.rootrc file w

ith the option: Rint.History: -

 G
etting Started

D
ecem

ber 2001 - version 3.1d
25

Environm
ent Setup

The behavior of a R
O

O
T session can be tailored w

ith the options in the
rootrc file. At start-up, R

O
O

T looks for a rootrc file in the follow
ing order:

��
./.rootrc //local directory

��
$HOME/.rootrc //user directory

��
$ROOTSYS/etc/system.rootrc //global ROOT directory

If m
ore than one rootrc file is found in the search paths above, the options

are m
erged, w

ith precedence local, user, global.

W
hile in a session, to see current settings, you can do

root[] gEnv->Print()

The rootrc file typically looks like:

Path used by dynamic loader to find shared libraries
Unix.*.Root.DynamicPath: .:~/rootlibs:$ROOTSYS/lib
Unix.*.Root.MacroPath: .:~/rootmacros:$ROOTSYS/macros
 # Path where to look for TrueType fonts
Unix.*.Root.UseTTFonts: true
Unix.*.Root.TTFontPath:
� # Activate memory statistics
Rint.Root.MemStat: 1
Rint.Load: rootalias.C
Rint.Logon: rootlogon.C
Rint.Logoff: rootlogoff.C
� Rint.Canvas.MoveOpaque: false
Rint.Canvas.HighLightColor: 5

The various options are explained in $ROOTSYS/etc/system.rootrc.
The .rootrc file contents are com

bined. For exam
ple, if the flag to use true

type fonts is set to true in one of the system.rootrc files, you have to
explicitly overw

rite it and set it to false. R
em

oving the UseTTFonts
statem

ent in the local .rootrc file w
ill not disable true fonts.

The Script Path
R

O
O

T looks for scripts in the path specified in the rootrc file in the
Root.Macro.Path variable. You can expand this path to hold your ow

n
directories.

Logon and Logoff Scripts
The rootlogon.C and rootlogoff.C files are script loaded and executed
at start-up and shutdow

n. The rootalias.C file is loaded but not executed.
It typically contains sm

all utility functions. For exam
ple, the rootalias.C

script that com
es w

ith the R
O

O
T distributions and is in the

$ROOTSYS/tutorials defines the function edit(char *file). This
allow

s the user to call the editor from
 the com

m
and line. This particular

26
D

ecem
ber 2001 - version 3.1d

G
etting Started

function w
ill start the VI editor if the environm

ent variable EDITOR is not set.

root [0] edit("c1.C")
For m

ore details, see $ROOTSYS/tutorials/rootalias.C.

Tracking M
em

ory Leaks
You can track m

em
ory usage and detect leaks by m

onitoring the num
ber of

objects that are created and deleted (see TObjectTable). To use this
facility, edit the file .rootrc if you have this file or
$ROOTSYS/etc/system.rootrc and edit or add the tw

o follow
ing lines:

Root.MemStat: 1
Root.ObjectStat: 1

In your code, or on the com
m

and line you can type the line:

gObjectTable->Print();

This line w
ill print the list of active classes and the num

ber of instances for
each class. By com

paring consecutive print outs, you can see objects that
you forgot to delete.

N
ote that this m

ethod cannot show
 leaks com

ing from
 the allocation of non-

objects or classes unknow
n to R

O
O

T.

C
onverting H

B
O

O
K

/PAW
 files

R
O

O
T has a utility called h2root that you can use to convert your

H
BO

O
K/PAW

 histogram
s or ntuples files into R

O
O

T files. To use this
program

, you type the shell script com
m

and:

 h2root <hbookfile> <rootfile>

If you do not specify the second param
eter, a file nam

e is autom
atically

generated for you. If hbookfile is of the form
 file.hbook, then the R

O
O

T
file w

ill be called file.root.
This utility converts H

BO
O

K histogram
s into R

O
O

T histogram
s of the class

TH1F. H
BO

O
K profile histogram

s are converted into R
O

O
T profile

histogram
s (see class TProfile). H

BO
O

K row
-w

ise and colum
n-w

ise
ntuples are autom

atically converted to R
O

O
T Trees (see the chapter on

Trees). Som
e H

BO
O

K colum
n-w

ise ntuples m
ay not be fully converted if the

colum
ns are an array of fixed dim

ension(e.g. var[6]) or if they are a m
ulti-

dim
ensional array.

H
BO

O
K integer identifiers are converted into R

O
O

T nam
ed objects by

prefixing the integer identifier w
ith the letter "h" if the identifier is a positive

integer and by "h_" if it is a negative integer identifier.
In case of row

-w
ise or colum

n-w
ise ntuples, each colum

n is converted to a
branch of a tree.

N
ote that h2root is able to convert H

BO
O

K files containing several levels of
sub-directories.

O
nce you have converted your file, you can look at it and draw

 histogram
s or

process ntuples using the R
O

O
T com

m
and line. An exam

ple of session is

 G
etting Started

D
ecem

ber 2001 - version 3.1d
27

show
n below

:

// this connects the file hbookconverted.root
root[] TFile f("hbookconverted.root");
 //display histogram named h10 (was HBOOK id 10)
root[] h10.Draw();
 //display column "var" from ntuple h30
root[] h30.Draw("var");

You can also use the R
O

O
T brow

ser (see TBrow
ser) to inspect this file.

The chapter on trees explains how
 to read a Tree. R

O
O

T includes a function
TTree::MakeClass to autom

atically generate the code for a skeleton
analysis function (see the chapter Exam

ple Analysis).

In case one of the ntuple colum
ns has a variable length (e.g. px(ntrack)),

h.Draw("px") w
ill histogram

 the px colum
n for all tracks in the sam

e
histogram

. U
se the script quoted above to generate the skeleton function and

create/fill the relevant histogram
 yourself.

 H
istogram

s
D

ecem
ber 2001 - version 3.1d

29

 3 H
istogram

s

This chapter covers the functionality of the histogram
 classes. W

e begin w
ith

an overview
 of the histogram

 classes and their inheritance relationship. Then
w

e give instructions on the histogram
 features.

W
e have put this chapter ahead of the graphics chapter so that you can

begin w
orking w

ith histogram
s as soon as possible. Som

e of the exam
ples

have graphics com
m

ands that m
ay look unfam

iliar to you. These are covered
in the chapter on Input/O

utput.

The H
istogram

 C
lasses

R
O

O
T supports the follow

ing histogram
 types:

1-D
 histogram

s:

�
�

TH1C: are histogram
s w

ith one byte per channel. M
axim

um
 bin content = 255

�
�

TH1S: are histogram
s w

ith one short per channel. M
axim

um
 bin content =

65,535
�
�

TH1F: are histogram
s w

ith one float per channel. M
axim

um
 precision 7 digits

�
�

TH1D: are histogram
s w

ith one double per channel. M
axim

um
 precision 14 digits

2-D
 histogram

s:

�
�

TH2C: are histogram
s w

ith one byte per channel. M
axim

um
 bin content = 255

�
�

TH2S: are histogram
s w

ith one short per channel. M
axim

um
 bin content = 65535

�
�

TH2F: are histogram
s w

ith one float per channel. M
axim

um
 precision 7 dig

�
�

TH2D: are histogram
s w

ith one double per channel. M
axim

um
 precision 14 digits

3-D
 histogram

s:

�
�

TH3C: are histogram
s w

ith one byte per channel. M
axim

um
 bin content = 255

�
�

TH3S: are histogram
s w

ith one short per channel. M
axim

um
 bin content = 65535

�
�

TH3F: are histogram
s w

ith one float per channel. M
axim

um
 precision 7 digits

�
�

TH3D: are histogram
s w

ith one double per channel. M
axim

um
 precision 14 digits

Profile histogram
s:

�
�

TProfile: one dim
ensional profiles

�
�

TProfile2D: tw
o dim

ensional profiles

Profile histogram
s are used to display the m

ean value of Y and its R
M

S for
each bin in X. Profile histogram

s are in m
any cases an elegant replacem

ent

30
D

ecem
ber 2001 - version 3.1d

H
istogram

s

of tw
o-dim

ensional histogram
s. The inter-relation of tw

o m
easured quantities

X and Y can alw
ays be visualized w

ith a tw
o-dim

ensional histogram
 or

scatter-plot. If Y is an unknow
n but single-valued approxim

ate function of X, it
w

ill have greater precisions in a profile histogram
 than in a scatter plot.

All histogram
 classes are derived from

 the base class TH1. This im
age show

s
the class hierarchy of the histogram

 classes.

TH
1

TH
3

TH
2

TH
1C

TH
1S

TH
1F

TH
1D

TProfile

TH
2C

TH
2S

TH
2F

TH
2D

TH
3S

TH
3F

TProfile2D

TH
3C

TH
3D

The TH*C classes also inherit from
 the array class TArrayC.

The TH*S classes also inherit from
 the array class TArrayS.

The TH*F classes also inherit from
 the array class TArrayF.

The TH*D classes also inherit from
 the array class TarrayD.

The histogram
 classes have a rich set of m

ethods. Below
 is a list of w

hat one
can do w

ith the histogram
 classes.

C
reating H

istogram
s

H
istogram

s are created w
ith constructors:

TH1F *h1 = new TH1F("h1","h1 title",100,0,4.4);
TH2F *h2 = new TH2F("h2","h2 title",40,0,4,30,-3,3);

The param
eters to the TH1 constructor are: the nam

e of the histogram
, the

title, the num
ber of bins, the x m

inim
um

, and x m
axim

um
.

H
istogram

s m
ay also be created by:

��
C

alling the Clone m
ethod of an existing histogram

 (see below
)

��
M

aking a projection from
 a 2-D

 or 3-D
 histogram

 (see below
)

��
R

eading a histogram
 from

 a file

W
hen a histogram

 is created, a reference to it is autom
atically added to the

list of in-m
em

ory objects for the current file or directory. This default behavior

 H
istogram

s
D

ecem
ber 2001 - version 3.1d

31

can be disabled for an individual histogram
 or for all histogram

s by setting a
global sw

itch.

H
ere is the syntax to set the directory of a histogram

:

// to set the in-memory directory for h the current histogram
h->SetDirectory(0);
// global switch to disable
TH1::AddDirectory(kFALSE);

W
hen the histogram

 is deleted, the reference to it is rem
oved from

 the list of
objects in m

em
ory. In addition, w

hen a file is closed, all histogram
s in

m
em

ory associated w
ith this file are autom

atically deleted. See chapter
Input/O

utput.

Fixed or Variable B
in Size

All histogram
 types support fixed or variable bin sizes. 2-D

 histogram
s m

ay
have fixed size bins along X and variable size bins along Y or vice-versa. The
functions to fill, m

anipulate, draw
, or access histogram

s are identical in both
cases.

To create a histogram
 w

ith variable bin size one can use this constructor:

TH1(const char *name,const char *title,Int_t nbins,Float_t
*xbins)

The param
eters to this constructor are:

��
title: histogram

 title
��

nbins: num
ber of bins

��
xbins: array of low

-edges for each bin. This is an array of size nbins+1

Each histogram
 alw

ays contains three TAxis objects: fXaxis, fYaxis,
and fZaxis. To access the axis param

eters first get the axis from
 the

histogram
, and then call the TAxis access m

ethods.
 TAxis *xaxis = h->GetXaxis();
Double_t binCenter = xaxis->GetBinCenter(bin);

 See class TAxis for a description of all the access m
ethods. The axis range

is alw
ays stored internally in double precision.

B
in num

bering convention
For all histogram

 types: nbins, xlow, xup
Bin# 0 contains the underflow

.
Bin# 1 contains the first bin w

ith low
-edge (xlow IN

C
LU

D
ED

).
The second to last bin (bin# nbins) contains the upper-edge (xup
EXC

LU
D

ED
).

The Last bin (bin# nbins+1) contains the overflow
.

In case of 2-D
 or 3-D

 histogram
s, a "global bin" num

ber is defined. For
exam

ple, assum
ing a 3-D

 histogram
 w

ith binx, biny, binz, the function
returns a global/linear bin num

ber.

32
D

ecem
ber 2001 - version 3.1d

H
istogram

s

Int_t bin = h->GetBin(binx,biny,binz);

This global bin is useful to access the bin inform
ation independently of the

dim
ension.

R
e-binning

At any tim
e, a histogram

 can be re-binned via the TH1::Rebin method. It
returns a new

 histogram
 w

ith the re-binned contents. If bin errors w
ere

stored, they are recom
puted during the re-binning.

Filling H
istogram

s
A histogram

 is typically filled w
ith statem

ents like:

h1->Fill(x);
h1->Fill(x,w); //with weight
h2->Fill(x,y);
h2->Fill(x,y,w);
h3->Fill(x,y,z);
h3->Fill(x,y,z,w);

The Fill m
ethod com

putes the bin num
ber corresponding to the given x, y

or z argum
ent and increm

ents this bin by the given w
eight. The Fill m

ethod
returns the bin num

ber for 1-D
 histogram

s or global bin num
ber for 2-D

 and
3-D

 histogram
s. If TH1::Sumw2 has been called before filling, the sum

 of
squares is also stored.

O
ne can also increm

ent a bin num
ber directly by calling

TH1::AddBinContent. R
eplace the existing content via

TH1::SetBinContent, and access the bin content of a given bin via
TH1::GetBinContent.

Double_t binContent = h->GetBinContent(bin);

Autom
atic R

e-binning O
ption

By default, the num
ber of bins is com

puted using the range of the axis. You
can change this to autom

atically re-bin by setting the autom
atic re-binning

option:

 h->SetBit(TH1::kCanRebin);

O
nce this is set, the Fill m

ethod w
ill autom

atically extend the axis range to
accom

m
odate the new

 value specified in the Fill argum
ent. The m

ethod
used is to double the bin size until the new

 value fits in the range, m
erging

bins tw
o by tw

o.

This autom
atic binning options is extensively used by the TTree::Draw

function w
hen draw

ing histogram
s of variables in TTrees w

ith an unknow
n

range. The autom
atic binning option is supported for 1-D

, 2-D
 and 3-D

histogram

s.

D
uring filling, som

e statistics param
eters are increm

ented to com
pute the

m
ean value and root m

ean square w
ith the m

axim
um

 precision. In case of
histogram

s of type TH1C, TH1S, TH2C, TH2S, TH3C, TH3S a check is
m

ade that the bin contents do not exceed the m
axim

um
 positive capacity

 H
istogram

s
D

ecem
ber 2001 - version 3.1d

33

(127 or 65535). H
istogram

s of all types m
ay have positive or/and negative bin

contents.

R
andom

 N
um

bers and H
istogram

s
TH1::FillRandom can be used to random

ly fill a histogram
 using the

contents of an existing TF1 function or another TH1 histogram
 (for all

dim
ensions). For exam

ple, the follow
ing tw

o statem
ents create and fill a

histogram
 10000 tim

es w
ith a default G

aussian distribution of m
ean 0 and

sigm
a 1:

TH1F h1("h1","histo from a gaussian",100,-3,3);
h1.FillRandom("gaus",10000);

TH1::GetRandom can be used to return a random
 num

ber distributed
according the contents of a histogram

.

To fill a histogram
 follow

ing the distribution in an existing histogram
 you can

use the second signature of TH1::FillRandom.
This code snipped assum

es that h is an existing histogram
 (TH1).

root [] TH1F h2("h2","Random Histo",100,-3,3);
root [] h2->FillRandom(h,1000);

The distribution contained in the histogram
 h (TH1) is integrated over the

channel contents. It is norm
alized to 1. G

etting one random
 num

ber im
plies:

��
G

enerating a random
 num

ber betw
een 0 and 1 (say r1)

��
Find the bin in the norm

alized integral for r1
��

Fill histogram
 channel

The second param
eter (1000) indicates how

 m
any random

 num
bers are

generated.

Adding, D
ividing, and M

ultiplying
M

any types of operations are supported on histogram
s or betw

een
histogram

s:

��
Addition of a histogram

 to the current histogram

��
Additions of tw

o histogram
s w

ith coefficients and storage into the current
histogram

��

M
ultiplications and D

ivisions are supported in the sam
e w

ay as
additions.

��
The Add, D

ivide and M
ultiply functions also exist to add, divide or

m
ultiply a histogram

 by a function.

If a histogram
 has associated error bars (TH1::Sumw2 has been called), the

resulting error bars are also com
puted assum

ing independent histogram
s. In

case of divisions, binom
ial errors are also supported.

34
D

ecem
ber 2001 - version 3.1d

H
istogram

s

Projections
O

ne can:

��
M

ake a 1-D
 projection of a 2-D

 histogram
 or Profile. See functions

TH2::ProjectionX, TH2::ProjectionY, TH2::ProfileX,
TH2::ProfileY, TProfile::ProjectionX,
TProfile2D::ProjectionXY

��
M

ake a 1-D
, 2-D

 or profile out of a 3-D
 histogram

 see functions
TH3::ProjectionZ, TH3::Project3D.

O
ne can fit these projections via: TH2::FitSlicesX,

TH2::FitSlicesY, TH3::FitSlicesZ.

D
raw

ing H
istogram

s
W

hen you call the Draw m
ethod of a histogram

 (TH1::Draw) for the first
tim

e, it creates a THistPainter object and saves a pointer to painter as a
data m

em
ber of the histogram

. The THistPainter class specializes in the
draw

ing of histogram
s. It is separate from

 the histogram
 so that one can have

histogram
s w

ithout the graphics overhead, for exam
ple in a batch program

.
The choice to give each histogram

 have its ow
n painter rather than a central

singleton painter, allow
s tw

o histogram
s to be draw

n in tw
o threads w

ithout
overw

riting the painter's values.

W
hen a displayed histogram

 is filled again, you do not have to call the D
raw

m

ethod again. The im
age is refreshed the next tim

e the pad is updated. A
pad is updated after one of these three actions:

��
A carriage control on the R

O
O

T com
m

and line
��

A click inside the pad
��

A call to TPad::Update

By default, a call to TH1::Draw clears the pad of all objects before draw
ing

the new
 im

age of the histogram
. You can use the "SAME" option to leave the

previous display in tact and superim
pose the new

 histogram
. The sam

e
histogram

 can be draw
n w

ith different graphics options in different pads.

W
hen a displayed histogram

 is deleted, its im
age is autom

atically rem
oved

from
 the pad.

To create a copy of the histogram
 w

hen draw
ing it, you can use

TH1::DrawClone. This w
ill clone the histogram

 and allow
 you to change

and delete the original one w
ithout affecting the clone.

Setting the Style
H

istogram
s use the current style gStyle, w

hich is the global object of class
TStyle. To change the current style for histogram

s, the TStyle class
provides a m

ultitude of m
ethods ranging from

 setting the fill color to the axis
tick m

arks. H
ere are a few

 exam
ples:

 H
istogram

s
D

ecem
ber 2001 - version 3.1d

35

 void SetHistFillColor(Color_t color = 1)
 void SetHistFillStyle(Style_t styl = 0)
 void SetHistLineColor(Color_t color = 1)
 void SetHistLineStyle(Style_t styl = 0)
 void SetHistLineWidth(Width_t width = 1)

W
hen you change the current style and w

ould like to propagate the change to
a previously created histogram

 you can call TH1::UseCurrentStyle. You
w

ill need to call UseCurrentStyle on each histogram
.

W
hen reading m

any histogram
s from

 a file and you w
ish to update them

 to
the current style you can use gROOT::ForceStyle and all histogram

s read
after this call w

ill be updated to use the current style (also see the chapter
G

raphics and G
raphic U

ser Interfaces).

W
hen a histogram

 is autom
atically created as a result of a TTree::Draw,

the style of the histogram
 is inherited from

 the tree attributes and the current
style is ignored. The tree attributes are the ones set in the current TStyle at
the tim

e the tree w
as created. You can change the existing tree to use the

current style, by calling TTree::UseCurrentStyle().

36
D

ecem
ber 2001 - version 3.1d

H
istogram

s

D
raw

 O
ptions

 The follow
ing draw

 options are supported on all histogram
 classes:

��
"AXIS":

D
raw

 only the axis
��

"H
IST":

D
raw

 only the histogram
 outline (if the histogram

 has errors,
they are not draw

n)
��

"SAM
E":

Superim
pose on previous picture in the sam

e pad
��

"C
YL":

U
se cylindrical coordinates

��
"PO

L":
U

se polar coordinates
��

"SPH
":

U
se spherical coordinates

��
"PSR

":
U

se pseudo-rapidity/phi coordinates
��

"LEG
O

":
D

raw
 a lego plot w

ith hidden line rem
oval

��
"LEG

O
1": D

raw
 a lego plot w

ith hidden surface rem
oval

��
"LEG

O
2": D

raw
 a lego plot using colors to show

 the cell contents
��

"SU
R

F":
D

raw
 a surface plot w

ith hidden line rem
oval

��
"SU

R
F1": D

raw
 a surface plot w

ith hidden surface rem
oval

��
"SU

R
F2": D

raw
 a surface plot using colors to show

 the cell contents
��

"SU
R

F3": Sam
e as SU

R
F w

ith a contour view
 on the top

��
"SU

R
F4": D

raw
 a surface plot using G

ouraud shading

 The follow
ing options are supported for 1-D

 histogram
 classes:

��
"AH

":
D

raw
 the histogram

, but not the axis labels and tick m
arks

��
"B":

D
raw

 a bar chart
��

"C
":

D
raw

 a sm
ooth curve through the histogram

 bins
��

"E":
D

raw
 the error bars

��
"E0":

D
raw

 the error bars including bins w
ith 0 contents

��
"E1":

D
raw

 the error bars w
ith perpendicular lines at the edges

��
"E2":

D
raw

 the error bars w
ith rectangles

��
"E3":

D
raw

 a fill area through the end points of the vertical error
bars

��
"E4":

D
raw

 a sm
oothed filled area through the end points of the

error bars
��

"L":
D

raw
 a line through the bin contents

��
"P":

D
raw

 a (Poly) m
arker at each bin using the histogram

's
current m

arker style
��

"*H
":

D
raw

 histogram
 w

ith a * at each bin

The follow
ing options are supported for 2-D

 histogram
 classes:

��
"AR

R
":

Arrow
 m

ode. Show
s gradient betw

een adjacent cells
��

"BO
X":

D
raw

 a box for each cell w
ith surface proportional to contents

��
"C

O
L":

D
raw

 a box for each cell w
ith a color scale varying w

ith
contents

��
"C

O
LZ":

Sam
e as "COL" w

ith a draw
n color palette

��
"C

O
N

T":
D

raw
 a contour plot (sam

e as CONT0)
��

"C
O

N
TZ": Sam

e as "CONT" w
ith a draw

n color palette
��

"C
O

N
T0": D

raw
 a contour plot using surface colors to distinguish

contours
��

"C
O

N
T1": D

raw
 a contour plot using line styles to distinguish contours

��
"C

O
N

T2": D
raw

 a contour plot using the sam
e line style for all contours

��
"C

O
N

T3": D
raw

 a contour plot using fill area colors

 H
istogram

s
D

ecem
ber 2001 - version 3.1d

37

��
"C

O
N

T4": D
raw

 a contour plot using surface colors (SU
R

F option at
theta = 0)

��
"LIST":

G
enerate a list of TGraph objects for each contour

��
"FB":

To be used w
ith LEG

O
 or SU

R
FAC

E, suppress the Front-
Box

��
"BB":

To be used w
ith LEG

O
 or SU

R
FAC

E, suppress the Back-
Box

��
"SC

AT":
D

raw
 a scatter-plot (default)

��
"TEXT":

D
raw

 cell contents as text
��

"[cutg]":
D

raw
 only the sub-range selected by the TC

utG
 nam

e
"cutg".

��
"Z":

The "Z" option can be specified w
ith the options : BO

X, C
O

L,
C

O
N

T, SU
R

F, and LEG
O

 to display the color palette w
ith an

axis indicating the value of the corresponding color on the
right side of the picture.

M
ost options can be concatenated w

ithout spaces or com
m

as, for exam
ple:

h->Draw("E1SAME");
h->Draw("e1same");

The options are not case sensitive. The options BOX, COL and COLZ, use the
color palette defined in the current style (see TStyle::SetPalette)
The options CONT, SURF, and LEGO have by default 20 equidistant contour
levels, you can change the num

ber of levels w
ith TH1::SetContour.

You can also set the default draw
ing option w

ith TH1::SetOption. To see
the current option use TH1::GetOption.
For exam

ple:

 h->SetOption("lego");
 h->Draw(); // will use the lego option
 h->Draw("scat") // will use the scatter plot option

Statistics D
isplay

By default, draw
ing a histogram

 includes draw
ing the statistics box. To

elim
inate the statistics box use: TH1::SetStats(kFALSE).

If the statistics box is draw
n, you can select the type of inform

ation displayed
w

ith gStyle->SetOptStat(mode). The m
ode has up to seven digits that

can be set to on (1) or off (0). M
ode = iourmen (default = 0001111)

��
n

=
1

the nam
e of histogram

 is printed
��

e
=

1
the num

ber of entries printed
��

m
=

1
the m

ean value printed
��

r
=

1
the root m

ean square printed
��

u
=

1
the num

ber of underflow
s printed

��
o

=
1

the num
ber of overflow

s printed
��

i
=

1
the integral of bins printed

W
hen trailing digits is left out, they are assum

ed 0. For exam
ple:

38
D

ecem
ber 2001 - version 3.1d

H
istogram

s

gStyle->SetOptStat(11);

This displays only the nam
e of histogram

 and the num
ber of entries.

W
hen the option "same" is used, the statistic box is not redraw

n; and hence
the statistics from

 the previously draw
n histogram

 w
ill still show

. W
ith the

option "sames", you can renam
e a previous "stats" box and/or change its

position w
ith these lines:

root[]TPaveStats *st = (TPaveStats*)gPad->GetPrimitive("stats")
root[]st->SetName(newname)
root[]st->SetX1NDC(newx1); //new x start position
root[]st->SetX2NDC(newx2); //new x end position
root[]newhist->Draw("sames")

Setting Line, Fill, M
arker, and Text Attributes

The histogram
 classes inherit from

 the attribute classes: TAttLine,
TAttFill, TAttMarker and TAttText. See the description of these
classes for the list of options.

Setting Tick M
arks on the Axis

The TPad::SetTicks m
ethod specifies the type of tick m

arks on the axis.
Assum

e tx = gPad->GetTickx() and ty = gPad->GetTicky().

��
tx = 1; tick m

arks on top side are draw
n (inside)

��
tx = 2; tick m

arks and labels on top side are draw
n

��
ty = 1; tick m

arks on right side are draw
n (inside)

��
ty = 2; tick m

arks and labels on right side are draw
n

��
By default only the left Y axis and X bottom

 axis are draw
n (tx = ty =

0)

U
se TPad::SetTicks(tx,ty) to set these options. See also The TAxis

m
ethods to set specific axis attributes. In case m

ultiple color filled histogram
s

are draw
n on the sam

e pad, the fill area m
ay hide the axis tick m

arks. O
ne

can force a redraw
 of the axis over all the histogram

s by calling:

gPad->RedrawAxis();

G
iving Titles to the X, Y and Z Axis

Because the axis title is an attribute of the axis, you have to get the axis first
and then call TAxis::SetTitle.

h->GetXaxis()->SetTitle("X axis title");
h->GetYaxis()->SetTitle("Y axis title");

The histogram
 title and the axis titles can be any TLatex string. The titles

are part of the persistent histogram
. For exam

ple if you w
anted to w

rite E w
ith

a subscript (T) you could use this:

 H
istogram

s
D

ecem
ber 2001 - version 3.1d

39

h->GetXaxis()->SetTitle("E_{T}");

For a com
plete explanation of The Latex m

athem
atical expressions see

chapter "G
raphics and G

raphical U
ser Interface".

The SC
ATter Plot O

ption

By default, 2D
 histogram

s are draw
n as scatter plots. For each cell (i,j) a

num
ber of points proportional to the cell content are draw

n. A m
axim

um
 of

500 points per cell are draw
n. If the m

axim
um

 is above 500 contents are
norm

alized to 500.

The AR
R

ow
 O

ption
The AR

R
 option show

s the gradient betw
een adjacent cells. For each cell

(i,j) an arrow
 is draw

n. The orientation of the arrow
 follow

s the cell gradient

The B
O

X O
ption

For each cell (i,j) a box is draw
n w

ith surface proportional to contents.

The ER
R

or B
ars O

ptions
��

'E'
D

efault. D
raw

 only the error bars, w
ithout m

arkers
��

'E0'
D

raw
 also bins w

ith 0 contents
��

'E1'
D

raw
 sm

all lines at the end of the error bars
��

'E2'
D

raw
 error rectangles

��
'E3'

D
raw

 a fill area through the end points of the vertical error
bars

��
'E4'

D
raw

 a sm
oothed filled area through the end points of the

error bars.

40
D

ecem
ber 2001 - version 3.1d

H
istogram

s

The C
O

Lor O
ption

For each cell (i,j) a box is draw
n w

ith a color proportional to the cell content.
The color table used is defined in the current style (gStyle). The color
palette in TStyle can be m

odified w
ith TStyle::SetPalette.

 H
istogram

s
D

ecem
ber 2001 - version 3.1d

41

The TEXT O
ption

For each cell (i, j) the cell content is printed. The text attributes are:

��
Text font

= current TStyle font
��

Text size
= 0.02* pad-height * m

arker-size
��

Text color = m
arker color

42
D

ecem
ber 2001 - version 3.1d

H
istogram

s

The C
O

N
Tour O

ptions
The follow

ing contour options are supported:

�
�

"C
O

N
T":

D
raw

 a contour plot (sam
e as C

O
N

T0)
�
�

"C
O

N
T0":

D
raw

 a contour plot using surface colors to distinguish contours
�
�

"C
O

N
T1":

D
raw

 a contour plot using line styles to distinguish contours
�
�

"C
O

N
T2":

D
raw

 a contour plot using the sam
e line style for all contours

�
�

"C
O

N
T3":

D
raw

 a contour plot using fill area colors
�
�

"C
O

N
T4":

D
raw

 a contour plot using surface colors (SU
R

F option at theta = 0)

The default num
ber of contour levels is 20 equidistant levels and can be

changed w
ith TH1::SetContour.

W
hen option "LIST" is specified together w

ith option "C
O

N
T", the points used

to draw
 the contours are saved in the TGraph object and are accessible in

the follow
ing w

ay:

TObjArray *contours =
 gROOT->GetListOfSpecials()->FindObject("contours")
Int_t ncontours = contours->GetSize();
TList *list = (TList*)contours->At(i);

W
here "i" is a contour num

ber and list contains a list of TGraph objects.
For one given contour, m

ore than one disjoint poly-line m
ay be generated.

The num
ber of TGraphs per contour is given by list->GetSize(). H

ere
w

e show
 how

 to access the first graph in the list.

TGraph *gr1 = (TGraph*)list->First();

 H
istogram

s
D

ecem
ber 2001 - version 3.1d

43

The LEG
O

 O
ptions

In a lego plot, the cell contents are draw
n as 3-d boxes, w

ith the height of the
box proportional to the cell content. A lego plot can be represented in several
coordinate system

s; the default system
 is C

artesian coordinates. O
ther

possible coordinate system
s are CYL, POL, SPH, and PSR.

��
"LEGO":

D
raw

 a lego plot w
ith hidden line rem

oval
��

"LEGO1":
D

raw
 a lego plot w

ith hidden surface rem
oval

��
"LEGO2":

D
raw

 a lego plot using colors to show
 the cell contents

See TStyle::SetPalette to change the color palette. W
e suggest you

use palette 1 w
ith the call

gStyle->SetColorPalette(1);

44
D

ecem
ber 2001 - version 3.1d

H
istogram

s

The SU
R

Face O
ptions

In a surface plot, cell contents are represented as a m
esh. The height of the

m
esh is proportional to the cell content. A surface plot can be represented in

several coordinate system
s. The default is C

artesian coordinates, and the
other possible system

s are CYL, POL, SPH, and PSR.

��
"SU

R
F":

D
raw

 a surface plot w
ith hidden line rem

oval
��

"SU
R

F1": D
raw

 a surface plot w
ith hidden surface rem

oval
��

"SU
R

F2": D
raw

 a surface plot using colors to show
 the cell contents

��
"SU

R
F3": Sam

e as SU
R

F w
ith a contour view

 on the top
��

"SU
R

F4": D
raw

 a surface plot using G
ouraud shading

The follow
ing picture uses SU

R
F1. See TStyle::SetPalette to change

the color palette. W
e suggest you use palette 1 w

ith the call:

gStyle->SetColorPalette(1);

 H
istogram

s
D

ecem
ber 2001 - version 3.1d

45

The Z O
ption: D

isplay the C
olor Palette on the

Pad
The "Z" option can be specified w

ith the options : BOX, COL, CONT,
SURF, and LEGO to display the color palette w

ith an axis indicating the
value of the corresponding color on the right side of the picture.

If there is not enough space on the right side, you can increase the size of
the right m

argin by calling TPad::SetRightMargin.
The attributes used to display the palette axis values are taken from

 the Z
axis of the object. For exam

ple, you can set the labels size on the palette axis
w

ith:
 hist->GetZaxis()->SetLabelSize().

Setting the color palette
You can set the color palette w

ith TStyle::SetPalette, e.g.

gStyle->SetPalette(ncolors,colors);

For exam
ple, the option COL draw

s a 2-D
 histogram

 w
ith cells represented by

a box filled w
ith a color index, w

hich is a function of the cell content. If the cell
content is N

, the color index used w
ill be the color num

ber in colors[N]. If
the m

axim
um

 cell content is greater than ncolors, all cell contents are
scaled to ncolors.
If ncolors <= 0, a default palette (see below

) of 50 colors is defined. This
palette is recom

m
ended for pads, labels.

If ncolors == 1 && colors == 0, a pretty palette w
ith a violet to red

spectrum
 is created. W

e recom
m

end you use this palette w
hen draw

ing lego
plots, surfaces, or contours.

If ncolors > 0 and colors == 0, the default palette is used w
ith a

m
axim

um
 of ncolors.

The default palette defines:

��
 Index 0 to 9:

shades of gray
��

 Index 10 to 19:
shades of brow

n
��

 Index 20 to 29:
shades of blue

��
 Index 30 to 39:

shades of red
��

 Index 40 to 49:
basic colors

The color num
bers specified in the palette can be view

ed by selecting the
item

 "colors" in the "VIEW
" m

enu of the canvas toolbar. The color's red,
green, and blue values can be changed via TColor::SetRGB.

46
D

ecem
ber 2001 - version 3.1d

H
istogram

s

D
raw

ing a Sub-range of a 2-D
 H

istogram
 (the

[cutg] O
ption)
U

sing a TCutG object, it is possible to draw
 a sub-range of a 2-D

histogram

. O
ne m

ust create a graphical cut (m
ouse or C

++) and specify the
nam

e of the cut betw
een [] in the D

raw
 option.

For exam
ple, w

ith a TC
utG

 nam
ed "cutg", one can call:

myhist->Draw("surf1 [cutg]");

See a com
plete exam

ple in the tutorial $ROOTSYS/tutorials/fit2a.C.
This tutorial produces the follow

ing picture:

D
raw

ing O
ptions for 3-D

 H
istogram

s
By default a 3-d scatter plot is draw

n. If the "BO
X" option is specified, a 3-D

box w

ith a volum
e proportional to the cell content is draw

n.

 H
istogram

s
D

ecem
ber 2001 - version 3.1d

47

Superim
posing H

istogram
s w

ith D
ifferent

Scales
The follow

ing script creates tw
o histogram

s; the second histogram
 is the bins

integral of the first one. It show
s a procedure to draw

 the tw
o histogram

s in
the sam

e pad and it draw
s the scale of the second histogram

 using a new

vertical axis on the right side.

void twoscales() {
 TCanvas *c1 = new TCanvas("c1","hists with different
scales",600,400);
 //create, fill and draw h1
 gStyle->SetOptStat(kFALSE);
 TH1F *h1 = new TH1F("h1","my histogram",100,-3,3);
 Int_t i;
 for (i=0;i<10000;i++) h1->Fill(gRandom->Gaus(0,1));
 h1->Draw();
 c1->Update();

 //create hint1 filled with the bins integral of h1
 TH1F *hint1 = new TH1F("hint1","h1 bins integral",100,-3,3);
 Float_t sum = 0;
 for (i=1;i<=100;i++) {
 sum += h1->GetBinContent(i);
 hint1->SetBinContent(i,sum);
 }
 //scale hint1 to the pad coordinates
 Float_t rightmax = 1.1*hint1->GetMaximum();
 Float_t scale = gPad->GetUymax()/rightmax;
 hint1->SetLineColor(kRed);
 hint1->Scale(scale);
 hint1->Draw("same");

 //draw an axis on the right side
 TGaxis *axis = new TGaxis(gPad->GetUxmax(),gPad->GetUymin(),
 gPad->GetUxmax(),
 gPad->GetUymax(),0,rightmax,510,"+L");
 axis->SetLineColor(kRed);
 axis->SetTextColor(kRed);
 axis->Draw();
}

48
D

ecem
ber 2001 - version 3.1d

H
istogram

s

M
aking a C

opy of an H
istogram

Like for any other R

O
O

T object derived from
 TObject, one can use the

Clone m
ethod. This m

akes an identical copy of the original histogram

including all associated errors and functions:

TH1F *hnew = (TH1F*)h->Clone();
hnew->SetName("hnew");
// renaming is recommended, because otherwise you will
// have 2 histograms with the same name.

N
orm

alizing H
istogram

s
You can scale a histogram

 (TH
1 *h) such that the bins integral is equal to the

norm
alization param

eter norm
 w

ith:

 Double_t scale = norm/h->Integral();
 h->Scale(scale);

Saving/R
eading H

istogram
s to/from

 a file
The follow

ing statem
ents create a R

O
O

T file and store a histogram
 on the

file. Because TH1 derives from
 TNamed, the key identifier on the file is the

histogram
 nam

e:

TFile f("histos.root","new");
TH1F h1("hgaus","histo from a gaussian",100,-3,3);
h1.FillRandom("gaus",10000);
h1->Write();

 To read this histogram
 in another R

O
O

T session, do:

TFile f("histos.root");
TH1F *h = (TH1F*)f.Get("hgaus");

 O
ne can save all histogram

s in m
em

ory to the file by:

file->Write();

For a m
ore detailed explanation, see chapter Input/O

utput.

 M
iscellaneous O

perations
��

TH1::KolmogorovTest(): statistical test of com
patibility in shape

betw
een tw

o histogram
s.

��
TH1::Smooth(): sm

oothes the bin contents of a 1-d histogram

��
TH1::Integral: returns the integral of bin contents in a given bin
range

 H
istogram

s
D

ecem
ber 2001 - version 3.1d

49

��
TH1::GetMean(int axis):returns the m

ean value along axis
��

TH1::GetRMS(int axis):returns the R
oot M

ean Square along axis
��

H1::GetEntries (): returns the num
ber of entries

��
TH1::Reset(): resets the bin contents and errors of a histogram

Profile H
istogram

s
Profile histogram

s are in m
any cases an elegant replacem

ent of tw
o-

dim
ensional histogram

s. The relationship of tw
o quantities X and Y can be

visualized by a tw
o-dim

ensional histogram
 or a scatter-plot; its representation

is not particularly satisfactory, except for sparse data. If Y is an unknow
n [but

single-valued] function of X, it can be displayed by a profile histogram
 w

ith
m

uch better precision than by a scatter-plot. Profile histogram
s display the

m
ean value of Y and its R

M
S for each bin in X.

The follow
ing show

s the contents [capital letters] and the values show
n in the

graphics [sm
all letters] of the elem

ents for bin j.

W
hen you fill a profile histogram

 w
ith TProfile.Fill[x,y]:

E[j] w
ill contain for each bin j the sum

 of the y values for this bin
L[j] contains the num

ber of entries in the bin j.
e[j] or s[j] w

ill be the resulting error depending on the selected option
described in Build O

ptions below
.

E[j] = sum
 Y

L[j] = num
ber of entries in bin J

 h[j] = H
[j] / L[j]

s[j] = sqrt[E[j] / L[j] - h[j]**2]
e[j] = s[j] / sqrt[L[j]]

In the special case w
here s[j] is zero, w

hen there is only one entry per bin,
e[j] is com

puted from
 the average of the s[j] for all bins. This approxim

ation is
used to keep the bin during a fit operation.

The TProfile C
onstructor

The TProfile constructor takes up to six argum
ents. The first five

param
eters are sim

ilar to TH1D::TH1D.

TProfile(const char *name,const char *title,Int_t
nbins,Axis_t xlow,Axis_t xup,Option_t *option)

The first five param
eters are sim

ilar to TH1D::TH1D. All values of y are
accepted at filling tim

e. To fill a profile histogram
, you m

ust use
TProfile::Fill function.
N

ote that w
hen filling the profile histogram

 the m
ethod TProfile::Fill

checks if the variable y is betw
een fYmin and fYmax. If a m

inim
um

 or
m

axim
um

 value is set for the Y scale before filling, then all values below

ymin or above ymax w
ill be discarded. Setting the m

inim
um

 or m
axim

um

value for the Y scale before filling has the sam
e effect as calling the special

TProfile constructor above w
here ymin and ymax are specified.

B
uild O

ptions

The last param
eter is the build option. If a bin has N

 data points all w
ith the

sam
e value Y, w

hich is the case w
hen dealing w

ith integers, the spread in Y
for that bin is zero, and the uncertainty assigned is also zero, and the bin is
ignored in m

aking subsequent fits. If SQ
R

T(Y) w
as the correct error in the

50
D

ecem
ber 2001 - version 3.1d

H
istogram

s

case above, then SQ
R

T(Y)/SQ
R

T(N
) w

ould be the correct error here. In fact,
any bin w

ith non-zero num
ber of entries N

 but w
ith zero spread should have

an uncertainty SQ
R

T(Y)/SQ
R

T(N
).

N
ow

, is SQ
R

T(Y)/SQ
R

T(N
) really the correct uncertainty? That it is only in

the case w
here the Y variable is som

e sort of counting statistics, follow
ing a

Poisson distribution. This is the default case. H
ow

ever, Y can be any variable
from

 an original N
TU

PLE, and does not necessarily follow
 a Poisson

distribution.

The com
putation of errors is based on the param

eter option:

Y = values of data points
N

 = num
ber of data points

' ' The default is blank, the Errors are:
 spread/SQ

R
T(N

)
for a non-zero spread

 SQ
R

T(Y)/SQ
R

T(N
)

for a spread of zero and som
e data points

 0

for no data points

's' Errors are:
 spread

for a non-zero spread

 SQ
R

T(Y)

for a Spread of zero and som
e data points

 0

for no data points

'i' Errors are:

 spread/SQ
R

T(N
)

for a non-zero spread
 1/SQ

R
T(12*N

)
for a Spread of zero and som

e data points
 0

for no data points

'G
' Errors are:

 spread/SQ
R

T(N
)

for a non-zero spread
 sigm

a/SQ
R

T(N
)

for a spread of zero and som
e data points

 0

for no data points

The third case (option 'i') is used for integer Y values w
ith the uncertainty of

+-0.5, assum
ing the probability that Y takes any value betw

een Y-0.5 and
Y+0.5 is uniform

 (the sam
e argum

ent for Y uniform
ly distributed betw

een Y
and Y+1). An exam

ple is an AD
C

 m
easurem

ent.

The 'G
' option is useful, if all Y variables are distributed according to som

e
know

n G
aussian of standard deviation Sigm

a. For exam
ple w

hen all Y's are
experim

ental quantities m
easured w

ith the sam
e instrum

ent w
ith precision

Sigm
a.

 H
istogram

s
D

ecem
ber 2001 - version 3.1d

51

Exam
ple of a TProfile

H
ere is a sim

ple exam
ple of a profile histogram

 w
ith its graphic output:

{ // Create a canvas giving the coordinates and the size
 TCanvas *c1 = new TCanvas
 ("c1","Profile example",200,10,700,500);
 // Create a profile with the name, title, the number of
 // bins, the low and high limit of the x-axis and the low
 // and high limit of the y-axis. No option is given so
 // the default is used.
 hprof = new TProfile
 ("hprof","Profile of pz versus px",100,-
4,4,0,20);

 // Fill the profile 25000 times with random numbers
 Float_t px, py, pz;
 for (Int_t i=0; i<25000; i++) {
 // Use the random number generator to get two
 // numbers following a gaussian distribution
 // with mean=0 and sigma=1
 gRandom->Rannor(px,py);
 pz = px*px + py*py;
 hprof->Fill(px,pz,1);
 }
 hprof->Draw();
}

52
D

ecem
ber 2001 - version 3.1d

H
istogram

s

D
raw

ing a Profile w
ithout Error B

ars
To draw

 a profile histogram
 and not show

 the error bars use the "HIST"
option in the TProfile::Draw m

ethod. This w
ill draw

 the outline of the
TProfile.

C
reate a Profile from

 a 2D
 H

istogram

You can m
ake a profile from

 a histogram
 using the m

ethods
TH2::ProfileX and TH2::ProfileY.

C
reate a H

istogram
 from

 a Profile
To create a regular histogram

 from
 a profile histogram

, use the m
ethod

TProfiel::ProjectionX. This exam
ple instantiates a TH1D object by

copying the TH1D piece of a TProfile.

TH1D *sum = myProfile.ProjectionX()

You can do the sam
e w

ith a 2D
 profile w

ith the
TProfile2D::ProjectionXY method.

G
enerating a Profile from

 a TTree
The 'prof' and 'profs' options in the TTree::Draw m

ethod (see the
chapter on Trees) generate a profile histogram

 (TProfile), given a tw
o

dim
ensional expression in the tree, or a TProfile2D given a three

dim
ensional expression.

N
ote that you can specify 'prof'or 'profs': 'prof'generates a

TProfile w
ith error on the m

ean, 'profs'generates a TProfile w
ith

error on the spread,

2D
 Profiles

The class for a 2D
 Profile is called TProfile2D. It is in m

any cases an
elegant replacem

ent of a three-dim
ensional histogram

. The relationship of
three m

easured quantities X, Y and Z can be visualized by a three-
dim

ensional histogram
 or scatter-plot; its representation is not particularly

satisfactory, except for sparse data. If Z is an unknow
n (but single-valued)

function of X,Y, it can be displayed w
ith a TProfile2D w

ith better precision
than by a scatter-plot.

A TProfile2D
 displays the m

ean value of Z and its R
M

S for each cell in X,Y.
The follow

ing show
s the cum

ulated contents (capital letters) and the values
displayed (sm

all letters) of the elem
ents for cell I, J.

W
hen you fill a profile histogram

 w
ith TProfile2D.Fill[x,y,z]:

E[i,j] w
ill contain for each bin i,j the sum

 of the z values for this bin
L[i,j] contains the num

ber of entries in the bin j.
e[j] or s[j] w

ill be the resulting error depending on the selected option
described in Build O

ptions above.

 E[i,j] = sum
 z

 L[i,j] = sum
 l

 h[i,j] = H
[i,j] / L[i,j]

 s[i,j] = sqrt[E[i,j] / L[i,j]- h[i,j]**2]
 e[i,j] = s[i,j] / sqrt[L[i,j]]

 H
istogram

s
D

ecem
ber 2001 - version 3.1d

53

In the special case w
here s[i,j] is zero, w

hen there is only one entry per
cell, e[i,j] is com

puted from
 the average of the s[i,j] for all cells. This

approxim
ation is used to keep the cell during a fit operation.

Exam
ple of a TProfile2D

 histogram

{ // Creating a Canvas and a TProfile2D
 TCanvas *c1 = new TCanvas

("c1","Profile histogram example",200,10,700,500);
 hprof2d = new TProfile2D

("hprof2d","Profile of pz versus px and py"
,40,-4,4,40,-4,4,0,20);

 // Filling the TProfile2D with 25000 points
 Float_t px, py, pz;
 for (Int_t i=0; i<25000; i++) {
 gRandom->Rannor(px,py);
 pz = px*px + py*py;
 hprof2d->Fill(px,py,pz,1);
 }
 hprof2d->Draw();
}

 G
raphs

D
ecem

ber 2001 - version 3.1d
55

4 G
raphs

A graph is a graphics object m
ade of tw

o arrays X and Y, holding the x, y
coordinates of n points. There are several graph classes, they are: TGraph,
TGraphErrors, TGraphAsymmErrors, and TMultiGraph.

TG
raph

The TGraph class supports the general case w
ith non equidistant points, and

the special case w
ith equidistant points.

C
reating G

raphs
G

raphs are created w
ith the constructor. H

ere is an exam
ple. First w

e define
the arrays of coordinates and then create the graph. The coordinates can be
arrays of doubles or floats.

 Int_t n = 20;
 Double_t x[n], y[n];
 for (Int_t i=0;i<n;i++) {
 x[i] = i*0.1;
 y[i] = 10*sin(x[i]+0.2);
 }
 TGraph * gr1 = new TGraph (n, x, y);

An alternative constructor takes only the num
ber of points (n). It is expected

that the coordinates w
ill be set later.

TGraph *gr2 = new TGraph(n);

G
raph D

raw
 O

ptions
The various draw

 options for a graph are explained in
TGraph::PaintGraph. They are:

-
"L"

A sim
ple poly-line betw

een every points is draw
n

-
"F"

A fill area is draw
n

-
"A"

Axis are draw
n around the graph

-
"C

"
A sm

ooth curve is draw
n

-
" * "

A star is plotted at each point
-

"P"
The current m

arker of the graph is plotted at each point
-

"B"
A bar chart is draw

n at each point

56
D

ecem
ber 2001 - version 3.1d

G
raphs

The options are not case sensitive and they can be concatenated in m
ost

cases.

Let's look at som
e exam

ples.

C
ontinuous line, Axis and Stars (AC

*)

{ Int_t n = 20;
 Double_t x[n], y[n];
 for (Int_t i=0;i<n;i++) {
 x[i] = i*0.1;
 y[i] = 10*sin(x[i]+0.2);
 }

 // create graph
 TGraph *gr = new TGraph(n,x,y);

 TCanvas *c1 = new TCanvas ("c1","Graph Draw Options",
200, 10, 600, 400);

 // draw the graph with axis,contineous line, and
 // put a * at each point
 gr->Draw("AC*");
}

 G
raphs

D
ecem

ber 2001 - version 3.1d
57

B
ar G

raphs (AB
)

root [] TGraph *gr1 = new TGraph(n,x,y);
root [] gr1->SetFillColor(40);
root [] gr1->Draw("AB");

This code w
ill only w

ork if n, x, and y are defined. The previous exam
ple

defines these.

You need to set the fill color, because by default the fill color is w
hite and w

ill
not be visible on a w

hite canvas. You also need to give it an axis, or the bar
chart w

ill not be displayed properly.

Filled G
raphs (AF)

root [] TGraph *gr3 = new TGraph(n,x,y);
root [] gr3->SetFillColor(45);
root [] gr3->Draw("AF")

This code w
ill only w

ork if n, x, and y are defined. The first exam
ple defines

these.

You need to set the fill color, because by default the fill color is w
hite and w

ill
not be visible on a w

hite canvas. You also need to give it an axis, or the bar
chart w

ill not be displayed properly.

C
urrently one can not specify the "C

F" option.

58
D

ecem
ber 2001 - version 3.1d

G
raphs

M
arker O

ptions

{ Int_t n = 20;
 Double_t x[n], y[n];
 // build the arrays with the coordinate of points
 for (Int_t i=0;i<n;i++) {
 x[i] = i*0.1;
 y[i] = 10*sin(x[i]+0.2);
 }

 // create graphs
 TGraph *gr3 = new TGraph(n,x,y);

 TCanvas *c1 = new TCanvas ("c1","Graph Draw Options",
200,10, 600, 400);

 // draw the graph with the axis,contineous line, and put
 // a marker using the graph's marker style at each point
 gr3->SetMarkerStyle(21);
 c1->cd(4);
 gr3->Draw("APL");
 // get the points in the graph and put them into an array
 Double_t *nx = gr3->GetX();
 Double_t *ny = gr3->GetY();
 // create markers of different colors
 for (Int_t j=2;j<n-1;j++) {
 TMarker *m = new TMarker(nx[j], 0.5*ny[j],22);

m->SetMarkerSize(2);

 m->SetMarkerColor(31+j);
 m->Draw();
 }
}

 G
raphs

D
ecem

ber 2001 - version 3.1d
59

Superim
posing tw

o G
raphs

To super im
pose tw

o graphs you need to draw
 the axis only once, and leave

out the "A" in the draw
 options for the second graph. H

ere is an exam
ple:

{ gROOT->Reset();
 Int_t n = 20;
 Double_t x[n], y[n], x1[n], y1[n];
 // create the blue graph with a cos function
 for (Int_t i=0;i<n;i++) {
 x[i] = i*0.5;
 y[i] = 5*cos(x[i]+0.2);
 x1[i] = i*0.5;
 y1[i] = 5*sin(x[i]+0.2);
 }
 TGraph *gr1 = new TGraph(n,x,y);
 TGraph *gr2 = new TGraph(n,x1,y1);

 TCanvas *c1 = new TCanvas ("c1","Two Graphs" , 200,
 10, 600, 400);

 // draw the graph with axis,contineous line, and
 // put a * at each point
 gr1->SetLineColor(4);
 gr1->Draw("AC*");

 // superimpose the second graph by leaving out
 // the axis option "A"
 gr2->SetLineWidth(3);
 gr2->SetMarkerStyle(21);
 gr2->SetLineColor(2);
 gr2->Draw("CP");
}

60
D

ecem
ber 2001 - version 3.1d

G
raphs

TG
raphErrors

A TGraphErrors is a TGraph w
ith error bars. The various form

at options to
draw

 a TGraphErrors are the sam
e for TGraph. In addition, it can be

draw
n w

ith the "Z" option to leave off the sm
all lines at the end of the error

bars.

The constructor has four arrays as param

eters. X and Y as in TGraph and X-
errors and Y-errors the size of the errors in the x and y direction.

This exam
ple is in $ROOTSYS/tutorials/gerrors.C.

{ gROOT->Reset();
 c1 = new TCanvas("c1","A Simple Graph with error
bars",200,10,700,500);
 c1->SetFillColor(42);
 c1->SetGrid();
 c1->GetFrame()->SetFillColor(21);
 c1->GetFrame()->SetBorderSize(12);
 // create the coordinate arrays
 Int_t n = 10;
 Float_t x[n] = {-.22,.05,.25,.35,.5,.61,.7,.85,.89,.95};
 Float_t y[n] = {1,2.9,5.6,7.4,9,9.6,8.7,6.3,4.5,1};
 // create the error arrays
 Float_t ex[n] = {.05,.1,.07,.07,.04,.05,.06,.07,.08,.05};
 Float_t ey[n] = {.8,.7,.6,.5,.4,.4,.5,.6,.7,.8};
 // create the TGraphErrors and draw it
 gr = new TGraphErrors(n,x,y,ex,ey);
 gr->SetTitle("TGraphErrors Example");
 gr->SetMarkerColor(4);
 gr->SetMarkerStyle(21);
 gr->Draw("ALP");
 c1->Update();
}

 G
raphs

D
ecem

ber 2001 - version 3.1d
61

TG
raphAsym

m
Errors

 A TGraphAsymmErrors is a
TGraph w

ith asym
m

etric error
bars. The various form

at options
to draw

 a
TGraphAsymmErrors are as
for TGraph.
The constructor has six arrays
as param

eters. X and Y as
TGraph and low

 X-errors and
high X-errors, low

 Y-errors and
high Y-errors. The low

 value is
the length of the error bar to the
left and dow

n, the high value is
the length of the error bar to the
right and up.

{ gROOT->Reset();
 c1 = new TCanvas ("c1","A Simple Graph with error bars",
 200,10,700,500);
 c1->SetFillColor(42);
 c1->SetGrid();
 c1->GetFrame()->SetFillColor(21);
 c1->GetFrame()->SetBorderSize(12);
 // create the arrays for the points
 Int_t n = 10;
 Double_t x[n] = {-.22,.05,.25,.35,.5, .61,.7,.85,.89,.95};
 Double_t y[n] = {1,2.9,5.6,7.4,9,9.6,8.7,6.3,4.5,1};

 // create the arrays with high and low errors
 Double_t exl[n] = {.05,.1,.07,.07,.04,.05,.06,.07,.08,.05};
 Double_t eyl[n] = {.8,.7,.6,.5,.4,.4,.5,.6,.7,.8};
 Double_t exh[n] = {.02,.08,.05,.05,.03,.03,.04,.05,.06,.03};
 Double_t eyh[n] = {.6,.5,.4,.3,.2,.2,.3,.4,.5,.6};
 // create TGraphAsymmErrors with the arrays
 gr = new TGraphAsymmErrors(n,x,y,exl,exh,eyl,eyh);
 gr->SetTitle("TGraphAsymmErrors Example");
 gr->SetMarkerColor(4);
 gr->SetMarkerStyle(21);
 gr->Draw("ALP");
}

62
D

ecem
ber 2001 - version 3.1d

G
raphs

TM
ultiG

raph
A TMultiGraph is a collection of TGraph (or derived) objects. U

se
TMultiGraph::Add to add a new

 graph to the list. The TMultiGraph
ow

ns the objects in the list. The draw
ing options are the sam

e as for TGraph.

{ // create the points
 Int_t n = 10;
 Double_t x[n] = {-.22,.05,.25,.35,.5,.61,.7,.85,.89,.95};
 Double_t y[n] = {1,2.9,5.6,7.4,9,9.6,8.7,6.3,4.5,1};
 Double_t x2[n] = {-.12,.15,.35,.45,.6,.71,.8,.95,.99,1.05};
 Double_t y2[n] = {1,2.9,5.6,7.4,9,9.6,8.7,6.3,4.5,1};
 // create the width of errors in x and y direction
 Double_t ex[n] = {.05,.1,.07,.07,.04,.05,.06,.07,.08,.05};
 Double_t ey[n] = {.8,.7,.6,.5,.4,.4,.5,.6,.7,.8};

 // create two graphs
 TGraph *gr1 = new TGraph(n,x2,y2);
 TGraphErrors *gr2 = new TGraphErrors(n,x,y,ex,ey);

 // create a multigraph and draw it
 TMultiGraph *mg = new TMultiGraph();
 mg->Add(gr1);
 mg->Add(gr2);
 mg->Draw("ALP");
}

Fitting a G
raph

The Fit m
ethod of the graph w

orks the sam
e as the TH

1::Fit (see Fitting
H

istogram
s).

 G
raphs

D
ecem

ber 2001 - version 3.1d
63

Setting the G
raph's Axis Title

To give the axis of a graph a title you need to draw
 the graph first, only then

does it actually have an axis object. O
nce draw

n, you set the title by getting
the axis and calling the TAxis::SetTitle m

ethod, and if you w
ant to

center it you can call the TAxis::CenterTitle m
ethod.

Assum
ing that n, x, and y are defined, this code sets the titles of the x and y

axes.

root [] gr5 = new TGraph(n,x,y);
root [] gr5->Draw()
<TCanvas::MakeDefCanvas>: created default TCanvas with name c1
root [] gr5->Draw("ALP")
root [] gr5->GetXaxis()->SetTitle("X-Axis")
root [] gr5->GetYaxis()->SetTitle("Y-Axis")
root [] gr5->GetXaxis()->CenterTitle()
root [] gr5->GetYaxis()->CenterTitle()
root [] gr5->Draw("ALP")

For m
ore graph exam

ples see: these scripts in the $ROOTSYS/tutorials
directory graph.C, gerrors.C, zdemo.C, and gerrors2.C.

Zoom
ing a G

raph
To zoom

 a graph you can create a histogram
 w

ith the desired axis range first.
D

raw
 the em

pty histogram
 and then draw

 the graph using the existing axis
from

 the histogram
.

The exam
ple below

 is the sam
e graph as above w

ith a zoom
 in the x and y

direction.

64
D

ecem
ber 2001 - version 3.1d

G
raphs

{ gROOT->Reset();
 c1 = new TCanvas("c1","A Zoomed Graph",200,10,700,500);
 // create a histogram for the axis range
 hpx = new TH2F
 ("hpx","Zoomed Graph Example",10, 0,0.5,10,1.0,8.0);
 // no statistics
 hpx->SetStats(kFALSE);
 hpx->Draw();
 // create a graph
 Int_t n = 10;

 Double_t x[n] = {-.22,.05,.25,.35,.5,.61,.7,.85,.89,.95};
 Double_t y[n] = {1,2.9,5.6,7.4,9,9.6,8.7,6.3,4.5,1};
 gr = new TGraph(n,x,y);
 gr->SetMarkerColor(4);
 gr->SetMarkerStyle(20);
 // and draw it without an axis
 gr->Draw("LP");
}

 Fitting H
istogram

s
D

ecem
ber 2001 - version 3.1d

65

5 Fitting H
istogram

s

To fit a histogram
 you can use the Fit Panel on a visible histogram

 using the
G

U
I, or you can use the TH1::Fit m

ethod. The Fit Panel, w
hich is lim

ited, is
best for prototyping. The histogram

 needs to be draw
n in a pad before the Fit

Panel is available. The TH1::Fit m
ethod is m

ore pow
erful and used in

scripts and program
s.

The Fit Panel
To display the Fit Panel right click on a histogram

to bring up the context m

enu, then select the m
enu

option: FitPanel.

The first sets of buttons are the predefined
functions of R

O
O

T that can be used to fit the
histogram

. You have a choice of several
polynom

ials, a gaussian, a landau, and an
exponential function. You can also define a
function and call it "user". It w

ill be linked to the
user button on this panel.

You have the option to specify Q
uiet or Verbose.

This is the am
ount of feedback printed on the root

com
m

and line on the result of the fit.

W
hen a fit is executed the im

age of the function is
draw

n on the current pad. By default the im
age of

the histogram
 is replaced w

ith the im
age of the

function. Select Sam
e Picture to see the function

draw
n and the histogram

 on the sam
e picture.

Select W
: Set all w

eights to 1, to set all errors to 1.

Select E: C
om

pute best errors to use the M
inos

technique to com
pute best errors.

W
hen fitting a histogram

, the function is attached
to the histogram

's list of functions. By default the
previously fitted function is deleted and replaced w

ith the m
ost recent one, so

the list only contains one function. You can select + : Add to list of functions
to add the new

ly fitted function to the existing list of functions for the
histogram

. N
ote that the fitted functions are saved w

ith the histogram
 w

hen it
is w

ritten to a R
O

O
T file.

By default, the function is draw
n on the pad displaying the histogram

. Select
N

: D
o not store/draw

 function to avoid adding the function to the histogram

and to avoid draw
ing it.

Select 0: D
o not draw

 function to avoid draw
ing the result of the fit.

66
D

ecem
ber 2001 - version 3.1d

Fitting H
istogram

s

Select L: Log Likelihood to use loglikelihood m
ethod (default is chisquare

m
ethod).

The slider at the bottom
 of the panel allow

s you to set a range for the fit. D
rag

the edges of the slider tow
ards the center to narrow

 the range. D
raw

 the
entire range to change the beginning and end.

To returns to the original setting, you need press D
efaults.

To apply the fit, press the Fit button.

The Fit M
ethod

To fit a histogram
 program

m
atically, you can use the TH1::Fit m

ethod.
H

ere is the signature of TH1::Fit and an explanation of the param
eters:

void Fit(const char *fname , Option_t *option , Option_t
*goption, Axis_t xxmin, Axis_t xxmax)

*fname:The nam
e of the fitted function (the m

odel) is passed as the first
param

eter. This nam
e m

ay be one of the of R
O

O
T's pre-defined function

nam
es or a user-defined function.

The follow
ing functions are predefined, and can be used w

ith the TH
1::Fit

m
ethod.

��
gaus:

A gaussian function w
ith 3 param

eters:
f(x) = p0*exp(-0.5*((x-p1)/p2)^2))

��
expo:

An exponential w
ith 2 param

eters:
f(x) = exp(p0+p1*x).

��
polN:

A polynom
ial of degree N

:
 f(x) = p0 + p1*x + p2*x^2 +...

��
landau: A landau function w

ith m
ean and sigm

a. This function has
been adapted from

 the C
ER

N
LIB routine G

110 denlan.

*option: The second param
eter is the fitting option. H

ere is the list of fitting
options:

- "W
"

Set all errors to 1
- "I"

U
se integral of function in bin instead of value at bin center

- "L"
U

se loglikelihood m
ethod (default is chisquare m

ethod)
- "U

"
U

se a user specified fitting algorithm

- "Q
"

Q
uiet m

ode (m
inim

um
 printing)

- "V"
Verbose m

ode (default is betw
een Q

 and V)
- "E"

Perform
 better errors estim

ation using M
inos technique

- "M
"

Im
prove fit results

- "R
"

U
se the range specified in the function range

- "N
"

D
o not store the graphics function, do not draw

- "0"

D
o not plot the result of the fit. By default the fitted function is

draw
n unless the option "N

" above is specified.
- "+"

Add this new
 fitted function to the list of fitted functions (by default,

the previous function is deleted and only the last one is kept)
- "B"

D
isable the autom

atic com
putation of the initial param

eter values
for the standard functions like poln, expo, and gaus.

*goption: The third param
eter is the graphics option (goption), it is the

sam
e as in the TH1::Draw (see D

raw
 O

ptions above) .

 Fitting H
istogram

s
D

ecem
ber 2001 - version 3.1d

67

xxmin, xxmax: The fourth and fifth param
eters specify the range over

w
hich to apply the fit

By default, the fitting function object is added to the histogram
 and is draw

n in
the current pad.

Fit w
ith a Predefined Function

To fit a histogram
 w

ith a predefined function, sim
ply pass the nam

e of the
function in the first param

eter of TH1::Fit. For exam
ple, this line fits

histogram
 object hist w

ith a gaussian.

root[] hist.Fit("gaus");
For pre-defined functions, there is no need to set initial values for the
param

eters, it is done autom
atically.

Fit w
ith a U

ser- D
efined Function

You can create a TF1 object and use it in the call the TH1::Fit. The
param

eter in to the Fit m
ethod is the N

AM
E of the TF1 object.

There are three w
ays to create a TF1.

1.
U

sing C
++ like expression using x w

ith a fixed set of operators and
functions defined in TForm

ula.

2.
Sam

e as #1, w
ith param

eters

3.
U

sing a function that you have defined

C
reating a TF1 w

ith a Form
ula

Let's look at the first case. H
ere w

e call the TF1 constructor by giving it the
form

ula: sin(x)/x.

root[] TF1 *f1 = new TF1("f1", "sin(x)/x", 0,10)
You can also use a TF1 object in the constructor of another TF1.

root[] TF1 *f2 = new TF1("f2", "f1 * 2", 0,10)

C
reating a TF1 w

ith Param
eters

The second w
ay to construct a TF1 is to add param

eters to the expression.
For exam

ple, this TF1 has 2 param
eters:

root[] TF1 *f1 = new TF1("f1","[0]*x*sin([1]*x)",-3,3);

The param
eter index is enclosed in square brackets. To set the initial

param
eters explicitly you can use the SetParameter m

ethod.

root[] f1->SetParameter(0,10);
This sets param

eter 0 to 10. You can also use SetParameters to set
m

ultiple param
eters at once.

68
D

ecem
ber 2001 - version 3.1d

Fitting H
istogram

s

root[] f1->SetParameters(10,5);
This sets param

eter 0 to 10 and param
eter 1 to 5.

W
e can now

 draw
 the TF1:

root[] f1->Draw()

C
reating a TF1 w

ith a U
ser Function

The third w
ay to build a TF1 is to define a function yourself and then give its

nam
e to the constructor. A function for a TF1 constructor needs to have this

exact signature:

 Double_t fitf(Double_t *x, Double_t *par)

The tw
o param

eters are:

��
Double_t *x: a pointer to the dim

ension array. Each elem
ent contains

a dim
ension. For a 1D

 histogram
 only x[0] is used, for a 2D

 histogram

x[0] and x[1] is used, and for a 3D
 histogram

 x[0], x[1], and x[2] are
used. For histogram

s, only 3 dim
ensions apply, but this m

ethod is also
used to fit other objects, for exam

ple an ntuple could have 10
dim

ensions.
��

Double_t *par: a pointer to the param
eters array. This array contains

the current values of param
eters w

hen it is called by the fitting function.

The follow
ing script $ROOTSYS/tutorials/myfit.C illustrates how

 to fit a
1D

 histogram
 w

ith a user-defined function. First w
e declare the function.

// define a function with 3 parameters
Double_t fitf(Double_t *x, Double_t *par)
{ Double_t arg = 0;
 if (par[2]) arg = (x[0] - par[1])/par[2];
 Double_t fitval = par[0]*TMath::Exp(-0.5*arg*arg);
 return fitval;
}

 Fitting H
istogram

s
D

ecem
ber 2001 - version 3.1d

69

N
ow

 w
e use the function:

// this function used fitf to fit a histogram
void fitexample()
{ // open a file and get a histogram
 TFile *f = new TFile("hsimple.root");
 TF1 *hpx = (TF1*)f->Get("hpx");
 // create a TF1 object using the function defined above.
 // The last 3 specifies the number of parameters
 // for the function.
 TF1 *func = new TF1 "fit",fitf,-3,3,3);
 // set the parameters to the mean and RMS of the histogram
 func->SetParameters(500,hpx->GetMean(),hpx->GetRMS());
 // give the parameters meaningful names
 func->SetParNames ("Constant","Mean_value","Sigma");
 // call TH1::Fit with the name of the TF1 object
 hpx->Fit ("fit");
}

Fixing and Setting B
ounds for Param

eters
Param

eters m
ust be initialized before invoking the Fit m

ethod. The setting
of the param

eter initial values is autom
atic for the predefined functions:

poln, exp, gaus. You can disable the autom
atic com

putation by
specifying the "B" option w

hen calling the Fit m
ethod.

W
hen a functions is not predefined, the fit param

ters m
ust be initialized to

som
e value as close as possible to the expected values before calling the fit

function.

To set bounds for one param
eter, use TF1::SetParLimits:

func->SetParLimits(0, -1, 1);

W
hen the low

er and upper lim
its are equal, the param

eter is fixed. This
statem

ent fixes param
eter 4 at 10.

func->SetParameter(4,10)
func->SetParLimits(4,77,77);

H
ow

ever, to fix a param
eter to 0, one m

ust call the FixParameter function:

func->SetParameter(4,0)
func->FixParameter(4,0);

N
ote that you are not forced to fix the lim

its for all param
eters. For exam

ple, if
you fit a function w

ith 6 param
eters, you can:

func->SetParameters(0,3.1,1.e-6,-1.5,0,100);
func->SetParLimits(3,-10,-4);
func->FixParameter(4,0);

W
ith this setup, param

eters 0->2 can vary freely, param
eter 3 has boundaries

[-10,-4] w
ith initial value �8, and param

eter 4 is fixed to 0.

70
D

ecem
ber 2001 - version 3.1d

Fitting H
istogram

s

Fitting Sub R
anges

By default,TH1::Fit w
ill fit the function on the defined histogram

 range. You
can specify the option "R

" in the second param
eter of TH1::Fit to restrict

the fit to the range specified in the TF1 constructor. In this exam
ple, the fit w

ill
be lim

ited to �3 to 3, the range specified in the TF1 constructor.

root[] TF1 *f1 = new TF1("f1","[0]*x*sin([1]*x)",-3,3);
root[] hist->Fit("f1", "R");

You can also specify a range in the call to TH1::Fit:

root[] hist->Fit("f1","","",-2,2)
For m

ore com
plete exam

ples, see $ROOTSYS/tutorials/myfit.C and
$ROOTSYS/tutorials/multifit.C.

Exam
ple: Fitting M

ultiple Sub R
anges

The script for this exam
ple is in

$ROOTSYS/tutorials/multifit.C.
It show

s how
 to use several gaussian

functions w
ith different param

eters on
separate sub ranges of the sam

e
histogram

.

To use a gaussian, or any other R
O

O
T

built in function, on a sub range you
need to define a new

 TF1. Each is
'derived' from

 the canned function gaus.

// Create 4 TF1 objects, one for each subrange
g1 = new TF1("m1","gaus",85,95);
g2 = new TF1("m2","gaus",98,108);
g3 = new TF1("m3","gaus",110,121);
// The total is the sum of the three, each has three
//parameters.
total = new TF1("mstotal","gaus(0)+gaus(3)+gaus(6)",85,125);

H
ere w

e fill a histogram
 w

ith bins defined in the array x (see
$ROOTSYS/tutorials/multifit.C).

// Create a histogram and set it's contents
h = new TH1F("g1",
 "Example of several fits in subranges",np,85,134);
h->SetMaximum(7);
for (int i=0;i<np;i++) {
 h->SetBinContent(i+1,x[i]);
} // Define the parameter array for the total function
Double_t par[9];

W
hen fitting sim

ple functions, such as a gaussian, the initial values of the
param

eters are autom
atically com

puted by R
O

O
T. In the m

ore com
plicated

case of the sum
 of 3 gaussian functions, the initial values of param

eters m
ust

 Fitting H
istogram

s
D

ecem
ber 2001 - version 3.1d

71

be set. In this particular case, the initial values are taken from
 the result of the

individual fits.

The use of the "+" sign is explained below
.

//fit each function and add it to the list of functions
h->Fit(g1,"R");
h->Fit(g2,"R+");
h->Fit(g3,"R+");
// Get the parameters from the fit
g1->GetParameters(&par[0]);
g2->GetParameters(&par[3]);
g3->GetParameters(&par[6]);
// Use the parameters on the sum
total->SetParameters(par);
h->Fit(total,"R+");

Adding Functions to The List
The exam

ple $ROOTSYS/tutorials/multifit.C also illustrates how
 to

fit several functions on the sam
e histogram

. By default a Fit com
m

and
deletes the previously fitted function in the histogram

 object. You can specify
the option "+" in the second param

eter to add the new
ly fitted function to the

existing list of functions for the histogram
.

root[] hist->Fit("f1","+","",-2,2)
N

ote that the fitted function(s) are saved w
ith the histogram

 w
hen it is w

ritten
to a R

O
O

T file.

C
om

bining Functions
You can com

bine functions to fit a histogram
 w

ith their sum
. H

ere is an
exam

ple, the code is in $ROOTSYS/tutorials/FitDemo.C. W
e have a

function that is the com
bination of a background and lorenzian peak. Each

function contributes 3 param
eters.

y(E) = a1 + a2 E + a3 E 2 + A
P (G

 / 2 p)/((E-m
) 2 + (G

/2) 2)

background

lorenzianPeak

par[0] = a1

par[0] = A

P

par[1] = a2

par[1] = G

par[2] = a3

par[2] = m

The com
bination function (fitFunction) has six param

eters:

fitFunction = background (x, par) + lorenzianPeak (x, &
par[3])

par[0] = a1

par[1] = a2

par[2] = a3

par[3] = A

p

par[4] = G

par[5] = m

72
D

ecem
ber 2001 - version 3.1d

Fitting H
istogram

s

This script creates a histogram
 and fits the com

bination of the tw
o functions.

First w
e define the tw

o functions and the com
bination function:

// Quadratic background function
Double_t background(Double_t *x, Double_t *par) {
 return par[0] + par[1]*x[0] + par[2]*x[0]*x[0];
} // Lorenzian Peak function
Double_t lorentzianPeak(Double_t *x, Double_t *par) {
 return (0.5*par[0]*par[1]/TMath::Pi()) /
 TMath::Max(1.e-10,
 (x[0]-par[2])*(x[0]-par[2]) +
.25*par[1]*par[1]
);
} // Sum of background and peak function
Double_t fitFunction(Double_t *x, Double_t *par) {
 return background(x,par) + lorentzianPeak(x,&par[3]);
} // � continued on the next page void FittingDemo() {
// Bevington Exercise by Peter Malzacher,
// modified by Rene Brun
 const int nBins = 60;

 Stat_t data[nBins] = { 6, 1,10,12, 6,13,23,22,15,21,
 23,26,36,25,27,35,40,44,66,81,
 75,57,48,45,46,41,35,36,53,32,
 40,37,38,31,36,44,42,37,32,32,
 43,44,35,33,33,39,29,41,32,44,
 26,39,29,35,32,21,21,15,25,15};
 TH1F *histo = new TH1F("example_9_1",
 "Lorentzian Peak on Quadratic Background",60,0,3);

 for(int i=0; i < nBins; i++) {
 // we use these methods to explicitly set the content
 // and error instead of using the fill method.
 histo->SetBinContent(i+1,data[i]);
 histo->SetBinError(i+1,TMath::Sqrt(data[i]));
 }

 // create a TF1 with the range from 0 to 3
 // and 6 parameters
 TF1 *fitFcn = new TF1("fitFcn",fitFunction,0,3,6);

 // first try without starting values for the parameters
 // This defaults to 1 for each param.
 histo->Fit("fitFcn");
 // this results in an ok fit for the polynomial function
 // however the non-linear part (lorenzian) does not
 // respond well.

 // second try: set start values for some parameters
 fitFcn->SetParameter(4,0.2); // width
 fitFcn->SetParameter(5,1); // peak
 histo->Fit("fitFcn","V+");

//� continued on next page

 Fitting H
istogram

s
D

ecem
ber 2001 - version 3.1d

73

 // improve the picture:
 TF1 *backFcn = new TF1("backFcn",background,0,3,3);
 backFcn->SetLineColor(3);
 TF1 *signalFcn = new TF1("signalFcn",lorentzianPeak,0,3,3);
 signalFcn->SetLineColor(4);
 Double_t par[6];

 // writes the fit results into the par array
 fitFcn->GetParameters(par);

 backFcn->SetParameters(par);
 backFcn->Draw("same");
 signalFcn->SetParameters(&par[3]);
 signalFcn->Draw("same");
}

 This is the result:

For another exam
ple see:

http://root.cern.ch/root/htm
l/exam

ples/backsig.C
.htm

l

Associated Function
O

ne or m
ore objects (typically a TF1*) can be added to the list of functions

(fFunctions) associated to each histogram
. A call to TH1::Fit adds the

fitted function to this list. G
iven a histogram

 h, one can retrieve the
associated function w

ith:

TF1 *myfunc = h->GetFunction("myfunc");

74
D

ecem
ber 2001 - version 3.1d

Fitting H
istogram

s

Access to the Fit Param
eters and R

esults
If the histogram

 (or graph) is m
ade persistent, the list of associated functions

is also persistent. R
etrieve a pointer to the function w

ith the
TH1::GetFunction()m

ethod. Then you can retrieve the fit param
eters

from
 the function (TF1) w

ith calls such as:

 root[] TF1 *fit = hist->GetFunction(function_name);
 root[] Double_t chi2 = fit->GetChisquare();
// value of the first parameter
 root[] Double_t p1 = fit->GetParameter(0);
// errro of the first parameter
 root[] Double_t e1 = fit->GetParError(0);

Associated Errors
By default, for each bin, the sum

 of w
eights is com

puted at fill tim
e. O

ne can
also call TH1::Sumw2 to force the storage and com

putation of the sum
 of the

square of w
eights per bin. If Sumw2 has been called, the error per bin is

com
puted as the sqrt(sum of squares of weights), otherw

ise the
error is set equal to the sqrt (bin content). To return the error for a
given bin num

ber, do:

Double_t error = h->GetBinError(bin);

Fit Statistics
 You can change the statistics box to display the fit param

eters w
ith the

TH1::SetOptFit(mode) m
ethod. This m

ode has four digits.

M
ode = pcev (default = 0111)

��
v

=
1

print nam
e/values of param

eters
��

e
=

1
print errors (if e=1, v m

ust be 1)
��

c =
1

print C
hi-square/num

ber of degrees of freedom

��
p

=
1

print probability

 For exam
ple:

gStyle->SetOptFit(1011);

This prints the fit probability, param
eter nam

es/values, and errors.

 A Little C
++

D
ecem

ber 2001 - version 3.1d
75

6 A
 Little C

++

This chapter introduces you to som
e useful insights into C

++, to allow
 you to

use of the m
ost advanced features in R

O
O

T. It is in no case a full course in
C

++.

C
lasses, M

ethods and C
onstructors

C
++ extends C

 w
ith the notion of class. If you�re used to structures in C

, a
class is a struct, that is a group of related variables, w

hich is extended w
ith

functions and routines specific to this structure (class). W
hat is the interest?

C
onsider a struct that is defined this w

ay:

struct Line {
 float x1;
 float y1;
 float x2;
 float y2;
}

This structure represents a line to be draw
n in a graphical w

indow
. (x1,y1)

are the coordinates of the first point, (x2,y2) the coordinates of the second
point.

In standard C
, if you w

ant to effectively draw
 such a line, you first have to

define a structure and initialize the points (you can try this):

Line firstline;
firstline.x1 = 0.2;
firstline.y1 = 0.2;
firstline.x2 = 0.8;
firstline.y2 = 0.9;

This defines a line going from
 the point (0.2,0.2) to the point (0.8,0.9). To

draw
 this line, you w

ill have to w
rite a function, say LineDraw(Line l) and

call it w
ith your object as argum

ent:

LineDraw(firstline);

76
D

ecem
ber 2001 - version 3.1d

A Little C
++

In C
++, w

e w
ould not do that. W

e w
ould instead define a class like this:

class TLine {

Double_t x1;

Double_t y1;

Double_t x2;

Double_t y2;
 TLine(int x1, int y1, int x2, int y2);

void Draw();
}

H
ere w

e added tw
o functions, that w

e w
ill call m

ethods or m
em

ber functions,
to the TLine class. The first m

ethod is used for initializing the line objects w
e

w
ould build. It is called a constructor.

The second one is the Draw m
ethod itself. Therefore, to build and draw

 a
line, w

e have to do:

TLine l(0.2,0.2,0.8,0.9);
l.Draw();

The first line builds the object l by calling its constructor. The second line
calls the TLine::Draw() m

ethod of this object. You don�t need to pass any
param

eters to this m
ethod since it applies to the object l, w

hich know
s the

coordinates of the line. These are internal variables x1, y1, x2, y2 that
w

ere initialized by the constructor.

Inheritance and D
ata Encapsulation

Inheritance

W
e�ve defined a TLine class that contains everything necessary to draw

 a
line. If w

e w
ant to draw

 an arrow
, is it so different from

 draw
ing a line? W

e
just have to draw

 a triangle at one end. It w
ould be very inefficient to define

the class TArrow from
 scratch. Fortunately, inheritance allow

s a class to be
defined from

 an existing class. W
e w

ould w
rite som

ething like:

class TArrow : public TLine {

int ArrowHeadSize;

void Draw();

void SetArrowSize(int arrowsize);
}

The keyw
ord "public" w

ill be explained later. The class TArrow now

contains everything that the class TLine does, and a couple of things m
ore,

the size of the arrow
head and a function that can change it. The D

raw

m
ethod of TArrow w

ill draw
 the head and call the draw

 m
ethod of TLine.

W
e just have to w

rite the code for draw
ing the head!

M
ethod O

verriding

G
iving the sam

e nam
e to a m

ethod (rem
em

ber: m
ethod = m

em
ber function of

a class) in the child class (TArrow) as in the parent (TLine) doesn't give any

 A Little C
++

D
ecem

ber 2001 - version 3.1d
77

problem
. This is called overriding a m

ethod. D
raw

 in TArrow overrides
D

raw
 in TLine. There is no possible am

biguity since, w
hen one calls the

Draw() m
ethod; this applies to an object w

hich type is know
n. Suppose w

e
have an object l of type TLine and an object a of type TArrow. W

hen you
w

ant to draw
 the line, you do:

l.Draw()

Draw() from
 TLine is called. If you do:

a.Draw()

Draw() from
 TArrow is called and the arrow

 a is draw
n.

D
ata Encapsulation

W
e have seen previously the keyw

ord "public". This keyw
ord m

eans that
every nam

e declared public is seen by the outside w
orld. This is opposed to

"private" w
hich m

eans only the class w
here the nam

e w
as declared private

could see this nam
e. For exam

ple, suppose w
e declare in TArrow the

variable ArrowHeadSize private.

private :

int ArrowHeadSize;

Then, only the m
ethods (=m

em
ber functions) of TArrow w

ill be able to
access this variable. N

obody else w
ill see it. Even the classes that w

e could
derive from

 TArrow w
ill not see it. O

n the other hand, if w
e declare the

m
ethod Draw() as public, everybody w

ill be able to see it and use it. You
see that the character public or private doesn't depend of the type of
argum

ent. It can be a data m
em

ber, a m
em

ber function, or even a class.

For exam
ple, in the case of TArrow, the base class TLine is declared as

public:

class TArrow : public TLine {

This m
eans that all m

ethods of TArrow w
ill be able to access all m

ethods of
TLine, but this w

ill be also true for anybody in the outside w
orld. O

f course,
this is true provided that TLine accepts the outside w

orld to see its
m

ethods/data m
em

bers. If som
ething is declared private in TLine, nobody

w
ill see it, not even TArrow m

em
bers, even if TLine is declared as a public

base class.

W
hat if TLine is declared "private" instead of "public"? W

ell, it w
ill

behave as any other nam
e declared private in TArrow: only the data

m
em

bers and m
ethods of TArrow w

ill be able to access TLine, it's m
ethods

and data m
em

bers, nobody else.

This m
ay seem

 a little bit confusing and readers should read a good C
++

book if they w
ant m

ore details. Especially since, besides public and private, a
m

em
ber can be protected.

U
sually, one puts private the m

ethods that the class uses internally, like
som

e utilities classes, and that the program
m

er doesn�t w
ant to be seen in

the outside w
orld.

W
ith "good" C

++ practice (w
hich w

e have tried to use in R
O

O
T), all data

m
em

bers of a class are private. This is called data encapsulation and is one

78
D

ecem
ber 2001 - version 3.1d

A Little C
++

of the strongest advantages of O
bject O

riented Program
m

ing (O
O

P). Private
data m

em
bers of a class are not visible, except to the class itself. So, from

the outside w

orld, if one w
ants to access those data m

em
bers, one should

use so called "getters" and "setters" m
ethods, w

hich are special m
ethods

used only to get or set the data m
em

bers. The advantage is that if the
program

m
ers w

ant to m
odify the inner w

orkings of their classes, they can do
so w

ithout changing w
hat the user sees. The user doesn�t even have to know

that som

ething has changed (for the better, hopefully).

For exam
ple, in our TArrow class, w

e w
ould have set the data m

em
ber

ArrowHeadSize private. The setter m
ethod is SetArrowSize(), w

e don�t
need a getter m

ethod:

class TArrow : public TLine {
private:

int ArrowHeadSize;
 public:

void Draw();

void SetArrowSize(int arrowsize);
}

To define an arrow
 object you call the constructor. This w

ill also call the
constructor of TLine, w

hich is the parent class of TArrow, autom
atically.

Then w
e can call any of the line or arrow

 public m
ethods such as

SetArrowSize and Draw.

root[] TArrow* myarrow = new TArrow(1,5,89,124);
root[] myarrow->SetArrowSize(10);
root[] myarrow->Draw();

C
reating O

bjects on the Stack and H
eap

To explain how
 objects are created on the stack and on the heap w

e w
ill use

the Quad class. You can find the definition in
$ROOTSYS/tutorials/Quad.h and Quad.cxx.
The Quad class has four m

ethods. The constructor and destructor,
Evaluate w

hich evaluates ax**2 + bx +c , and Solve w
hich solves

the quadratic equation ax**2 + bx +c = 0.
Quad.h:

class Quad {

public:

Quad(Float_t a, Float_t b, Float_t c);

~Quad();

Float_t Evaluate(Float_t x) const;

void Solve() const;

private:

Float_t fA;

Float_t fB;

Float_t fC;
};

 A Little C
++

D
ecem

ber 2001 - version 3.1d
79

Quad.cxx:

#include <iostream.h>
#include <math.h>
#include "Quad.h"

Quad::Quad(Float_t a, Float_t b, Float_t c) {
 fA = a;
 fB = b;
 fC = c;
} Quad::~Quad() {
 cout << "deleting object with coeffts: "
 << fA << "," << fB << "," << fC << endl;
} Float_t Quad::Evaluate(Float_t x) const {
 return fA*x*x + fB*x + fC;
} void Quad::Solve() const {
 Float_t temp = fB*fB - 4.*fA*fC;
 if (temp > 0.) {
 temp = sqrt(temp);
 cout << "There are two roots: "
 << (-fB - temp) / (2.*fA)
 << " and "
 << (-fB + temp) / (2.*fA)
 << endl;
 } else {
 if (temp == 0.) {
 cout << "There are two equal roots: "
 << -fB / (2.*fA) << endl;
 } else {
 cout << "There are no roots" << endl;
 }
 }
}

Let's first look how
 w

e create an object. W
hen w

e create an object by

root[] Quad my_object(1.,2.,-3.);
W

e are creating an object on the stack. A FO
R

TR
AN

 program
m

er m
ay be

fam
iliar w

ith the idea; it's not unlike a local variable in a function or
subroutine. Although there are still a few

 old tim
ers w

ho don't know
 it,

FO
R

TR
AN

 is under no obligation to save local variables once the function or
subroutine returns unless the SAVE statem

ent is used. If not then it is likely
that FO

R
TR

AN
 w

ill place them
 on the stack and they w

ill "pop off" w
hen the

R
ETU

R
N

 statem
ent is reached.

To give an object m
ore perm

anence it has to be placed on the heap.

root[] .L Quad.cxx
root[] Quad* my_objptr = new Quad(1., 2., -3.);

The second line declares a pointer to Quad called my_objptr. From
 the

syntax point of view
, this is just like all the other declarations w

e have seen

80
D

ecem
ber 2001 - version 3.1d

A Little C
++

so far, i.e. this is a stack variable. The value of the pointer is set equal to new
Quad(1., 2., -3.);
new, despite its looks, is an operator and creates an object or variable of the
type that com

es next, Quad in this case, on the heap. Just as w
ith stack

objects it has to be initialized by calling its constructor. The syntax requires
that the argum

ent list follow
 the type. This one statem

ent has brought tw
o

item
s into existence, one on the heap and one on the stack. The heap object

w
ill live until the delete operator is applied to it.

There is no FO
R

TR
AN

 parallel to a heap object; variables either com
e and

go as control passes in and out of a function or subroutine, or, like a
C

O
M

M
O

N
 block variables, live for the lifetim

e of the program
. H

ow
ever, m

ost
people in H

EP w
ho use FO

R
TR

AN
 w

ill have experience of a m
em

ory
m

anager and the act of creating a bank is a good equivalent of a heap object.
For those w

ho know
 system

s like ZEBR
A, it w

ill com
e as a relief to learn that

objects don't m
ove, C

++ does not garbage collect, so there is never a danger
that a pointer to an object becom

es invalid for that reason. H
ow

ever, having
created an object, it is the user's responsibility to ensure that it is deleted
w

hen no longer needed, or to pass that responsibility onto to som
e other

object. Failing to do that w
ill result in a m

em
ory leak, one of the m

ost
com

m
on and m

ost hard-to-find C
++ bugs.

To send a m
essage to an object via a pointer to it, you need to use the "->"

operator e.g.:

root[] my_objptr->Solve();
Although w

e chose to call our pointer my_objptr, to em
phasize that it is a

pointer, heap objects are so com
m

on in an O
O

 program
 that pointer nam

es
rarely reflect the fact - you have to be careful that you know

 if you are dealing
w

ith an object or its pointer! Fortunately, the com
piler w

on't tolerate an
attem

pt to do som
ething like:

root[] my_objptr.Solve();

Although this is a perm
itted by the C

IN
T shortcuts, it is one that you are

strongly advised not to follow
!

As w
e have seen, heap objects have to be accessed via pointers, w

hereas
stack objects can be accessed directly. They can also be accessed via
pointers:

root[] Quad stack_quad(1.,2.,-3.);
root[] Quad* stack_ptr = &stack_quad;
root[] stack_ptr->Solve();

H
ere w

e have a Quad pointer that has been initialized w
ith the address of a

stack object. Be very careful if you take the address of stack objects. As w
e

shall see soon, they get deleted autom
atically, w

hich could leave you w
ith an

illegal pointer. U
sing it w

ill corrupt and m
ay w

ell crash the program
!

It is tim
e to look at the destruction of objects. Just as its constructor is called

w
hen it is created, so its destructor is called w

hen it is destroyed. The
com

piler w
ill provide a destructor that does nothing if none is provided. W

e
w

ill add one to our Q
uad class so that w

e can see w
hen it gets called.

The destructor is nam
ed by the class but w

ith the prefix ~ w
hich is the C

++
one's com

plem
ent i.e. bit w

ise com
plem

ent, and hence has destruction
overtones! W

e declare it in the .h file and define it in the .cxx file. It does not
do m

uch except print out that it has been called (still a useful debug
technique despite today's pow

erful debuggers!). N
ow

 run root, load the Q
uad

 A Little C
++

D
ecem

ber 2001 - version 3.1d
81

class and create a heap object:

root[] .L Quad.cxx
root[] Quad* my_objptr = new Quad(1., 2., -3.);

To delete the object:

root[] delete my_objptr;
root[] my_objptr = 0;

You should see the print out from
 its destructor. Setting the pointer to zero

afterw
ards isn't strictly necessary (and C

IN
T does it autom

atically), but the
object is no m

ore, and any attem
pt to use the pointer again w

ill, as has
already been stated, cause grief.

So m
uch for heap objects, but how

 do stack objects get deleted? In C
++ a

stack object is deleted as soon as control leaves the innerm
ost com

pound
statem

ent that encloses it. So it is singularly futile to do som
ething like:

root[] { Quad my_object(1.,2.,-3.); }

C
IN

T does not follow
 this rule; if you type in the above line you w

ill not see
the destructor m

essage. As explained in the Script lesson, you can load in
com

pound statem
ents, w

hich w
ould be a bit pointless if everything

disappeared as soon as it w
as loaded! Instead, to reset the stack you have to

type:

root[] gROOT->Reset();
This sends the R

eset m
essage via the global pointer to the R

O
O

T object,
w

hich, am
ongst its m

any roles, acts as a resource m
anager. Start R

O
O

T
again and type in the follow

ing:

root[] .L Quad.cxx
root[] Quad my_object(1.,2.,-3.);
root[] Quad* my_objptr = new Quad(4., 5., -6.);
root[] gROOT->Reset();

You w
ill see that this deletes the first object but not the second. W

e have also
painted ourselves into a corner, as my_objptr w

as also on the stack. This
com

m
and w

ill fail.

 root[] my_objptr->Solve();

C
IN

T no longer know
s w

hat my_objptr is. This is a great exam
ple of a

m
em

ory leak; the heap object exists but w
e have lost our w

ay to access it. In
general, this is not a problem

. If any object w
ill outlive the com

pound
statem

ent in w
hich it w

as created then it w
ill be pointed to by a m

ore
perm

anent pointer, w
hich frequently is part of another heap object. See

R
esetting the Interpreter Environm

ent in the chapter C
IN

T the C
++

Interpreter

 C
IN

T the C
++ Interpreter

D
ecem

ber 2001 - version 3.1d
83

7 C
IN

T the C
++ Interpreter

The subject of this chapter is C
IN

T, R
O

O
T's com

m
and line interpreter and script

processor. First, w
e explain w

hat C
IN

T is and w
hy R

O
O

T uses it. Then C
IN

T as
the com

m
and line interpreter, the C

IN
T com

m
ands, and C

IN
T's extensions to C

++
are discussed. C

IN
T as the script interpreter is also explained and illustrated w

ith
several exam

ples.

W
hat is C

IN
T?

C
IN

T, w
hich is pronounced C

-int, is a C
++ interpreter. An interpreter takes a

program
, in this case a C

++ program
, and carries it out by exam

ining each
instruction and in turn executing the equivalent sequence of m

achine language. For
exam

ple, an interpreter translates and executes each statem
ent in the body of a

loop "n" tim
es. It does not generate a m

achine language program
. This m

ay not be
a good exam

ple, because m
ost interpreters have becom

e 'sm
art' about loop

processing.

A com
piler on the other hand, takes a program

 and m
akes a m

achine language
executable. O

nce com
piled the execution is very fast, w

hich m
akes a com

piler best
suited for the case of "built once, run m

any tim
es". For exam

ple, the R
O

O
T

executable is com
piled occasionally and executed m

any tim
es. It takes anyw

here
from

 1 to 45 m
inutes to com

pile R
O

O
T for the first tim

e (depending on the C
PU

).
O

nce com
piled it runs very fast. O

n the average, a com
piled program

 runs ten
tim

es faster than an interpreted one.

Because it takes m
uch tim

e to com
pile, using a com

piler is cum
bersom

e for rapid
prototyping w

hen one changes and rebuilds as often as every few
 m

inutes. An
interpreter, optim

ized for code that changes often and runs a few
 tim

es, is the
perfect tool for this.

M
ost of the tim

e, an interpreter has a separate scripting language, such as Python,
ID

L, and PER
L, designed especially for interpretation, rather than com

pilation.
H

ow
ever, the advantage of having one language for both is that once the prototype

is debugged and refined, it can be com
piled w

ithout translating the code to a
com

piled language.

C
IN

T being a C
++ interpreter is the tool for rapid prototyping and scripting in C

++.
It is a stand-alone product developed by M

asaharu G
oto. It's executable com

es
w

ith the standard distribution of R
O

O
T ($R

O
O

TSYS/bin/cint), and it can also be
installed separately from

:

http://root.cern.ch/C
IN

T.htm
l

This page also has links to all the C
IN

T docum
entation. The dow

nloadable tar file
contains docum

entation, the C
IN

T executable, and m
any dem

o scripts, w
hich are

not included in the regular R
O

O
T distribution.

H
ere is a list of C

IN
T's m

ain features:

84
D

ecem
ber 2001 - version 3.1d

C
IN

T the C
++ Interpreter

��
Supports K&R

-C
, AN

SI-C
, and AN

SI-C
++

C
IN

T covers 80-90%
 of the K&R

-C
, AN

SI-C
 and C

++ language constructs. It
supports m

ultiple inheritance, virtual function, function overloading, operator
overloading, default param

eter, tem
plate, and m

uch m
ore. C

IN
T is robust

enough to interpret its ow
n source code. C

IN
T is not designed to be a 100%

AN

SI/ISO
 com

pliant C
++ language processor. It is a portable scripting

language environm
ent, w

hich is close enough to the standard C
++.

��
Interprets Large C

/C
++ source code

C
IN

T can handle huge C
/C

++ source code, and loads source files quickly. It
can interpret its ow

n, over 70,000 lines source code.
��

Enables m
ixing Interpretation & N

ative C
ode

D
epending on the need for execution speed or the need for interaction, one

can m
ix native code execution and interpretation. "m

akeC
IN

T" encapsulates
arbitrary C

/C
++ objects as a precom

piled libraries. A precom
piled library can

be configured as a dynam
ically linked library. Accessing interpreted code and

precom
piled code can be done seam

lessly in both directions.
��

Provides a Single-Language solution
C

IN
T/m

akeC
IN

T is a single-language environm
ent. It w

orks w
ith any AN

SI-
C

/C
++ com

piler to provide the interpreter environm
ent on top of it.

��
Sim

plifies C
++

C
IN

T is m
eant to bring C

++ to the non-softw
are professional. C

++ is sim
pler

to use in the interpreter environm
ent. It helps the non-softw

are professional
(the dom

ain expert) to talk the sam
e language as the softw

are counterpart.
��

Provides R
TTI and a C

om
m

and Line
C

IN
T can process C

++ statem
ents from

 com
m

and line, dynam
ically

define/erase class definition and functions, load/unload source files and
libraries. Extended R

un Tim
e Type Identification is provided, allow

ing you to
explore unthinkable w

ay of using C
++.

��
H

as a Built-in D
ebugger and C

lass Brow
ser

C
IN

T has a built-in debugger to debug com
plex C

++ code. A text based class
brow

ser is part of the debugger.
��

Is Portable
C

IN
T w

orks on num
ber of operating system

s: H
P-U

X, Linux, SunO
S, Solaris,

AIX, Alpha-O
SF, IR

IX, FreeBSD
, N

etBSD
, N

EC
 EW

S4800, N
ew

sO
S, BeBox,

W
indow

s-N
T, W

indow
s-9x, M

S-D
O

S, M
acO

S, VM
S, N

extStep, C
onvex.

 C
IN

T the C
++ Interpreter

D
ecem

ber 2001 - version 3.1d
85

The R
O

O
T C

om
m

and Line Interface
Start up a R

O
O

T session by typing R
O

O
T at the system

 prom
pt.

hproot) [199] root

 * *
 * W E L C O M E to R O O T *
 * *
 * Version 2.25/02 21 August 2000 *
 * *
 * You are welcome to visit our Web site *
 * http://root.cern.ch *
 * *

 CINT/ROOT C/C++ Interpreter version 5.14.47, Aug 12 2000
Type ? for help. Commands must be C++ statements.
Enclose multiple statements between { }.

N
ow

 create a TLine object:

root [] TLine l
root [] l.Print()
TLine X1=0.000000 Y1=0.000000 X2=0.000000 Y2=0.000000
root [] l.SetX1(10)
root [] l.SetY1(11)
root [] l.Print()
TLine X1=10.000000 Y1=11.000000 X2=0.000000 Y2=0.000000
root [] .g
...
0x4038f080 class TLine l , size=40
 0x0 protected: Double_t fX1 //X of 1st point
 0x0 protected: Double_t fY1 //Y of 1st point
 0x0 protected: Double_t fX2 //X of 2nd point
 0x0 protected: Double_t fY2 //Y of 2nd point
 0x0 private: static class TClass* fgIsA

H
ere w

e note:

��
Term

inating ; not required (see the section R
O

O
T/C

IN
T Extensions to C

++).
��

Em
acs style com

m
and line editing.

��
R

aw
 interpreter com

m
ands start w

ith a . (dot).

86
D

ecem
ber 2001 - version 3.1d

C
IN

T the C
++ Interpreter

root [] .class TLine
===
class TLine //A line segment
 size=0x28
List of base class-------------------------------
0x0 public: TObject //Basic ROOT object
0xc public: TAttLine //Line attributes
List of member variable--------------------------
Defined in TLine
0x0 protected: Double_t fX1 //X of 1st point
0x0 protected: Double_t fY1 //Y of 1st point
0x0 protected: Double_t fX2 //X of 2nd point
0x0 protected: Double_t fY2 //Y of 2nd point
0x0 private: static class TClass* fgIsA
List of member function--------------------------
Defined in TLine
filename line:size busy function type and name
(compiled) 0:0 0 public: class TLine TLine(void);
(compiled) 0:0 0 public: Double_t GetX1(void);
(compiled) 0:0 0 public: Double_t GetX2(void);
(compiled) 0:0 0 public: Double_t GetY1(void);
(compiled) 0:0 0 public: Double_t GetY2(void);
...
...
(compiled) 0:0 public: virtual void SetX1(Double_t x1);
(compiled) 0:0 public: virtual void SetX2(Double_t x2);
(compiled) 0:0 public: virtual void SetY1(Double_t y1);
(compiled) 0:0 public: virtual void SetY2(Double_t y2);
(compiled) 0:0 0 public: void ~TLine(void);
root [] l.Print(); > test.log
root [] l.Dump(); >> test.log
root [] ?

H
ere w

e see:

��
U

se .class as quick help and reference
��

U
nix like I/O

 redirection (; is required before >)
��

U
se ? to get help on all ``raw

'' interpreter com
m

ands

 C
IN

T the C
++ Interpreter

D
ecem

ber 2001 - version 3.1d
87

N
ow

 lets execute a m
ulti-line com

m
and:

root [] {
end with '}'> TLine l;
end with '}'> for (int i = 0; i < 5; i++) {
end with '}'> l.SetX1(i);
end with '}'> l.SetY1(i+1);
end with '}'> l.Print();
end with '}'> }
end with '}'> }
TLine X1=0.000000 Y1=1.000000 X2=0.000000 Y2=0.000000
TLine X1=1.000000 Y1=2.000000 X2=0.000000 Y2=0.000000
TLine X1=2.000000 Y1=3.000000 X2=0.000000 Y2=0.000000
TLine X1=3.000000 Y1=4.000000 X2=0.000000 Y2=0.000000
TLine X1=4.000000 Y1=5.000000 X2=0.000000 Y2=0.000000
root [] .q

H
ere w

e note:

��
A m

ulti-line com
m

and starts w
ith a { and ends w

ith a }.
��

Every line has to be correctly term
inated w

ith a ; (like in "real'' C
++).

��
All objects are created in global scope.

��
There is no w

ay to back up, you are better off w
riting a script.

��
U

se .q to exit root.

 The R
O

O
T Script Processor

R
O

O
T script files contain pure C

++ code. They can contain a sim
ple sequence of

statem
ents like in the m

ulti com
m

and line exam
ple given above, but also arbitrarily

com
plex class and function definitions.

U
n-nam

ed Scripts
Lets start w

ith a script containing a sim
ple list of statem

ents (like the m
ulti-

com
m

and line exam
ple given in the previous section). This type of script m

ust start
w

ith a { and end w
ith a }and is called an un-nam

ed script . Assum
e the file is called

script1.C

{ #include <iostream.h>
 cout << " Hello" << endl;
 float x = 3.;
 float y = 5.;
 int i = 101;
 cout <<" x = "<<x<<" y = "<<y<<" i = "<<i<< endl;
}

To execute the stream
 of statem

ents in s
c
r
i
p
t
1
.
C do:

root [] .x script1.C

This loads the contents of file script1.C and executes all statem
ents in the

interpreter's global scope.

88
D

ecem
ber 2001 - version 3.1d

C
IN

T the C
++ Interpreter

O
ne can re-execute the statem

ents by re-issuing ".x script1.C" (since there is
no function entry point).

Scripts are searched for in the Root.MacroPath as defined in your .rootrc file.
To check w

hich script is being executed use:

root [] .which script1.C
/home/rdm/root/./script1.C

N
am

ed Scripts
Lets change the un-nam

ed script to a nam
ed script. C

opy file s
c
r
i
p
t
1
.
C to

s
c
r
i
p
t
2
.
C and add a function statem

ent. Like this:

#include <iostream.h>
 int main()
{ cout << " Hello" << endl;
 float x = 3.;
 float y = 5.;
 int i= 101;
 cout <<" x = "<<x<<" y = "<<y<<" i = "<<i<<endl;
 return 0;
}

N
otice that no surrounding { } are required in this case. To execute function

main() in script2.C do:

root [] .L script2.C // load script in memory
root [] main() // execute entry point main
 Hello
 x = 3 y = 5 i = 101
(int)0
root [] main() // execute main() again
 Hello
 x = 3 y = 5 i = 101
(int)0
root [] .func // list all functions known by CINT
filename line:size busy function type and name
...
script2.C 4:9 0 public: int main();

The last com
m

and show
s that m

a
i
n
(
) has been loaded from

 file script2.C, that
the function m

a
i
n
(
) starts on line 4 and is 9 lines long. N

otice that once a function
has been loaded it becom

es part of the system
 just like a com

piled function.

 C
IN

T the C
++ Interpreter

D
ecem

ber 2001 - version 3.1d
89

N
ow

 w
e copy file script2.C to script3.C and change the function nam

e from

main() to script3(int j = 10):

#include <iostream.h>
int script3(int j = 10)
{ cout << " Hello" << endl;
 float x = 3.;
 float y = 5.;
 int i = j;
 cout <<" x = "<<x<<" y = "<<y<<" i = "<<i<<endl;
 return 0;
}

To execute script3() in script3.C type:

root [] .x script3.C(8)
 This loads the contents of file script3.C and executes entry point script3(8).
N

ote that the above only w
orks w

hen the filenam
e (m

inus extension) and function
entry point are both the sam

e. Function script3() can still be executed m
ultiple

tim
es:

root [] script3()
 Hello
 x = 3 y = 5 i = 10
(int)0
root [] script3(33)
 Hello
 x = 3 y = 5 i = 33
(int)0 In a nam

ed script, the objects created on the stack are deleted w
hen the function

exits. For exam
ple, this scenario is very com

m
on. You create a histogram

 in a
nam

ed script on the stack. You draw
 the histogram

, but w
hen the function exits the

canvas is em
pty and the histogram

 disappeared.

To avoid histogram
 from

 disappearing you can create it on the heap (by using
new

). This w
ill leave the histogram

 object intact, but the pointer in the nam
ed script

scope w
ill be deleted.

Since histogram
s (and trees) are added to the list of objects in the current

directory, you can alw
ays retrieve them

 to delete them
 if needed.

root[] TH1F *h = (TH1F*)gDirectory->Get("myHist");

or

root[] TH1F *h = (TH1F*)gDirectory->GetList()->FindObject("myHist");

In addition, histogram
s and trees are autom

atically deleted w
hen the current

directory is closed. This w
ill autom

atically take care of the clean up. See chapter
Input/O

utput.

90
D

ecem
ber 2001 - version 3.1d

C
IN

T the C
++ Interpreter

R
esetting the Interpreter Environm

ent
Variables created on the com

m
and line and in un-nam

ed scripts are in the
interpreter's global scope, w

hich m
akes the variables created in un-nam

ed scripts
available on the com

m
and line event after the script is done executing. This is the

opposite of a nam
ed script w

here the stack variables are deleted w
hen the function

in w
hich they are defined has finished execution.

W
hen running an un-nam

ed script over again and this is frequently the case since
un-nam

ed scripts are used to prototype, one should reset the global environm
ent to

clear the variables. This is done by calling gROOT->Reset(). It is good practice,
and you w

ill see this in the exam
ples, to begin an un-nam

ed script w
ith gROOT-

>Reset. It clears the global scope to the state just before executing the previous
script (not including any logon scripts).

The gROOT->Reset() calls the destructor of the objects if the object w
as created

on the stack. If the object w
as created on the heap (via new

) it is not deleted, but
the variable is no longer associated w

ith it. C
reating variables on the heap in un-

nam
ed scripts and calling gROOT->Reset() w

ithout you calling the destructor
explicitly w

ill cause a m
em

ory leak.

This m
ay be surprising, but it follow

s the scope rules. For exam
ple, creating an

object on the heap in a function (in a nam
ed script) w

ithout explicitly deleting it w
ill

also cause a m
em

ory leak. Since w
hen exiting the function only the stack variables

are deleted.

The code below
 show

s gROOT->Reset calling the destructor for the stack
variable, but not for the heap variable. In the end, neither variable is available, but
the m

em
ory for the heap variable is not released.

H
ere is an exam

ple.

root [] gDebug = 1
 (const int)1
root [] TFile stackVar("stack.root","RECREATE")
 TKey Writing 86 bytes at address 64 for ID= stack.root Title=
root [] TFile *heapVar = new TFile("heap.root", "RECREATE")
 TKey Writing 84 bytes at address 64 for ID= heap.root Title=

W
e turn on Debug to see w

hat the subsequent calls are doing. Then w
e create tw

o
variables, one on the stack and one on the heap.

root [] gROOT->Reset()
 TKey Writing 48 bytes at address 150 for ID= stack.root Title=
 TKey Writing 54 bytes at address 198 for ID= stack.root Title=
TFile dtor called for stack.root
TDirectory dtor called for stack.root

W
hen w

e call gROOT->Reset, C
IN

T tells us that the destructor is called for the
stack variable, but it doesn't m

ention the heap variable.
root [] stackVar
Error: No symbol stackVar in current scope
FILE:/var/tmp/faaa01jWe_cint LINE:1
*** Interpreter error recovered ***
root [] heapVar
Error: No symbol heapVar in current scope
FILE:/var/tmp/gaaa01jWe_cint LINE:1
*** Interpreter error recovered ***

N
either variable is available in after the call to reset.

 C
IN

T the C
++ Interpreter

D
ecem

ber 2001 - version 3.1d
91

root [] gROOT->FindObject("stack.root")
(class TObject*)0x0
root [] gROOT->FindObject("heap.root")
(class TObject*)0x106bfb30

The object on the stack is deleted and show
s a null pointer w

hen w
e do a

FindObject. H
ow

ever, the heap object is still around and taking up m
em

ory.

A Script C
ontaining a C

lass D
efinition

Lets create a sm
all class TMyClass and a derived class TChild. The virtual

TMyClass::Print()
m

ethod is overridden in TChild . Save this in file called
script4.C.

#include <iostream.h>
 class TMyClass {
 private:
 float fX; //x position in centimeters
 float fY; //y position in centimeters
 public:
 TMyClass() { fX = fY = -1; }
 virtual void Print() const;
 void SetX(float x) { fX = x; }
 void SetY(float y) { fY = y; }
};
 void TMyClass::Print() const // parent print method
{ cout << "fX = " << fX << ", fY = " << fY << endl;
} //---
class TChild : public TMyClass {
public:
 void Print() const;
};
 void TChild::Print() const // child print metod
{ cout << "This is TChild::Print()" << endl;
 TMyClass::Print();
}

92
D

ecem
ber 2001 - version 3.1d

C
IN

T the C
++ Interpreter

To execute script4.C do:

root [] .L script4.C
root [] TMyClass *a = new TChild
root [] a->Print()
This is TChild::Print()
fX = -1, fY = -1
root [] a->SetX(10)
root [] a->SetY(12)
root [] a->Print()
This is TChild::Print()
fX = 10, fY = 12
root [] .class TMyClass
===
class TMyClass
 size=0x8 FILE:script4.C LINE:3
List of base class-----------------------------------
List of member variable------------------------------
Defined in TMyClass
0x0 private: float fX
0x4 private: float fY
List of member function------------------------------
Defined in TMyClass
filename line:size busy function type and name
script4.C 16:5 0 public: class TMyClass
 TMyClass(void);
script4.C 22:4 0 public: void Print(void);
script4.C 12:1 0 public: void SetX(float x);
script4.C 13:1 0 public: void SetY(float y);
root [] .q

As you can see an interpreted class behaves just like a com
piled class.

There are som
e lim

itations for a class created in a script:

1.
They cannot inherit from

 TObject. C
urrently the interpreter cannot patch the

virtual table of com
piled objects to reference interpreted objects.

2.
Because the I/O

 is encapsulated in TObject and a class defined in a script
can not inherit from

 TObject, it can not be w
ritten to a R

O
O

T file.

For w
ays to add a class w

ith a shared library and w
ith AC

LiC
, see the chapter:

"Adding a C
lass"

 C
IN

T the C
++ Interpreter

D
ecem

ber 2001 - version 3.1d
93

D
ebugging Scripts

A pow
erful feature of C

IN
T is the ability to debug interpreted functions by m

eans of
setting breakpoints and being able to single step through the code and print
variable values on the w

ay. Assum
e w

e have script4.C still loaded, w
e can then

do:

root [] .b TChild::Print
Break point set to line 26 script4.C
root [] a.Print()
 26 TChild::Print() const
27 {
28 cout << "This is TChild::Print()" << endl;
FILE:script4.C LINE:28 cint> .s
 311 operator<<(ostream& ostr,G__CINT_ENDL& i)
{return(endl(ostr));
FILE:iostream.h LINE:311 cint> .s
} This is TChild::Print()
 29 MyClass::Print();
FILE:script4.C LINE:29 cint> .s
 16 MyClass::Print() const
17 {
18 cout << "fX = " << fX << ", fY = " << fY << endl;
FILE:script4.C LINE:18 cint> .p fX
(float)1.000000000000e+01
FILE:script4.C LINE:18 cint> .s
 311 operator<<(ostream& ostr,G__CINT_ENDL& i)
{return(endl(ostr));
FILE:iostream.h LINE:311 cint> .s
} fX = 10, fY = 12
 19 }
 30 }
 2 }
root [] .q

94
D

ecem
ber 2001 - version 3.1d

C
IN

T the C
++ Interpreter

Inspecting O
bjects

An object of a class inheriting from
 TObject can be inspected, w

ith the Inspect
m

ethod. The TObject::Inspect m
ethod creates a w

indow
 listing the current

values of the objects m
em

bers. For exam
ple, this is a picture of TFile.

root[] TFile f("staff.root")

root[] f.Inspect()

You can see the pointers are in red and can be clicked on to follow

 the pointer to
the object. For exam

ple, here w
e clicked on fKeys, the list of keys in m

em
ory.

 C
IN

T the C
++ Interpreter

D
ecem

ber 2001 - version 3.1d
95

If you clicked on fList, the list of objects in m

em
ory and there w

ere none, no new

canvas w
ould be show

n.

O
n top of the page are the navigation buttons to see the previous and next screen.

R
O

O
T/C

IN
T Extensions to C

++
In the next exam

ple, w
e dem

onstrate three of the m
ost im

portant extensions
R

O
O

T/C
IN

T m
akes to C

++. Start R
O

O
T

in the directory $ROOTSYS/tutorials
(m

ake sure to have first run ".x
hsimple.C"):

root [] f = new TFile("hsimple.root")
(class TFile*)0x4045e690
root [] f.ls()
TFile** hsimple.root
 TFile* hsimple.root
 KEY: TH1F hpx;1 This is the px distribution
 KEY: TH2F hpxpy;1 py ps px
 KEY: THProfile hprof;1 Profile of pz versus px
 KEY: TNtuple ntuple;1 Demo ntuple
root [] hpx.Draw()
NULL
Warning in <MakeDefCanvas>: creating a default canvas with name
c1
root [] .q

The first com
m

and show
s the first extension; the declaration of f m

ay be om
itted

w
hen "new" is used. C

IN
T w

ill correctly create f as pointer to object of class
TFile.
The second extension is show

n in the second com
m

and. Although f is a pointer to
TFile w

e don't have to use the pointer de-referencing syntax "->" but can use the
sim

ple " ." notation.

96
D

ecem
ber 2001 - version 3.1d

C
IN

T the C
++ Interpreter

The third extension is m
ore im

portant. In case C
IN

T cannot find an object being
referenced, it w

ill ask R
O

O
T to search for an object w

ith an identical nam
e in the

search path defined by TROOT::FindObject(). If R
O

O
T finds the object, it

returns C
IN

T a pointer to this object and a pointer to its class definition and C
IN

T
w

ill execute the requested m
em

ber function. This shortcut is quite natural for an
interactive system

 and saves m
uch typing. In this exam

ple, R
O

O
T searches for

hpx and finds it in simple.root.
The fourth is show

n below
. There is no need to put a sem

icolon at the end of a
line. The difference betw

een having it and leaving it off is that w
hen you leave it off

the return value of the com
m

and w
ill be printed on the next line. For exam

ple:

root[] 23+5 // no semicolon prints the return value
(int)28
root[] 23+5; // semicolon no return value is printed
root[] Be aw

are that these extensions do not w
ork w

hen the interpreter is replaced by a
com

piler. Your code w
ill not com

pile, hence w
hen w

riting large scripts, it is best to
stay aw

ay from
 these shortcuts. It w

ill save you from
 having problem

s com
piling

your scripts using a real C
++ com

piler.

AC
LiC

 - The Autom
atic C

om
piler of Libraries for

C
IN

T
Instead of having C

IN
T interpret your script there is a w

ay to have your scripts
com

piled, linked and dynam
ically loaded using the C

++ com
piler and linker. The

advantage of this is that your scripts w
ill run w

ith the speed of com
piled C

++ and
that you can use language constructs that are not fully supported by C

IN
T. O

n the
other hand, you cannot use any C

IN
T shortcuts (see C

IN
T extensions) and for

sm
all scripts, the overhead of the com

pile/link cycle m
ight be larger than just

executing the script in the interpreter.

AC
LiC

 w
ill build a C

IN
T dictionary and a shared library from

 your C
++ script, using

the com
piler and the com

piler options that w
ere used to com

pile the R
O

O
T

executable. You do not have to w
rite a m

akefile rem
em

bering the correct com
piler

options, and you do not have to exit R
O

O
T.

U
sage

Before you can com
pile your interpreted script you need to add include statem

ents
for the classes used in the script. O

nce you did that, you can build and load a
shared library containing your script. To load it, use the .L com

m
and and append

the file nam
e w

ith a "+".

root [] .L MyScript.C+
root [] .files
� � *file="/home/./MyScript_C.so"

 The + option generates the shared library and nam
ing it by taking the nam

e of the
file "filenam

e" but replacing the dot before the extension by an underscore and by
adding the shared library extension for the current platform

.

For exam
ple on m

ost platform
s, hsimple.cxx w

ill generate hsimple_cxx.so.

 C
IN

T the C
++ Interpreter

D
ecem

ber 2001 - version 3.1d
97

It uses the directive fMakeSharedLibs to create a shared library. If loading the
shared library fails, it tries to output a list of m

issing sym
bols by creating an

executable (on som
e platform

s like O
SF, this does not H

AVE to be an executable)
containing the script. It uses the directive fMakeExe to do so. For both directives,
before passing them

 to TSystem::Exec, it expands the variables
$SourceFiles, $SharedLib, $LibName, $IncludePath, $LinkedLibs,
$ExeName and $ObjectFiles. See SetMakeSharedLib() for m

ore inform
ation

on those variables.

If w
e execute a .files com

m
and w

e can see the new
ly created shared library is

in the list of loaded files.

The + com
m

and w
ill check for a m

ore recent tim
estam

p on the script and the script
header file before rebuilding the shared library. N

ote that it does not autom
atically

check the tim
e stam

p of the include files except for the one that has the sam
e

nam
e as the script w

ith the header extension.

To ensure that the shared library is rebuilt you can use the ++ syntax:

root[] .L MyScript.C++
To build, load, and execute the function w

ith the sam
e nam

e as the file you can
use the .x com

m
and. This is the sam

e as executing a nam
ed script. You can have

param
eters and use .x or .X. The only difference is you need to append a + or a

++.

root[] .x MyScript.C+ (4000)
Creating shared library
/home/./MyScript_C.so

 The alternative to .L is to use gROOT::LoadMacro. For exam
ple, in one script

you can use AC
LiC

 to com
pile and load another script.

gROOT->LoadMacro("MyScript.C+")
gROOT->LoadMacro("MyScript.C++")

+ and ++ have the sam
e m

eaning as described above. You can also use the
gROOT::Macro m

ethod to load and execute the script.

gROOT->Macro("MyScript.C++")

N
O

TE: You should not call AC
LiC

 w
ith a script that has a function called main().

W
hen AC

LiC
 calls rootcint w

ith a function called main it tries to add every
sym

bol it finds w
hile parsing the script and the header files to the dictionary. This

includes the system
 header files and the R

O
O

T header files. This w
ill result in

duplicate entries at best and crashes at w
orst, because som

e classes in R
O

O
T

needs special attention before they can be added to the dictionary.

Interm
ediate Steps and Files

AC
LiC

 executes tw
o steps and a third one if needed. These are:

��
C

alling rootcint to create a C
IN

T dictionary. rootcint is a R
O

O
T specific

version of makecint, C
IN

T's generic dictionary generator.
��

C
alling the com

piler to build the shared library from
 the script

98
D

ecem
ber 2001 - version 3.1d

C
IN

T the C
++ Interpreter

��
If there are errors, it calls the com

piler to build a dum
m

y executable to clearly
report unresolved sym

bols.

AC
LiC

 m
akes a shared library w

ith a C
IN

T dictionary containing the classes and
functions declared in the script. It also adds the classes and functions declared in
included files w

ith the sam
e nam

e as the script file and any of the follow
ing

extensions: .h, .hh, .hpp, .hxx, .hPP, .hXX. This m
eans you cannot

com
bine scripts from

 different files into one library by using #include statem
ents;

you w
ill need to com

pile each script separately. In a future release, w
e plan to add

the global variables declared in the script to the dictionary also. If you are curious
about the specific calls, you can raise the R

O
O

T debug level (gDebug = 5).
AC

LiC
 w

ill print the three steps.

M
oving betw

een Interpreter and C
om

piler
The best w

ay to develop portable scripts is to m
ake sure you can alw

ays run them

w
ith both, the interpreter and w

ith AC
LiC

. To do so, do not use the C
IN

T
extensions and program

 around the C
IN

T lim
itations. W

hen it is not possible or
desirable to program

 around the C
IN

T lim
itations, you can use the C

 preprocessor
sym

bols defined for C
IN

T and rootcint.
The preprocessor sym

bol __CINT__ is defined for both C
IN

T and rootcint. The
sym

bol __MAKECINT__ is only defined in rootcint.
U

se !defined(__CINT__) || defined(__MAKECINT__)to bracket code that
needs to seen by the com

piler and rootcint, but w
ill be invisible to the

interpreter.

U
se !defined(__CINT__) to bracket code that should be seen only by the

com
piler and not by C

IN
T or rootcint.

For exam
ple, the follow

ing w
ill hide the declaration and initialization of the array

gArray from
 both C

IN
T and rootcint.

#if !defined(__CINT__)
int gArray[] = { 2, 3, 4};
#endif Because AC

LiC
 calls rootcint to build a dictionary, the declaration of gArray

w
ill not be included in the dictionary, and consequently, gArray w

ill not be
available at the com

m
and line even if AC

LiC
 is used. C

IN
T and rootcint w

ill
ignore all statem

ents betw
een the "#if !defined (__CINT__)" and

"#endif". If you w
ant to use gArray in the sam

e script as its declaration, you can
do so. H

ow
ever, if you w

ant use the script in the interpreter you have to bracket the
usage of gArray betw

een #if's, since the definition is not visible.
If you add the follow

ing preprocessor statem
ents, gArray w

ill be visible to
rootcint but still not visible to C

IN
T. If you use AC

LiC
, gArray w

ill be available
at the com

m
and line and be initialized properly by the com

piled code.

#if !defined(__CINT__)
int gArray[] = { 2, 3, 4};
#elif defined(__MAKECINT__)
int gArray[];
#endif W

e recom
m

end you alw
ays w

rite scripts w
ith the needed include statem

ents. In
m

ost cases, the script w
ill still run w

ith the interpreter. H
ow

ever, a few
 header files

are not handled very w
ell by C

IN
T.

These types of headers can be included in interpreted and com
piled m

ode:

 C
IN

T the C
++ Interpreter

D
ecem

ber 2001 - version 3.1d
99

��
The subset of standard C

/C
++ headers defined in

$ROOTSYS/cint/include.
��

H
eaders of classes defined in a previously loaded library (including R

O
O

T's
ow

n). The defined class m
ust have a nam

e know
n to R

O
O

T (i.e. a class w
ith

a C
lassD

ef).

A few
 headers w

ill cause problem
s w

hen they are included in interpreter m
ode,

because they are already included by the interpreter itself. In general, the
interpreter needs to know

 w
hether to use the interpreted or com

piled version. The
m

ode of the definition needs to m
atch the m

ode of the reference.

H
ere are the cases that need to be excluded in interpreted m

ode, but included for
rootcint. Bracket these w

ith :
!defined(__CINT__) || defined(__MAKECINT__)

��
All C

IN
T headers, see $ROOTSYS/cint/inc

��
H

eaders w
ith classes nam

ed other than the file nam
e. For exam

ple:
Rtypes.h and GuiTypes.h.

��
H

eaders w
ith a class defined in a libraries before the library is loaded. For

exam
ple: having a #include "TLorenzVector.h before gSystem-

>Load("libPhysics").
This w

ill also cause problem
s w

hen com
piling the script, but a clear error

m
essage w

ill be given. W
ith the interpreter it m

ay core dum
p. Bracket these

type of include statem
ents w

ith #if !defined (__CINT__), this w
ill print

an error in both m
odes.

H
iding header files from

 rootcint that are necessary for the com
piler but optional

for the interpreter can lead to a subtle but fatal errors. For exam
ple:

#ifndef __CINT__
#include "TTree.h"
#else
class TTree;
#endif
 class subTree : public TTree {
};

In this case, rootcint does not have enough inform
ation about the TTree class

to produce the correct dictionary file. If you try this, rootcint and com
piling w

ill
be error free, how

ever, instantiating a subTree object from
 the C

IN
T com

m
and

line w
ill cause a fatal error.

In general it is recom
m

ended to let rootcint see as m
any header files as

possible.

Setting the Include Path
You can get the include path by typing:

root [] .include
You can append to the include path by typing:

root [] .include "-I$HOME/mypackage/include "
In a script you can set the include path:

100
D

ecem
ber 2001 - version 3.1d

C
IN

T the C
++ Interpreter

gSystem->SetIncludePath (" -I$HOME/mypackage/include ")

The $ROOTSYS/include directory is autom
atically appended to the include path,

so you don't have to w
orry about including it, how

ever if you have already added a
path, this com

m
and w

ill overw
rite it.

 O
bject O

w
nership

D
ecem

ber 2001 - version 3.1d
101

8 O
bject O

w
nership

An object has ow
nership of another object if it has perm

ission to delete it.
U

sually ow
nership is held by a collection or a parent object such as a pad.

To prevent m
em

ory leaks and m
ultiple attem

pts to delete an object, you need
to know

 w
hich objects are ow

ned by R
O

O
T and w

hich are ow
ned by you.

The follow
ing rules apply to the R

O
O

T classes.

-
H

istogram
s, trees, and event lists created by the user are ow

ned by
current directory (gDirectory). W

hen the current directory is closed or
deleted the objects it ow

ns are deleted also.

-
The TR

O
O

T m
aster object (gROOT) has several collections of objects.

O
bjects that are m

em
bers of these collections are ow

ned by gROOT (see
the paragraph "O

w
nership by the M

aster TR
O

O
T O

bject (gR
O

O
T)"

below
).

-
O

bjects created by another object, for exam
ple the function object

(e.g.TF1) created by the TH1::Fit m
ethod is ow

ned by the histogram
.

-
An object created by DrawCopy m

ethods, is ow
ned by the pad it is

draw
n in.

If an object fits none of these cases, the user has ow
nership. The next

paragraphs describe each rule and user ow
nership in m

ore detail.

O
w

nership by C
urrent D

irectory (gD
irectory)

W
hen a histogram

, tree, or event list (TEventList) is created, it is added to
the list of objects in the current directory by default. You can get the list of
objects in a directory and retrieve a pointer to a specific object w

ith the
GetList m

ethod. This exam
ple retrieves a histogram

.

TH1F *h = (TH1F*)gDirectory->GetList()-
>FindObject("myHist");

The m
ethod TDirectory::GetList()returns a TList of objects in the

directory. It looks in m
em

ory, and is im
plem

ented in all R
O

O
T collections.

You can change the directory of a histogram
, tree, or event list w

ith the
SetDirectory m

ethod. H
ere w

e use a histogram
 for an exam

ple, but the
sam

e applies to trees and event lists.

h->SetDirectory(newDir)

You can also rem
ove a histogram

 from
 a directory by using

SetDirectory(0). O
nce a histogram

 is rem
oved from

 the directory, it w
ill

102
D

ecem
ber 2001 - version 3.1d

O
bject O

w
nership

not be deleted w
hen the directory is closed. It is now

 your responsibility to
delete this histogram

 once you have finished w
ith it.

To change the default that autom
atically adds the histogram

 to the current
directory, you can call the static function:

TH1::AddDirectory(kFALSE);

All histogram
s created here after w

ill not be added to the current directory. In
this case, you ow

n all histogram
 objects and you w

ill need to delete them
 and

clean up the references.

You can still set the directory of a histogram
 by calling SetDirectory once

it has been created as described above.

N
ote that, w

hen a file goes out of scope or is closed all objects on its object
list are deleted.

O
w

nership by the M
aster TR

O
O

T O
bject

(gR
O

O
T) The m

aster object gROOT, m
aintains several collections of objects. For

exam
ple, a canvas is added to the collection of canvases and it is ow

ned by
the canvas collection.

TSeqCollection* fFiles List of files (TFile)
TSeqCollection* fMappedFiles List of memory mapped
 files (TMappedFiele)
TSeqCollection* fSockets List of network sockets
 (TSocket and TServerSocket)
TSeqCollection* fCanvases List of canvases (TCanvas)
TSeqCollection* fStyles List of styles (TStyle)
TSeqCollection* fFunctions List of analytic functions
 (TF1, TF2, TF3)
TSeqCollection* fTasks List of tasks (TTask)
TSeqCollection* fColors List of colors (TColor)
TSeqCollection* fGeometries List of geometries (?)
TSeqCollection* fBrowsers List of browsers (TBrowser)
TSeqCollection* fSpecials List of special objects
TSeqCollection* fCleanups List of recursiveRemove
 collections

These collections are also displayed
in the root folder of the Object
Browser.
M

ost of these collections are self
explanatory. The special cases are
the collections of specials and
cleanups.

The C
ollection of

Specials
This collection contains objects of the
follow

ing classes: TCut,
TMultiDimFit, TPrincipal,
TChains. In addition it contains the
gHtml object, gMinuit objects, and

 O
bject O

w
nership

D
ecem

ber 2001 - version 3.1d
103

the array of contours graphs (TGraph) created w
hen calling the Draw

m
ethod of a histogram

 w
ith the "CONT, LIST" option.

Access to the C
ollection C

ontents
The current content for the collection listed above can be accessed w

ith the
corresponding gROOT->GetListOf m

ethod (for exam
ple

gROOT->GetListOfCanvases). In addition,
gROOT->GetListOfBrowsables returns a collection of all objects visible
on the left side panel in the brow

ser (see the im
age of the O

bject Brow
ser

above).

O
w

nership by O
ther O

bjects
W

hen an object is created by another, the creating object is the ow
ner of the

one it created. For exam
ple:

myHisto->Fit("gaus")

The call to Fit copies the global TF1 object gaus and
attaches the copy to the histogram. When the histogram is
deleted, the copy of gaus is deleted also.
When a pad is deleted or cleared, all objects in the pad
with the kCanDelete bit set are automatically deleted.
Currently the objects created by the DrawCopy methods,
have the kCanDelete bit set and are therefore owned by
the pad.

O
w

nership by the U
ser

The user ow
ns all objects not described in one of the above cases.

TObject has tw
o bits, kCanDelete and kMustCleanUp, that influence

how
 an object is m

anaged (in TObject::fBits). These are in an
enum

eration in TObject.h. To set these bits do:

MyObject->SetBit(kCanDelete)
MyObject->SetBit(kMustCleanup)

The bits can be reset and tested with the
TObject::ResetBit and TObject::TestBit methods.

The kC
anD

elete B
it

The gROOT collections (see above) ow
n their m

em
bers and w

ill delete them

regardless of the kCanDelete bit. In all other collections, w
hen the collection

Clear m
ethod is called (i.e. TList::Clear()), m

em
bers w

ith the
kCanDelete bit set, are deleted and rem

oved from
 the collection. If the

kCanDelete bit is not set, the object is only rem
oved from

 the collection but
not deleted.

If a collection Delete (TList::Delete()) m
ethod is called, all objects in

the collection are deleted w
ithout considering the kCanDelete bit.

104
D

ecem
ber 2001 - version 3.1d

O
bject O

w
nership

It is im
portant to realize that deleting the collection (i.e. delete

MyCollection), D
O

ES N
O

T delete the m
em

bers of the collection. If the
user specified MyCollection->SetOwner() the collection owns
the objects and delete MyCollection will delete all its
members. O

therw
ise you need to:

// delete all member objects in the collection
MyCollection->Delete();
// and delete the collection object
delete MyCollection;

N
ote that kCanDelete is autom

atically set by the DrawCopy m
ethod and it

can be set for any object by the user.

For exam
ple, all graphics prim

itives m
ust be m

anaged by the user. If you
w

ant TCanvas to delete the prim
itive you created you have to set the

kCanDelete bit.
The kCanDelete bit setting is displayed w

ith TObject::ls(). The last
num

ber is either 1 or 0 and is the kCanDelete bit.

root [] TCanvas MyCanvas("MyCanvas")
root [] MyCanvas.Divide(2,1)
root [] MyCanvas->cd(MyCanvas_1)
root [] hstat.Draw() // hstat is an existing TH1F
root [] MyCanvas->cd(MyCanvas_2)
root [] hstat.DrawCopy() // DrawCopy sets the kCanDelete
bit
(class TH1*)0x88e73f8
root [] MyCanvas.ls()
Canvas Name=MyCanvas �
 TCanvas � Name= MyCanvas �
 TPad � Name= MyCanvas_1 �
 TFrame �
 OBJ: TH1F hstat Event Histogram : 0
 TPaveText � title
 TPaveStats � stats
 TPad � Name= MyCanvas_2 �
 TFrame �
 OBJ: TH1F hstat Event Histogram : 1
 TPaveText � title
 TPaveStats � stats

The kM
ustC

leanup B
it

W
hen the kMustCleanUp bit is set, the object destructor w

ill rem
ove the

object and its references from
 all collections in the clean up collection

(gROOT::fCleanups).
An object can be in several collections, for exam

ple if an object is in a
brow

ser and on tw
o canvases. If the kMustCleanup bit is set, it w

ill
autom

atically be rem
oved from

 the brow
ser and both canvases w

hen the
destructor of the object is called.

kMustCleanUp is set

��
W

hen an object is added to a pad (or canvas) in
TObject::AppendPad.

��
W

hen an object is added to a TBrow
ser w

ith TBrowser::Add.
��

W
hen an object is added to a TFolder with TFolder::Add.

 O
bject O

w
nership

D
ecem

ber 2001 - version 3.1d
105

��
W

hen creating an inspector canvas w
ith

TInspectCanvas::Inspector.
��

W
hen creating a TCanvas.

��
W

hen painting a fram
e for a pad, the fram

e's kMustClean up is set in
TPad::PaintPadFrame

The user can add his own collection to the collection of
clean ups, to take advantage of the automatic garbage
collection.
For example:

// create two list
TList *myList1, *myList2;
// add both to of clean ups
gROOT->GetListOfCleanUps()->Add(myList1);
gROOT->GetListOfCleanUps()->Add(myList2);
// assuming myObject is in myList1 and myList2, when
calling:
delete myObject;
// the object is deleted from both lists

 G
raphics and the G

raphical U
ser Interface

D
ecem

ber 2001 - version 3.1d
107

9 G
raphics and the

G
raphical U

ser Interface

G
raphical capabilities of R

O
O

T range from
 2D

 objects (lines, polygons,
arrow

s) to various plots, histogram
s, and 3D

 graphical objects. In this
chapter, w

e are going to focus on principals of graphics and 2D
 objects. Plots

and histogram
s are discussed in a chapter of their ow

n.

D
raw

ing O
bjects

In R
O

O
T, m

ost objects derive from
 a base class TObject. This class has a

virtual m
ethod Draw() so all objects are supposed to be able to be "draw

n".

The basic w
hiteboard on w

hich an object is draw
n is called a canvas (defined

by the class TCanvas). If several canvases are defined, there is only one
active at a tim

e. O
ne draw

s an object in the active canvas by using the
statem

ent:

object.Draw()

This instructs the object "object" to draw
 itself. If no canvas is opened, a

default one (nam
ed "c1") is instantiated and draw

n. Thy the follow
ing

com
m

ands:

root [] TLine a (0.1,0.1,0.6,0.6)
root [] a.Draw()
<TCanvas::MakeDefCanvas>: created default TCanvas with name
c1

The first statem
ent defines a line and the second one draw

s it. A default
canvas is draw

n since there w
as no opened one.

Interacting w
ith G

raphical O
bjects

W
hen an object is draw

n, one can interact w
ith it. For exam

ple, the line
draw

n in the previous paragraph m
ay be m

oved or transform
ed. O

ne very
im

portant characteristic of R
O

O
T is that transform

ing an object on the screen
w

ill also transform
 it in m

em
ory. O

ne actually interacts w
ith the real object,

not w
ith a copy of it on the screen. You can try for instance to look at the

starting X coordinate of the line:

108
D

ecem
ber 2001 - version 3.1d

G
raphics and the G

raphical U
ser Interface

root[] a.GetX1()
(double)1.000000000e-1

X1 is the x value of the starting coordinate given in the definition above. N
ow

m

ove it interactively by clicking w
ith the left m

ouse button in the line's m
iddle

and try to do again

root[] a.GetX1()
(Double_t)1.31175468483816005e-01

You do not obtain the sam
e result as before, the coordinates of 'a' have

changed. As said, interacting w
ith an object on the screen changes the object

in m
em

ory.

M
oving, R

esizing and M
odifying O

bjects
C

hanging the graphic objects attributes can be done w
ith the G

U
I or

program
m

atically. First, let's see how
 it is done in the G

U
I.

The Left M
ouse B

utton
As w

as just seen m
oving or resizing an object is done w

ith the left m
ouse

button. The cursor changes its shape to indicate w
hat m

ay be done:

Point the object or one part of it:

R
otate:

R
esize (exists also for the other directions):

Enlarge (used for text):

M
ove:

 H
ere are som

e exam
ples of

M
oving:

R
esizing:

R
otating:

 G
raphics and the G

raphical U
ser Interface

D
ecem

ber 2001 - version 3.1d
109

W
ith C

++ Statem
ents (Program

m
atically)

H
ow

 w
ould one m

ove an object in a script? Since there is a tight
correspondence betw

een w
hat is seen on the screen and the object in

m
em

ory, changing the object changes it on the screen.

For exam
ple, try to do:

root[] a.SetX1(0.9)

This should change one of the coordinates of our line, but nothing happens
on the screen. W

hy is that? In short, the canvas is not updated w
ith each

change for perform
ance reasons. See the sub section on: "U

pdating the Pad"
in the next section.

Selecting O
bjects

The M
iddle M

ouse B
utton

O
bjects in a canvas, as w

ell as in a pad, are stacked on top of each other in
the order they w

ere draw
n. Som

e objects m
ay becom

e "active" objects,
w

hich m
eans they are reordered to be on top of the others. To interactively

m
ake an object "active", you can use the m

iddle m
ouse button. In case of

canvases or pads, the border becom
es highlighted w

hen it is active.

W
ith C

++ Statem
ents (Program

m
atically)

Frequently w
e w

ant to draw
 in different canvases or pads. By default, the

objects are draw
n in the active canvas. To activate a canvas you can use the

"TPad::cd()" m
ethod.

root[] c1->cd()

110
D

ecem
ber 2001 - version 3.1d

G
raphics and the G

raphical U
ser Interface

C
ontext M

enus: the R
ight M

ouse B
utton

The context m
enus are a w

ay to interactively call certain m
ethods of an

object. W
hen designing a class, the program

m
er can add m

ethods to the
context m

enu of the object by m
aking m

inor changes to the header file.

U
sing C

ontext M
enus

O
n a R

O
O

T canvas, you can right-click on any object and see the context
m

enu for it. The script hsimple.C draw
s a histogram

. The im
age below

show

s the context m
enus for som

e of the objects on the canvas.

This picture show

s that draw
ing a sim

ple histogram
 involves as m

any as
seven objects.

W
hen selecting a m

ethod from
 the context m

enu and that m
ethod has

options, the user w
ill be asked for num

erical values or strings to fill in the
option. For exam

ple, TAxis::SetTitle w
ill prom

pt you for a string to use
for the axis title.

Structure of the C
ontext M

enus
The curious reader w

ill have noticed that each entry in the context m
enu

corresponds to a m
ethod of the class.

Look for exam
ple to the m

enu nam
ed TAxis::xaxis. xaxis is the nam

e of
the object and TAxis the nam

e of its class. If w
e look at the list of TAxis

m
ethods, for exam

ple in http://w
w

w
.root.ch/root/htm

l/TAxis.htm
l , w

e see the
m

ethods SetTimeDisplay and UnZoom, w
hich appear also in the context

m
enu.

 G
raphics and the G

raphical U
ser Interface

D
ecem

ber 2001 - version 3.1d
111

There are several divisions in the context m
enu, separated by lines. The top

division is a list of the class m
ethods; the second division is a list of the

parent class m
ethods. The subsequent divisions are the m

ethods of m
ultiple

parent classes in case of m
ultiple inheritance.

For exam
ple, see the TPaveText::title context menu. A TPaveText

inherits from
 TAttLine, w

hich has the m
ethod SetLineAttributes().

A
dding C

ontext M
enus for a C

lass
For a m

ethod to appear in the context m
enu of the object it has to be m

arked
by // *MENU* in the header file. Below

 is the line from
 TAttLine.h that

adds the SetLineAttribute m
ethod to the context m

enu.

 virtual void SetLineAttributes(); // *MENU*

N
othing else is needed, since C

IN
T know

s the classes and their m
ethods. It

takes advantage of that to create the context m
enu on the fly w

hen the object
is clicking on.

If you click on an axis, R
O

O
T w

ill ask the interpreter w
hat are the m

ethods of
the TAxis and w

hich ones are set for being displayed in a context m
enu.

N
ow

, how
 does the interpreter know

 this? R
em

em
ber, w

hen you build a class
that you w

ant to use in the R
O

O
T environm

ent, you use rootcint that
builds the so-called stub functions and the dictionary. These functions and
the dictionary contain the know

ledge of the used classes. To do this,
rootcint parses all the header files.
R

O
O

T has defined som
e special syntax to inform

 C
IN

T of certain things, this
is done in the com

m
ents so that the code still com

piles w
ith a C

++ com
piler.

For exam
ple, you have a class w

ith a Draw() m
ethod, w

hich w
ill display

itself. You w
ould like a context m

enu to appear w
hen on clicks on the im

age
of an object of this class. The recipe is the follow

ing:

1.
The class has to contain the ClassDef/ClassImp m

acros
2.

For each m
ethod you w

ant to appear in the context m
enu, put a

com
m

ent after the declaration containing *MENU* or *TOGGLE*
depending on the behavior you expect. O

ne usually uses Set
m

ethods (setters).

For exam
ple:

class MyClass : public TObject
{ private :
 int fV1; // first variable
 double fV2; // second variable
public :
 int GetV1() {return fV1;}
 double GetV2() {return fV2;}
 void SetV1(int x1) { fV1 = x1;} // *MENU*
 void SetV2(double d2) { fV2 = d2;} // *MENU*
 void SetBoth(int x1, double d2) {fV1 = x1; fV2 = d2;}

 ClassDef (MyClass,1)
}

112
D

ecem
ber 2001 - version 3.1d

G
raphics and the G

raphical U
ser Interface

The *TOGGLE* comment is used to toggle a boolean data field. In that
case, it is safe to call the data field fMyBool w

here MyBool is the nam
e of

the setter SetMyBool. R
eplace MyBool w

ith your ow
n boolean variable.

3.
You can specify argum

ents and the data m
em

bers in w
hich to store

the argum
ents.

For exam
ple:

void SetXXX(Int_t x1, Float_t y2); //*MENU* *ARGS={x1=>fV1}

This statem
ent is in the com

m
ent field, after the *MENU*. If there is m

ore
than one argum

ent, these argum
ents are separated by com

m
as, w

here fX1
and fY2 are data fields in the sam

e class.

void SetXXX(Int_t x1, Float_t y2); //*MENU* *ARGS={x1=>fX1,y2=>fY2}

If the argum
ents statem

ent is present, the option dialog displayed w
hen

selecting SetXXXfield w
ill show

 the values of variables. W
e indicate to the

system
 w

hich argum
ent corresponds to w

hich data m
em

ber of the class.

Executing Events w
hen a C

ursor passes on top of
an O

bject
This paragraph is for class designers. W

hen a class is designed, it is often
desirable to include draw

ing m
ethods for it. W

e w
ill have a m

ore extensive
discussion about this, but draw

ing an object in a canvas or a pad consists in
"attaching" the object to that pad. W

hen one uses object.Draw(), the
object is N

O
T painted at this m

om
ent. It is only attached to the active pad or

canvas.

Another m
ethod should be provided for the object to be painted, the

Paint() m
ethod. This is all explained in the next paragraph.

As w
ell as Draw() and Paint(), other m

ethods m
ay be provided by the

designer of the class. W
hen the m

ouse is m
oved or a button

pressed/released, the TCanvas function nam
ed HandleInput() scans the

list of objects in all it's pads and for each object calls som
e standard m

ethods
to m

ake the object react to the event (m
ouse m

ovem
ent, click or w

hatever).

The second one is DistanceToPrimitive(px,py). This function
com

putes a "distance" to an object from
 the m

ouse position at the pixel
position (px,py, see definition at the end of this paragraph) and returns this
distance in pixel units. The selected object w

ill be the one w
ith the shortest

com
puted distance. To see how

 this w
orks, select the "Event Status" item

in the canvas "Options" m

enu. R
O

O
T w

ill display one status line show
ing

the picked object. If the picked object is, for exam
ple, a histogram

, the status
line indicates the nam

e of the histogram
, the position x,y in histogram

coordinates, the channel num

ber and the channel content.

It's nice for the canvas to know
 w

hat is the closest object from
 the m

ouse, but
it's even nicer to be able to m

ake this object react. The third standard m
ethod

to be provided is ExecuteEvent(). This m
ethod actually does the event

reaction.

Its prototype is w
here px and py are the coordinates at w

hich the event
occurred, except if the event is a key press, in w

hich case px contains the
key code.

 G
raphics and the G

raphical U
ser Interface

D
ecem

ber 2001 - version 3.1d
113

void ExecuteEvent(Int_t event, Int_t px, Int_t py);

Where event is the event that occurs and is one of the follow
ing (defined in

Buttons.h):

kNoEvent, kButton1Down, kButton2Down, kButton3Down,
kButton1Up, kButton2Up, kButton3Up, kButton1Motion,
kButton2Motion, kButton3Motion, kButton1Locate,
kButton2Locate, kButton3Locate, kButton1Double,
kButton2Double, kButton3Double, kKeyDown, kKeyUp,
kKeyPress, kMouseMotion, kMouseEnter, kMouseLeave.

W
e hope the nam

es are self-explanatory.

D
esigning an ExecuteEvent m

ethod is not very easy, except if one w
ants

very basic treatm
ent. W

e w
ill not go into that and let the reader refer to the

sources of classes like TLine or TBox. G
o and look at their ExecuteEvent

m
ethod!

W
e can nevertheless give som

e reference to the various actions that m
ay be

perform
ed. For exam

ple, one often w
ants to change the shape of the cursor

w
hen passing on top of an object. This is done w

ith the SetCursor m
ethod:

gPad->SetCursor(cursor)

The argum
ent cursor is the type of cursor. It m

ay be:

kBottomLeft, kBottomRight, kTopLeft, kTopRight,
kBottomSide, kLeftSide, kTopSide, kRightSide, kMove,
kCross, kArrowHor, kArrowVer, kHand, kRotate, kPointer,
kArrowRight, kCaret, kWatch.

They are defined in TVirtualX.h and again w
e hope the nam

es are self-
explanatory. If not, try them

 by designing a sm
all class. It m

ay derive from

som
ething already know

n like TLine.
N

ote that the ExecuteEvent() functions m
ay in turn; invoke such functions

for other objects, in case an object is draw
n using other objects. You can also

exploit at best the virtues of inheritance. See for exam
ple how

 the class
TArrow (derived from

 TLine) use or redefine the picking functions in its
base class.

The last com
m

ent is that m
ouse position is alw

ays given in pixel units in all
these standard functions. px=0 and py=0 corresponds to the top-left corner
of the canvas. H

ere, w
e have follow

ed the standard convention in w
indow

ing
system

s. N
ote that user coordinates in a canvas (pad) have the origin at the

bottom
-left corner of the canvas (pad). This is all explained in the paragraph

"C
oordinate system

 of a pad".

114
D

ecem
ber 2001 - version 3.1d

G
raphics and the G

raphical U
ser Interface

G
raphical C

ontainers: C
anvas and Pad

W
e have talked a lot about canvases, w

hich m
ay be seen as w

indow
s. M

ore
generally, a graphical entity that contains graphical objects is called a Pad. A
C

anvas is a special kind of Pad. From
 now

 on, w
hen w

e say som
ething about

pads, this also applies to canvases.

A pad (class TPad) is a graphical container in the sense it contains other
graphical objects like histogram

s and arrow
s. It m

ay contain other pads (sub-
pads) as w

ell. M
ore technically, each pad has a linked list of pointers to the

objects it holds.

D
raw

ing an object is nothing m
ore than adding its pointer to this list. Look for

exam
ple at the code of TH1::Draw(). It is m

erely ten lines of code. The last
statem

ent is AppendPad(). This statem
ent calls a m

ethod of TObject that
just adds the pointer of the object, here a histogram

, to the list of objects
attached to the current pad. Since this is a TObjects m

ethod, every object
m

ay be "draw
n", w

hich m
eans attached to a pad.

W
e can illustrate this by the follow

ing figure.
 The im

age correspond to this structure:

Pad1
A

rrow

T
ext

Subpad
H

istogram

Label

Polyline

 G
raphics and the G

raphical U
ser Interface

D
ecem

ber 2001 - version 3.1d
115

W
hen is the painting done then? The answ

er is: w
hen needed. Every object

that derives from
 TObject has a Paint() m

ethod. It m
ay be em

pty, but for
graphical objects, this routine contains all the instructions to effectively paint it
in the active pad. Since a Pad has the list of objects it ow

ns, it w
ill call

successively the Paint() m
ethod of each object, thus re-painting the w

hole
pad on the screen. If the object is a sub-pad, its Paint() m

ethod w
ill call the

Paint() m
ethod of the objects attached, recursively calling Paint() for all

the objects.

The G
lobal Pad: gPad

W

hen an object is draw
n, it is alw

ays in the so-called active pad. For every
day use, it is com

fortable to be able to access the active pad, w
hatever it is.

For that purpose, there is a global pointer, called gPad. It is alw
ays pointing

to the active pad. If you w
ant to change the fill color of the active pad to blue

but you don't know
 its nam

e, do this.

root[] gPad->SetFillColor(38)
To get the list of colors, go to the paragraph "C

olor and color palettes" or if
you have an opened canvas, click on the View m

enu, selecting the Colors
item

.

Finding an O
bject in a Pad

N
ow

 that w
e have a pointer to the active pad, gPad and that w

e know
 this

pad contains som
e objects, it is som

etim
es interesting to access one of those

objects. The m
ethod GetPrimitive() of TPad, i.e.

TPad::GetPrimitive(const char* name) does exactly this. Since
m

ost of the objects that a pad contains derive from
 TObject, they have a

nam
e. The follow

ing statem
ent w

ill return a pointer to the object
myobjectname and put that pointer into the variable obj. As you see, the
type of returned pointer is (TObject*).

root[] obj = gPad->GetPrimitive("myobjectname")
(class TObject*)0x1063cba8

Even if your object is som
ething m

ore com
plicated, like a histogram

 TH1F,
this is norm

al. A function cannot return m
ore than one type. So the one

chosen w
as the low

est com
m

on denom
inator to all possible classes, the

class from
 w

hich everything derives, TObject.
H

ow
 do w

e get the right pointer then?

Sim
ply do a cast of the function output that is transform

ing this output
(pointer) into the right type. For exam

ple if the object is a TPaveLabel:

root[] obj = (TPaveLabel*)(gPad->GetPrimitive("myobjectname"))
(class TPaveLabel*)0x1063cba8

This w
orks for all objects deriving from

 TObject. H
ow

ever, a question
rem

ains. An object has a nam
e if it derives from

 TNamed, not from
 TObject.

For exam
ple, an arrow

 (TArrow) doesn't have a nam
e. In that case, the

"nam
e" is the nam

e of the class. To know
 the nam

e of an object, just click
w

ith the right button on it. The nam
e appears at the top of the context m

enu.

In case of m
ultiple unnam

ed objects, a call to
GetPrimitve("className") returns the instance of the class that w

as
first created. To retrieve a later instance you can use

116
D

ecem
ber 2001 - version 3.1d

G
raphics and the G

raphical U
ser Interface

GetListOfPrimitives(), w
hich returns a list of all the objects on the

pad,. From
 the list you can select the object you need.

H
iding an O

bject
H

iding an object in a pad can be m
ade by rem

oving it from
 the list of objects

ow
ned by that pad. This list is accessible by the GetListOfPrimitives()

m
ethod of TPad. This m

ethod returns a pointer to a TList. Suppose w
e get

the pointer to the object, w
e w

ant to hide, call it obj (see paragraph above).
W

e get the pointer to the list:

root[] li = gPad->GetListOfPrimitives()
Then rem

ove the object from
 this list:

root[] li->Remove(obj)

The object w
ill disappear from

 the pad as soon as the pad is updated (try to
resize it for exam

ple).

If one w
ants to m

ake the object reappear:

root[] obj->Draw()
C

aution, this w
ill not w

ork w
ith com

posed objects, for exam
ple m

any
histogram

s draw
n on the sam

e plot (w
ith the option "sam

e"). There are other
w

ays! Try to use the m
ethod described here for sim

ple objects.

The C
oordinate System

s of a Pad
Three coordinate system

s m
ay be used in a TPad: pixel coordinates,

norm
alized coordinates (N

D
C

), and user coordinates.

N
D

C
 coordinates

(0,0)

(0,1)

(1,0)

U
ser coordinates

(0,0)

Pixel coordinates

(0,0)

The U
ser C

oordinate System

The m
ost com

m
on is the user coordinate system

. M
ost m

ethods of TPad use
the user coordinates, and all graphic prim

itives have their param
eters defined

in term
s of user coordinates. By default, w

hen an em
pty pad is draw

n, the
user coordinates are set to a range from

 0 to 1 starting at the low
er left

corner. At this point they are equivalent of the N
D

C
 coordinates (see below

).
If you draw

 a high level graphical object, such as a histogram
 or a function,

the user coordinates are set to the coordinates of the histogram
. Therefore,

w
hen you set a point it w

ill be in the histogram
 coordinates

 G
raphics and the G

raphical U
ser Interface

D
ecem

ber 2001 - version 3.1d
117

For a new
ly created blank pad, one m

ay use TPad::Range to set the user
coordinate system

. This function is defined as:

void Range(float x1, float y1, float x2, float y2)

The argum
ents x1, x2 defines the new

 range in the x direction, and the
y1, y2 define the new

 range in the y-direction.

root[] TCanvas MyCanvas ("MyCanvas")
root[] gPad->Range(-100, -100, 100, 100)

This w
ill set the active pad to have both coordinates to go from

 -100 to 100,
w

ith the center of the pad at (0,0). You can visually check the coordinates by
view

ing the status bar in the canvas. To display the status bar select
O

ptions:Event Status in the canvas m
enu.

The N
orm

alized C
oordinate System

 (N
D

C
)

N
orm

alized coordinates are independent of the w
indow

 size and of the user
system

. The coordinates range from
 0 to 1 and (0,0) correspond to the

bottom
-left corner of the pad. Several internal R

O
O

T functions use the N
D

C

system
 (3D

 prim
itives, PostScript, log scale m

apping to linear scale). You
m

ay w
ant to use this system

 if the user coordinates are not know
n ahead of

tim
e.

The Pixel C
oordinate System

The least com

m
on is the pixel coordinate system

, used by functions such as
DistanceToPrimitive() and ExecuteEvent(). Its prim

ary use is for
cursor position, w

hich is alw
ays given in pixel coordinates. If (px,py) is the

cursor position, px=0 and py=0 corresponds to the top-left corner of the pad,
w

hich is the standard convention in w
indow

ing system
s.

U
sing N

D
C

 for a particular O
bject

M
ost of the tim

e, you w
ill be using the user coordinate system

. But
som

etim
es, you w

ill w
ant to use N

D
C

. For exam
ple, if you w

ant to draw
 text

alw
ays at the sam

e place over a histogram
, no m

atter w
hat the histogram

coordinates are. There are tw

o w
ays to do this. You can set the N

D
C

 for one
object or m

ay convert N
D

C
 to user coordinates. M

ost graphical objects offer
an option to be draw

n in N
D

C
. For instance, a line (TLine) m

ay be draw
n in

N
D

C
 by using DrawLineNDC(). A latex form

ula or a text m
ay use

TText::SetNDC() to be draw
n in N

D
C

 coordinates.

118
D

ecem
ber 2001 - version 3.1d

G
raphics and the G

raphical U
ser Interface

C
onverting betw

een C
oordinates System

s
There are a few

 utility functions in TPad to convert from
 one system

 of
coordinates to another. In the follow

ing table, a point is defined by (px,py)
in pixel coordinates; (ux,uy) in user coordinates, (ndcx,ndcy) in N

D
C

coordinates.
 C

onversion
M

ethods of TPad
R

eturns

P
i
x
e
l

t
o

U
s
e
r

PixeltoX(px)
PixeltoY(py)
PixeltoXY(px,py, &ux, &uy)

double
double
changes

ux,uy

N
D
C

t
o

P
i
x
e
l

UtoPixel(ndcx)
VtoPixel(ndcy)

int
int

U
s
e
r

t
o

P
i
x
e
l

XtoPixel(ux)
YtoPixel(uy)
XYtoPixel(ux,uy,&px,&py)

int
int
changes px,py

D
ividing a Pad into Sub-pads

D
ividing a pad into sub pads in order for instance to draw

 a few
 histogram

s,
m

ay be done in tw
o w

ays. The first is to build pad objects and to draw
 them

into a parent pad, w

hich m
ay be a canvas. The second is to autom

atically
divide a pad into horizontal and vertical sub pads.

C
reating a Single Sub-pad

The sim
plest w

ay to divide a pad is to build sub-pads in it. H
ow

ever, this
forces the user to explicitly indicate the size and position of those sub-pads.
Suppose w

e w
ant to build a sub-pad in the active pad (pointed by gPad).

First, w
e build it, using a TPad constructor:

root[] subpad1 = new TPad("subpad1","The first
subpad",.1,.1,.5,.5)

O
ne gives the coordinates of the low

er left point (0.1,0.1) and of the upper
right one (0.5,0.5). These coordinates are in N

D
C

. This m
eans that they are

independent of the user coordinates system
, in particular if you have already

draw
n for exam

ple a histogram
 in the m

other pad.

The only thing left is to draw
 the pad:

root[] subpad1->Draw()

If you w
ant m

ore sub-pads, you have to repeat this procedure as m
any tim

es
as necessary.

 G
raphics and the G

raphical U
ser Interface

D
ecem

ber 2001 - version 3.1d
119

D
ividing a C

anvas into Sub-Pads
The m

anual w
ay of dividing a pad into sub-pads is som

etim
es very tedious.

There is a w
ay to autom

atically generate horizontal and vertical sub-pads
inside a given pad.

root[] pad1->Divide(3,2)
If pad1 is a pad then, it w

ill divide the pad into 3 colum
ns of 2 sub-pads:

 The generated sub-pads get nam
es pad1_i w

here i is 1 to nxm
. In our

case pad1_1, pad1_2... pad1_6:
 The nam

es pad1_1 etc�
 correspond to new

 variables in C
IN

T, so you m
ay

use them
 as soon as the pad->Divide() w

as executed. H
ow

ever, in a
com

piled program
, one has to access these objects. R

em
em

ber that a pad
contains other objects and that these objects m

ay, them
selves be pads. So

w
e can use the GetPrimitive() m

ethod of TPad:

TPad* pad1_1 = (TPad*)(pad1->GetPrimitive("pad1_1"))

O
ne question rem

ains. In case one does an autom
atic divide, how

 can one
set the default m

argins betw
een pads? This is done by adding tw

o
param

eters to Divide(), w
hich are the m

argins in x and y:

root[] pad1->Divide(3,2,0.1,0.1)
The m

argins are here set to 10%
 of the parent pad w

idth.

120
D

ecem
ber 2001 - version 3.1d

G
raphics and the G

raphical U
ser Interface

U
pdating the Pad

For perform
ance reasons, a pad is not updated w

ith every change. For
exam

ple, changing the coordinates of the pad does not autom
atically redraw

it. Instead, the pad has a "bit-m

odified" that triggers a redraw
. This bit is

autom
atically set by:

1.
Touching the pad w

ith the m
ouse. For exam

ple resizing it w
ith the

m
ouse.

2.
Finishing the execution of a script.

3.
Adding a new

 prim
itive or m

odifying som
e prim

itives for exam
ple the

nam
e and title of an object.

You can also set the "bit-m
odified" explicitly w

ith the Modified m
ethod:

// this pad has changed
root[] pad1->Modified()
// recursively update all modified pads:
root[] c1->Update()

A subsequent call to TCanvas->Update()scans the list of sub-pads and
repaints the pads declared m

odified.

In com
piled code or in a long m

acro, you m
ay w

ant to access an object
created during the paint process. To do so you can force the painting w

ith a
TCanvas::Update(). For exam

ple a TGraph creates a histogram
 (TH1) to

paint itself. In this case the internal histogram
 obtained w

ith
TGraph::GetHistogram() is created only after the pad is painted. The
pad is painted autom

atically after the script is finished executing or if you
force the painting w

ith TPad::Modified follow
ed by a TCanvas::Update.

N
ote that it is not necessary to call TPad::Modified after a call to Draw().

The "bit-m
odified" is set autom

atically by Draw().
A note about the "bit-m

odified" in sub pads: w
hen you w

ant to update a sub
pad in your canvas, you need to call pad->Modified rather than canvas-
>Modified, and follow

 it w
ith a canvas->Update. If you use canvas-

>Modified, follow
ed by a call to canvas->Update, the sub pad has not

been declared m
odified and it w

ill not be updated.

Also note that a call to pad->Update w
here pad is a sub pad of canvas,

calls canvas->U
pdate and recursively updates all the pads on the canvas.

M
aking a Pad Transparent

As w
e w

ill see in the paragraph "Fill attributes", a fill style (type of hatching)
m

ay be set for a pad.

root[] pad1->SetFillStyle(istyle)
This is done w

ith the SetFillStyle m
ethod w

here istyle is a style
num

ber, defined in "Fill attributes".

A special set of styles allow
s handling of various levels of transparency.

These are styles num
ber 4000 to 4100, 4000 being fully transparent and

4100 fully opaque.

So, suppose you have an existing canvas w
ith several pads. You create a

new
 pad (transparent) covering for exam

ple the entire canvas. Then you
draw

 your prim
itives in this pad.

The sam
e can be achieved w

ith the graphics editor.

 G
raphics and the G

raphical U
ser Interface

D
ecem

ber 2001 - version 3.1d
121

For exam
ple:

root [] .x tutorials/h1draw.C
root [] TPad *newpad=new TPad("newpad","a transparent
pad,0,0,1,1);
root [] newpad.SetFillStyle(4000);
root [] newpad.Draw();
root [] newpad.cd();
root [] // create some primitives, etc

Setting the Log Scale is a Pad Attribute
Setting the scale to logarithm

ic or linear is an attribute of the pad, not the axis
or the histogram

. The scale is an attribute of the pad because you m
ay w

ant
to draw

 the sam
e histogram

 in linear scale in one pad and in log scale in
another pad. Frequently, w

e see several histogram
s on top of each other in

the sam
e pad. It w

ould be very inconvenient to set the scale attribute for each
histogram

 in a pad. Furtherm
ore, if the logic w

ere in the histogram
 class (or

each object), one w
ould have to test for the scale setting in each the Paint

m
ethods of all objects.

If you have a pad w
ith a histogram

, a right-click on the pad, outside of the
histogram

s fram
e w

ill convince you. The SetLogx(), SetLogy() and
SetLogz() m

ethods are there. As you see, TPad defines log scale for the
tw

o directions x and y plus z if you w
ant to draw

 a 3D
 representation of som

e
function or histogram

.

The w
ay to set log scale in the x direction for the active pad is:

root [] gPad->SetLogx(1)

To reset log in the z direction:

root [] gPad->SetLogz(0)
If you have a divided pad, you need to set the scale on each of the sub-pads.
Setting it on the containing pad does not autom

atically propagate to the sub-
pads. H

ere is an exam
ple of how

 to set the log scale for the x-axis on a
canvas w

ith four sub-pads:

root [] TCanvas MyCanvas("MyCanvas", "My Canvas")
root [] MyCanvas->Divide(2,2)
root [] MyCanvas->cd(1)
root [] gPad->SetLogx()
root [] MyCanvas->cd(2)
root [] gPad->SetLogx()
root [] MyCanvas->cd(3)
root [] gPad->SetLogx()

G
raphical O

bjects
In this paragraph, w

e describe the various sim
ple 2D

 graphical objects
defined in R

O
O

T. U
sually, one defines these objects w

ith their constructor
and draw

s them
 w

ith their Draw() m
ethod. Therefore, the exam

ples w
ill be

very brief. M
ost graphical objects have line and fill attributes (color, w

idth)
that w

ill be described in �G
raphical objects attributes�.

122
D

ecem
ber 2001 - version 3.1d

G
raphics and the G

raphical U
ser Interface

If the user w
ants m

ore inform
ation, the class nam

es are given and he m
ay

refer to the online developer docum
entation. This is especially true for

functions and m
ethods that set and get internal values of the objects

described here.

By default 2D
 graphical objects are created in U

ser C
oordinates w

ith 0,0 in
the low

er left corner.

Lines, Arrow
s, and G

eom
etrical O

bjects

Line: C
lass TLine

The sim
plest graphical object is a line. It is im

plem
ented in the TLine class.

The constructor is:

TLine(Double_t x1, Double_t y1, Double_t x2, Double_t y2)

The argum
ents x1, y1, x2, y2 are the coordinates of the first and

second point.

This constructor m
ay be used as in:

root [] l = new TLine(0.2,0.2,0.8,0.3)
root [] l->Draw()

A
rrow

s: C
lass TArrow

D
ifferent arrow

 form
ats as show

 in the picture below
 are available.

 O
nce an arrow

 is draw
n on the screen, one can:

��
click on one of the edges and m

ove this edge.
��

click on any other arrow
 part to m

ove the entire arrow
.

The constructor is:

TArrow(Double_t x1, Double_t y1,Double_t x2, Double_t y2,
Float_t arrowsize, Option_t *option)

It defines an arrow
 betw

een points x1,y1 and x2,y2. The arrow
 size is in

percentage of the pad height.

 G
raphics and the G

raphical U
ser Interface

D
ecem

ber 2001 - version 3.1d
123

The options are the follow
ing:

option = ">"

option = "<"

option = "|>"

option = "<|"

option = "<>"

option = "<|>"

 If FillColor == 0, draw
 open triangle else draw

 full triangle w
ith fill color.

If ar is an arrow
 object, fill color is set w

ith:

ar.SetFillColor(icolor);

W
here icolor is the color defined in �C

olor and color palettes�.

 The opening angle betw
een the tw

o sides of the arrow
 is 60 degrees. It can

be changed w
ith ar�>SetAngle(angle), w

here angle is expressed in
degrees.

Poly-line: C
lass TPolyLine

A poly-line is a set of joint segm
ents. It is defined by a set of N

 points in a 2D

space. Its constructor is:

TPolyLine(Int_t n, Double_t* x, Double_t* y, Option_t*
option) W

here n is the num
ber of points, and x and y are arrays of n elem

ents w
ith

the coordinates of the points.

TPolyLine can be used by it self, but is also a base class for other objects,
such as curly arcs.

C
ircles, Ellipses: C

lass TEllipse
Ellipse is a general ellipse that can be truncated and rotated. An ellipse is
defined by its center (x1,y1) and tw

o radii r1 and r2. A m
inim

um
 and

m
axim

um
 angle m

ay be specified (phimin, phimax). The picture below

illustrates different types of ellipses:

124
D

ecem
ber 2001 - version 3.1d

G
raphics and the G

raphical U
ser Interface

The Ellipse m
ay be rotated w

ith an angle theta.

The attributes of the outline line and of the fill area are described in
�G

raphical objects attributes�

The constructor of a TEllipse object is:

TEllipse(Double_t x1, Double_t y1,Double_t r1,Double_t
r2,Double_t phimin, Double_t phimax, Double_t theta)

An ellipse m
ay be created w

ith a statem
ent like:

root [] e = new TEllipse(0.2,0.2,0.8,0.3)
root [] e->Draw()

R
ectangles: C

lasses TBox and TWbox
A rectangle is defined by the class TBox since it is a base class for m

any
different higher-level graphical prim

itives.

A box is defined by its bottom
 left coordinates x1, y1 and its top right

coordinates x2, y2.
The constructor being:

TBox(Double_t x1, Double_t y1, Double_t x2, Double_t y2)

It m
ay be used as in:

root [] b = new TBox(0.2,0.2,0.8,0.3)
root [] b->Draw()

A TWbox is a rectangle (TBox) w
ith a border size and a border m

ode:

The attributes of the outline line and of the fill area are described in
�G

raphical O
bjects Attributes�

 G
raphics and the G

raphical U
ser Interface

D
ecem

ber 2001 - version 3.1d
125

O
ne Point, or M

arker: C
lass TMarker

A m
arker is a point w

ith a fancy shape! The possible m
arkers are the

follow
ing:

O

ne m
arker is build via the constructor:

TMarker(Double_t x, Double_t y, Int_t marker)

The param
eters x and y are the coordinates of the m

arker and marker is the
type, show

n above.

Suppose ma is a valid m
arker. O

ne can set the size of the m
arker w

ith
 ma->SetMarkerSize(size), w

here size is the desired size. The
available sizes are:

Sizes sm

aller than 1 m
ay be specified.

Set of Points: C
lass TPolyMarker

A TPolyMaker is defined by an array on N
 points in a 2-D

 space. At each
point x[i], y[i] a m

arker is draw
n. The list of m

arker types is show
n in

the previous paragraph.

The m
arker attributes are m

anaged by the class TAttMarker and are
described in �G

raphical objects attributes�

The constructor for a TPolyMarker is:

TPolyMarker(Int_t n, Double_t *x, Double_t *y, Option_t
*option)

W
here x and y are arrays of coordinates for the n points that form

 the poly-
m

arker.

C
urly and W

avy Lines for Feynm
an D

iagram
s

This is a peculiarity of particle physics, but w
e do need som

etim
es to draw

Feynm

an diagram
s. O

ur friends w
orking in banking can skip this part.

A set of classes im
plem

ents curly or w
avy poly-lines typically used to draw

Feynm

an diagram
s. Am

plitudes and w
avelengths m

ay be specified in the

126
D

ecem
ber 2001 - version 3.1d

G
raphics and the G

raphical U
ser Interface

constructors, via com
m

ands or interactively from
 context m

enus. These
classes are TCurlyLine and TCurlyArc.
These classes m

ake use of TPolyLine by inheritance; ExecuteEvent
m

ethods are highly inspired from
 the m

ethods used in TPolyLine and
TArc.
 The picture below

 has been generated by the tutorial feynman.C:

The constructors are:

TCurlyLine(Double_t x1, Double_t y1, Double_t x2, Double_t
y2, Double_t wavelength, Double_t amplitude)

W
ith the starting point (x1, y1), end point (x2, y2). The w

avelength and
am

plitude are given in percent of the pad height

For TCurlyArc, the constructor is:

TCurlyArc(Double_t x1, Double_t y1, Double_t rad, Double_t
phimin, Double_t phimax, Double_t wavelength, Double_t
amplitude)

The center is (x1, y1) and the radius rad. The w
avelength and am

plitude
are given in percent of the line length, phimin and phimax, w

hich are the
starting and ending angle of the arc, are given in degrees.

R
efer to $ROOTSYS/tutorials/feynman.C for the script that built the

picture above.

Text and Latex M
athem

atical Expressions
Text displayed in a pad m

ay be em
bedded into boxes, called paves (such as

PaveLabels), or titles of graphs or m
any other objects but it can live a life of

its ow
n. All text displayed in R

O
O

T graphics is an object of class TText. For
a physicist, it w

ill be m
ost of the tim

e a TLatex expression (w
hich derives

from
 TText).

TLatex has been conceived to draw
 m

athem
atical form

ulae or equations. Its
syntax is very sim

ilar to the Latex one in m
athem

atical m
ode .

Subscripts and Superscripts
Subscripts and superscripts are m

ade w
ith the _ and ^ com

m
ands. These

com
m

ands can be com
bined to m

ake com
plicated subscript and superscript

expressions. You m
ay choose how

 to display subscripts and superscripts
using the 2 functions SetIndiceSize(Double_t) and
SetLimitIndiceSize(Int_t).

 G
raphics and the G

raphical U
ser Interface

D
ecem

ber 2001 - version 3.1d
127

Exam
ples of w

hat can be obtained using subscripts and superscripts:

The expression
G

ives
The expression

G
ives

The expression
G

ives

x^{2y}
y

x
2

x^{y^{2}}

2
y

x

x^{y}_{1}
y

x
1

x_{2y}
y

x
2

x^{y_{1}}

1 y
x

x_{1}^{y}

y
x

1

Fractions
Fractions denoted by the / sym

bol are m
ade in the obvious w

ay. The #frac
com

m
and is used for large fractions in displayed form

ula; it has tw
o

argum
ents: the num

erator and the denom
inator. For exam

ple, this equation is
obtained by follow

ing expression.

1 2/
2
�

�
�

y
z

y
x

x=#frac{y+z/2}{y^{2}+1}

R
oots

The #sqrt com
m

and produces the square R
O

O
T of its argum

ent; it has an
optional first argum

ent for other roots.

Exam
ple: #sqrt{10} #sqrt[3]{10}

D
elim

iters
You can produce three kinds of proportional delim

iters.

#[]{....} or "a la" Latex
#left[.....#right]: big square

brackets

#{}{....} or #left{.....#right}: big curly brackets
#||{....} or #left|.....#right|: big absolute value sym

bol

#(){....} or #left(.....#right): big parenthesis

G
reek Letters

The com
m

and to produce a low
ercase G

reek letter is obtained by adding a #
to the nam

e of the letter. For an uppercase G
reek letter, just capitalize the

first letter of the com
m

and nam
e.

#alpha #beta #gamma #delta #epsilon #zeta #eta #theta #iota
#kappa #lambda #mu #nu #xi #omicron #pi #varpi #rho #sigma
#tau #upsilon #phi #varphi #chi #psi #omega #Gamma #Delta
#Theta #Lambda #Xi #Pi #Sigma #Upsilon #Phi #Psi #Omega

C
hanging Style in M

ath M
ode

You can change the font and the text color at any m
om

ent using:
#font[font-number]{...} and #color[color-number]{...}

128
D

ecem
ber 2001 - version 3.1d

G
raphics and the G

raphical U
ser Interface

M
athem

atical Sym
bols

TLatex can m
ake m

athem
atical and other sym

bols. A few
 of them

, such as
+ and >, are produced by typing the corresponding keyboard character.
O

thers are obtained w
ith the com

m
ands in the follow

ing table.

A
ccents, A

rrow
s and B

ars
Sym

bols in a form
ula are som

etim
es placed one above another. TLatex

provides special com
m

ands for doing this.

#hat{a}
= hat

#check
= inverted hat

#acute
= acute

#grave
= accent grave

#dot
= derivative

#ddot
= double derivative

a

Is obtained w
ith #bar{a}

a �
Is obtained w

ith #vec{a}

 G
raphics and the G

raphical U
ser Interface

D
ecem

ber 2001 - version 3.1d
129

Exam
ple 1

The follow
ing script ($ROOTSYS/tutorials/latex.C)

{ gROOT->Reset();
 TCanvas c1("c1","Latex",600,700);
 TLatex l;
 l.SetTextAlign(12);
 l.SetTextSize(0.04);
 l.DrawLatex(0.1,0.8,"1) C(x) = d #sqrt{#frac{2}{#lambdaD}}
 #int^{x}_{0}cos(#frac{#pi}{2}t^{2})dt");
 l.DrawLatex(0.1,0.6,"2) C(x) = d #sqrt{#frac{2}{#lambdaD}}
 #int^{x}cos(#frac{#pi}{2}t^{2})dt");
 l.DrawLatex(0.1,0.4,"3) R = |A|^{2} =
 #frac{1}{2}(#[]{#frac{1}{2}+C(V)}^{2}+
 #[]{#frac{1}{2}+S(V)}^{2})");
 l.DrawLatex(0.1,0.2,"4) F(t) = #sum_{i=
 -#infty}^{#infty}A(i)cos#[]{#frac{i}{t+i}}");
}

The script m
akes this picture:

130
D

ecem
ber 2001 - version 3.1d

G
raphics and the G

raphical U
ser Interface

Exam
ple 2

The follow
ing script ($ROOTSYS/tutorials/latex2.C):

{ gROOT->Reset();
 TCanvas c1("c1","Latex",600,700);
 TLatex l;
 l.SetTextAlign(23);
 l.SetTextSize(0.1);
 l.DrawLatex(0.5,0.95,"e^{+}e^{-}#rightarrowZ^{0}
 #rightarrowI#bar{I}, q#bar{q}");
 l.DrawLatex(0.5,0.75,"|#vec{a}#bullet#vec{b}|=
 #Sigmaa^{i}_{jk}+b^{bj}_{i}");
 l.DrawLatex(0.5,0.5,"i(#partial_{#mu}#bar{#psi}#gamma^{#mu}
 +m#bar{#psi}=0
 #Leftrightarrow(#Box+m^{2})#psi=0");
 l.DrawLatex(0.5,0.3,"L_{em}=eJ^{#mu}_{em}A_{#mu} ,
 J^{#mu}_{em}=#bar{I}#gamma_{#mu}I
 M^{j}_{i}=#SigmaA_{#alpha}#tau^{#alphaj}_{i}");
}

The result is the follow
ing picture:

 G
raphics and the G

raphical U
ser Interface

D
ecem

ber 2001 - version 3.1d
131

Exam
ple 3

The follow
ing script ($ROOTSYS/tutorials/latex3.C):

{ gROOT->Reset();
 TCanvas c1("c1");
 TPaveText pt(.1,.5,.9,.9);
 pt.AddText("#frac{2s}{#pi#alpha^{2}}
 #frac{d#sigma}{dcos#theta} (e^{+}e^{-}
 #rightarrow f#bar{f}) = ");
 pt.AddText("#left| #frac{1}{1 - #Delta#alpha} #right|^{2}
 (1+cos^{2}#theta");
 pt.AddText("+ 4 Re #left{ #frac{2}{1 - #Delta#alpha} #chi(s)
 #[]{#hat{g}_{#nu}^{e}#hat{g}_{#nu}^{f}
 (1 + cos^{2}#theta) + 2 #hat{g}_{a}^{e}
 #hat{g}_{a}^{f} cos#theta) } #right}");
 pt.SetLabel("Born equation");
 pt.Draw();
}

The result is the follow
ing picture:

132
D

ecem
ber 2001 - version 3.1d

G
raphics and the G

raphical U
ser Interface

 Text in Labels and TPaves
Text displayed in a pad m

ay be em
bedded into boxes, called paves, or m

ay
be draw

n alone. In any case, it is recom
m

ended to use a Latex expression,
w

hich is covered in the previous paragraph. U
sing TLatex is valid w

hether
the text is em

bedded or not. In fact, you w
ill use Latex expressions w

ithout
know

ing it since it is the standard for all the em
bedded text.

A pave is just a box w
ith a border size and a shadow

 option. The options
com

m
on to all types of paves and used w

hen building those objects, are the
follow

ing: O
ption = "T" Top fram

e

O
ption = "B" Bottom

 fram
e

O
ption = "R" R

ight fram
e

O
ption = "L" Left fram

e

O
ption = "NDC" x1,y1,x2,y2 are given in N

D
C

O
ption = "ARC" corners are rounded

W
e w

ill see the practical use of these options in the description of the m
ore

functional objects like TPaveLabels.
There are several categories of paves containing text:

TPaveLabels
TPaveLabels are panels containing one line of text. They are used for
labeling. The constructor is:

TPaveLabel(Double_t x1, Double_t y1,Double_t x2, Double_t
y2, const char *label, Option_t *option)

W
here (x1, y1) are the coordinates of the bottom

 left corner, (x2, y2)
the coordinates of the upper right corner. �label� is the text to be displayed
and �option� is the draw

ing option, described above. By default, the border
size is 5 and the option is �br�.
If one w

ants to set the border size to som
e other value, one m

ay use the
SetBorderSize() m

ethod. For exam
ple, suppose w

e have a histogram
,

w
hich lim

its are (-100, 100) in the x direction and (0,1000) in the y
direction.

The follow
ing lines w

ill draw
 a label in the center of the histogram

, w
ith no

border. If one w
ants the label position to be independent of the histogram

coordinates, or user coordinates, one can use the option �NDC�. See the
paragraph about coordinate system

s for m
ore inform

ation.

root[] pl = new TPaveLabel(-50, 0, 50,200,�Some text�)
root[] pl->SetBorderSize(0)
root[] pl->Draw()

 G
raphics and the G

raphical U
ser Interface

D
ecem

ber 2001 - version 3.1d
133

H
ere are exam

ples of w
hat m

ay be obtained:

TPaveText
A TPaveLabel can contain only one line of text. A TPaveText m

ay contain
several lines. This is the only difference. This picture illustrates and explains
som

e of the points of TPaveText. O
nce a TPaveText is draw

n, a line can
be added or rem

oved by brining up the context m
enu w

ith the m
ouse.

134
D

ecem
ber 2001 - version 3.1d

G
raphics and the G

raphical U
ser Interface

TPavesText
A TPavesText is a stack of text panels (see TPaveText). O

ne can set the
num

ber of stacked panels at building tim
e. The constructor is:

TPavesText(Double_t x1, Double_t y1, Double_t x2, Double_t
y2, Int_t npaves, Option_t* option)

By default, the num
ber of stacked panels is 5 and option = �br�

 Sliders
Sliders m

ay be used for show
ing the evolution of a process or setting the

lim
its of an object�s value interactively. A TSlider object contains a slider

box that can be m
oved or resized.

Slider draw
ing options include the possibility to change the slider starting and

ending positions or only one of them
.

The current slider position can be retrieved via the functions
TSlider::GetMinimum() and TSlider::GetMaximum(). These tw

o
functions return num

bers in the range [0,1].
O

ne m
ay set a C

 expression to be executed w
hen the m

ouse button 1 is
released. This is done w

ith the TSlider::SetMethod() function.
It is also possible to reference an object. If no m

ethod or C
 expression has

been set, and an object is referenced (SetObject has been called), w
hile

the slider is being m
oved/resized, the object ExecuteEvent function is

called.

 G
raphics and the G

raphical U
ser Interface

D
ecem

ber 2001 - version 3.1d
135

Let�s see an exam
ple using SetMethod. The script is called xyslider.C.

You can find this script in $ROOTSYS/tutorials.

{
 // Example of script featuring two sliders
 TFile *f = new TFile("hsimple.root");
 TH2F *hpxpy = (TH2F*)f->Get("hpxpy");
 TCanvas *c1 = new TCanvas("c1");
 TPad *pad = new TPad("pad","lego pad",

 0.1,0.1,0.98,0.98);
 pad->SetFillColor(33);
 pad->Draw();
 pad->cd();
 gStyle->SetFrameFillColor(42);
 hpxpy->SetFillColor(46);
 hpxpy->Draw("lego1");
 c1->cd();

 // Create two sliders in main canvas. When button1
 // of the mouse will be released, action.C will be called
 TSlider *xslider = new TSlider
 ("xslider","x",.1,.02,.98,.08);
 xslider->SetMethod(".x action.C");
 TSlider *yslider = new TSlider
 ("yslider","y",.02,.1,.06,.98);
 yslider->SetMethod(".x action.C");
}

The script that is executed w
hen button 1 is released is the follow

ing (script
action.C):

{
 Int_t nx = hpxpy->GetXaxis()->GetNbins();
 Int_t ny = hpxpy->GetYaxis()->GetNbins();
 Int_t binxmin = nx*xslider->GetMinimum();
 Int_t binxmax = nx*xslider->GetMaximum();
 hpxpy->GetXaxis()->SetRange(binxmin,binxmax);
 Int_t binymin = ny*yslider->GetMinimum();
 Int_t binymax = ny*yslider->GetMaximum();
 hpxpy->GetYaxis()->SetRange(binymin,binymax);
 pad->cd();
 hpxpy->Draw("lego1");
 c1->Update();
}

The canvas and the sliders created in the above script are show
n in the

picture below
.

136
D

ecem
ber 2001 - version 3.1d

G
raphics and the G

raphical U
ser Interface

The second exam

ple uses SetObject (script xyslider.C) . Sam
e

exam
ple as above but using the SetMethod:

Myclass *obj = new Myclass();
// Myclass derived from TObject
xslider->SetObject(obj);
 yslider->SetObject(obj);

W
hen one of the sliders w

ill be changed, Myclass::ExecuteEvent() w
ill

be called w
ith px=0 and py = 0.

Axis
The axis objects are autom

atically built by various high level objects such as
histogram

s or graphs. O
nce build, one m

ay access them
 and change their

characteristics. It is also possible, for som
e particular purposes to build axis

on their ow
n. This m

ay be useful for exam
ple in the case one w

ants to draw

tw
o axis for the sam

e plot, one on the left and one on the right.

For historical reasons, there are tw
o classes representing axis.

TAxis is the axis object, w
hich w

ill be returned w
hen calling the

TH1::GetAxis() m
ethod.

TAxis *axis = histo->GetXaxis()

O
f course, you m

ay do the sam
e for Y and Z-axis.

The graphical representation of an axis is done w
ith the TGaxis class.

Instances of this class are generated by the histogram
 classes and TGraph.

This is internal and the user should not have to see it.

 G
raphics and the G

raphical U
ser Interface

D
ecem

ber 2001 - version 3.1d
137

Axis O
ptions and C

haracteristics
The axis options are m

ost sim
ply set w

ith the styles. The available style
options controlling specific axis options are the follow

ing:

SetAxisColor(Color_t color = 1, Option_t* axis = X)
SetLabelColor(Color_t color = 1, Option_t* axis = X)
SetLabelFont(Style_t font = 62, Option_t* axis = X)
SetLabelOffset(Float_t offset = 0.005, Option_t* axis = X)
SetLabelSize(Float_t size = 0.04, Option_t* axis = X)
SetNdivisions(Int_t n = 510, Option_t* axis = X)
SetTickLength(Float_t length = 0.03, Option_t* axis = X)
SetTitleOffset(Float_t offset = 1, Option_t* axis = X)
SetTitleSize(Float_t size = 0.02, Option_t* axis = X)

 As one can see, the default is alw
ays for X-axis. As an exam

ple, if one w
ants

the label size of all subsequent Y-axis to be 0.07, one m
ay do:

gStyle->SetLabelSize(0.07,"Y");

O
f course, getters corresponding to the described setters are available.

Furtherm
ore, the general options, not specific to axis, as for instance

SetTitleTextColor() are valid and do have an effect on axis
characteristics

Axis Title
The axis title is set, as w

ith all nam
ed objects, by

axis->SetTitle("Whatever title you want");

W
hen the axis is em

bedded into a histogram
 or a graph, one has to first

extract the axis object:

h->GetXaxis()->SetTitle("Whatever title you want")

D
raw

ing Axis independently of G
raphs or

H
istogram

s
An axis m

ay be draw
n independently of a histogram

 or a graph. This m
ay be

useful to draw
 for exam

ple a supplem
entary axis for a graph. In this case,

one has to use the TGaxis class, the graphical representation of an axis.
O

ne m
ay use the standard constructor for this kind of objects:

TGaxis(Double_t xmin, Double_t ymin, Double_t xmax,
Double_t ymax, Double_t wmin, Double_t wmax, Int_t ndiv =
510, Option_t* chopt, Double_t gridlength = 0)

The argum
ents xmin, ymin are the coordinates of the axis' start in the user

coordinates system
, and xmax, ymax are the end coordinates. The

argum
ents wmin and wmax are the m

inim
um

 (at the start) and m
axim

um
 (at

the end) values to be represented on the axis.

138
D

ecem
ber 2001 - version 3.1d

G
raphics and the G

raphical U
ser Interface

ndiv is the num
ber of divisions and should be set to:

ndiv = N1 + 100*N2 + 10000*N3
N1 = num

ber of first divisions.

N2 = num
ber of secondary divisions.

N3 = num
ber of tertiary divisions.

For exam
ple:

ndiv = 0: no tick m
arks.

ndiv = 2: 2 divisions, one tick m
ark in the m

iddle of the axis.

The options, given by the �chopt� string are the follow
ing:

��
chopt = 'G': logarithm

ic scale, default is linear.
��

chopt = 'B': Blank axis. U
seful to superpose the axis.

Instead of the wmin,wmax argum
ents of the norm

al constructor, i.e. the lim
its

of the axis, the nam
e of a TF1 function can be specified. This function w

ill be
used to m

ap the user coordinates to the axis values and ticks. The
constructor is the follow

ing:

TGaxis(Double_t xmin, Double_t ymin, Double_t xmax,
Double_t ymax, const char* funcname, Int_t ndiv = 510,
Option_t* chopt, Double_t gridlength = 0)

In such a w
ay, it is possible to obtain exponential evolution of the tick m

arks
position, or even decreasing. In fact, anything you like.

O
rientation of tick m

arks on axis.
Tick m

arks are norm
ally draw

n on the positive side of the axis, how
ever,

if xmin = xmax, then negative.

��
chopt = '+': tick m

arks are draw
n on Positive side. (D

efault)
��

chopt = '-': tick m
arks are draw

n on the negative side. i.e.: '+-' --
> tick m

arks are draw
n on both sides of the axis.

��
chopt = 'U': U

nlabeled axis, default is labeled.

Label Position
Labels are norm

ally draw
n on side opposite to tick m

arks. H
ow

ever,
chopt = '=': on Equal side

Label O
rientation

Labels are norm
ally draw

n parallel to the axis. H
ow

ever, if xmin =
xmax, then they are draw

n orthogonal, and if ymin = ymax they are
draw

n parallel.

 G
raphics and the G

raphical U
ser Interface

D
ecem

ber 2001 - version 3.1d
139

 Tick M
ark Label Position

Labels are centered on tick m
arks. H

ow
ever, if xmin = xmax, then they are

right adjusted.

��
chopt = 'R': labels are R

ight adjusted on tick m
ark (default is

centered)
��

chopt = 'L': labels are left adjusted on tick m
ark.

��
chopt = 'C': labels are centered on tick m

ark.
��

chopt = 'M': In the M
iddle of the divisions.

Label Form
atting

Blank characters are stripped, and then the label is correctly aligned. The dot,
if last character of the string, is also stripped. In the follow

ing, w
e have som

e
param

eters, like tick m
arks length and characters height (in percentage of the

length of the axis, in user coordinates)

The default values are as follow
s:

��
Prim

ary tick m
arks: 3.0 %

��

Secondary tick m
arks: 1.5 %

��

Third order tick m
arks: .75 %

��

C
haracters height for labels: 4%

��

Labels offset: 1.0 %

O
ptional G

rid
chopt = 'W': cross-W

ire

Axis B
inning O

ptim
ization

By default, the axis binning is optim
ized.

��
chopt = 'N': N

o binning optim
ization

��
chopt = 'I': Integer labeling

Tim
e Form

at
Axis labels m

ay be considered as tim
es, plotted in a defined tim

e form
at. The

form
at is set w

ith SetTimeFormat().
chopt = 't': Plot tim

es w
ith a defined form

at instead of values

The form
at string for date and tim

e use the sam
e options as the one used in

the standard strftime C
 function.

140
D

ecem
ber 2001 - version 3.1d

G
raphics and the G

raphical U
ser Interface

For the date:

��
%a abbreviated w

eekday nam
e

��
%b abbreviated m

onth nam
e

��
%d day of the m

onth (01-31)
��

%m m
onth (01-12)

��
%y year w

ithout century

For the tim
e:

��
 %H

hour (24-hour clock)
��

 %I
hour (12-hour clock)

��
 %p

local equivalent of AM
 or PM

��

 %M
m

inute (00-59)
��

 %S
seconds (00-61)

��
 %%

%

The start tim
e of the axis w

ill be wmin + time offset. This tim
e

offset is the sam
e for all axes, since it is gathered from

 the active
style. O

ne m
ay set the tim

e offset:

gStyle->SetTimeOffset(time)

W
here �time� is the offset tim

e expressed in U
TC

 (U
niversal

C
oordinated Tim

e) and is the num
ber of seconds since a standard

date (1970), adjusted for som
e earth�s rotation drifting. Your

com
puter tim

e is using U
TC

 as a reference.

 G
raphics and the G

raphical U
ser Interface

D
ecem

ber 2001 - version 3.1d
141

Axis Exam
ple 1:

To illustrate all w
hat w

as said before, w
e can show

 tw
o scripts. This exam

ple
creates this picture:
 This script goes along w

ith it::

{ gROOT->Reset();
 c1 = new TCanvas("c1","Examples of Gaxis",10,10,700,500);
 c1->Range(-10,-1,10,1);
 TGaxis *axis1 = new TGaxis(-4.5,-0.2,5.5,-0.2,-6,8,510,"");
 axis1->SetName("axis1");
 axis1->Draw();
 TGaxis *axis2 = new TGaxis(4.5,0.2,5.5,0.2,

 0.001,10000,510,"G");

�
 the script is continued on the next page

142
D

ecem
ber 2001 - version 3.1d

G
raphics and the G

raphical U
ser Interface

 axis2->SetName("axis2");
 axis2->Draw();
 TGaxis *axis3 = new TGaxis(-9,-0.8,-9,0.8,-8,8,50510,"");
 axis3->SetName("axis3");
 axis3->Draw();
 TGaxis *axis4 = new TGaxis(-7,-0.8,7,0.8,1,10000,50510,"G");
 axis4->SetName("axis4");
 axis4->Draw();TGaxis *axis5 = new TGaxis(-4.5,-.6,5.5,-
.6,1.2,1.32,80506,"-+");
 axis5->SetName("axis5");
 axis5->SetLabelSize(0.03);
 axis5->SetTextFont(72);
 axis5->SetLabelOffset(0.025);
 axis5->Draw();
 TGaxis *axis6 = new TGaxis(-4.5,0.6,5.5,0.6,
 100,900,50510,"-");
 axis6->SetName("axis6");
 axis6->Draw();
 TGaxis *axis7 = new TGaxis(8,-0.8,8,0.8,0,9000,50510,"+L");
 axis7->SetName("axis7");
 axis7->SetLabelOffset(0.01);
 axis7->Draw();
 // one can make axis top->bottom. However because of a
// problem, the two x values should not be equal
 TGaxis *axis8 = new TGaxis(6.5,0.8,6.499,-0.8,
 0,90,50510,"-");
 axis8->SetName("axis8");
 axis8->Draw();
}

Axis Exam
ple 2:

The second exam
ple show

s the use of the second form
 of the constructor,

w
ith axis ticks position determ

ined by a function TF1:

 G
raphics and the G

raphical U
ser Interface

D
ecem

ber 2001 - version 3.1d
143

void gaxis3a()
{ gStyle->SetOptStat(0);
 TH2F *h2 = new TH2F("h","Axes",2,0,10,2,-2,2);
 h2->Draw();
 TF1 *f1=new TF1("f1","-x",-10,10);
 TGaxis *A1 = new TGaxis(0,2,10,2,"f1",510,"-");
 A1->SetTitle("axis with decreasing values");
 A1->Draw();
 TF1 *f2=new TF1("f2","exp(x)",0,2);
 TGaxis *A2 = new TGaxis(1,1,9,1,"f2");
 A2->SetTitle("exponential axis");
 A2->SetLabelSize(0.03);
 A2->SetTitleSize(0.03);
 A2->SetTitleOffset(1.2);
 A2->Draw();
 TF1 *f3=new TF1("f3","log10(x)",0,800);
 TGaxis *A3 = new TGaxis(2,-2,2,0,"f3",505);
 A3->SetTitle("logarithmic axis");
 A3->SetLabelSize(0.03);
 A3->SetTitleSize(0.03);
 A3->SetTitleOffset(1.2);
 A3->Draw();
}

G
raphical O

bjects Attributes

Text Attributes
W

hen a class contains text or derives from
 a text class, it needs to be able to

set text attributes like font type, size, and color. To do so, the class inherits
from

 the TAttText class (a secondary inheritance), w
hich defines text

attributes. TLatex and TText inherit from
 TAttText.

Setting Text A
ttributes Interactively

W
hen clicking on an object containing text, one of the last item

s in the
context m

enu is SetTextAttributes. Selecting it m
akes the follow

ing
w

indow
 appear:

144
D

ecem
ber 2001 - version 3.1d

G
raphics and the G

raphical U
ser Interface

This canvas allow
s you to set:

The text alignm
ent

Font
C

olor
Size

Setting Text A
lignm

ent
Text alignm

ent m
ay also be set by a m

ethod call. W
hat is said here applies to

all objects deriving from
 TAttText, and there are m

any. W
e w

ill take an
exam

ple that m
ay be transposed to other types. Suppose "la" is a TLatex

object. The alignm
ent is set w

ith:

root[] la->SetTextAlign(align)
The param

eter align is a short describing the alignm
ent:

align = 10*HorizontalAlign + VerticalAlign
For H

orizontal alignm
ent the follow

ing convention applies:

��
1 = left

��
2 = centered

��
3 = right

For Vertical alignm
ent the follow

ing convention applies:

��
1 = bottom

��

2 = centered
��

3 = top

For exam
ple

Align: 11 = left adjusted and bottom
 adjusted

Align: 32 = right adjusted and vertically centered

Setting Text A
ngle

U
se TAttText::SetTextAngle to set the text angle. The angle is the

degrees of the horizontal.

root[] la->SetTextAngle(angle)

Setting Text C
olor

U
se TAttText::SetTextCoor to set the text color. The color is the color

index. The colors are described in "C
olor and color palettes".

 G
raphics and the G

raphical U
ser Interface

D
ecem

ber 2001 - version 3.1d
145

root[] la->SetTextColor(color)

Setting Text Font
U

se TAttText::SetTextFont to set the font. The param
eter font is the

font code, com
bining the font and precision:

font = 10 * fontID + precision

root[] la->SetTextFont(font)
The table below

 lists the available fonts. The font ID
s m

ust be betw
een 1 and

14.

The precision can be:

��
Precision = 0 fast hardw

are fonts (steps in the size)
��

Precision = 1 scalable and rotate-able hardw
are fonts (see below

)
��

Precision = 2 scalable and rotate-able hardw
are fonts

W
hen precision 0 is used, only the original non-scaled system

 fonts are used.
The fonts have a m

inim
um

 (4) and m
axim

um
 (37) size in pixels. These fonts

are fast and are of good quality. Their size varies w
ith large steps and they

cannot be rotated.

Precision 1 and 2 fonts have a different behavior depending if True Type
Fonts (TTF) are used or not. If TTF are used, you alw

ays get very good
quality scalable and rotate-able fonts. H

ow
ever, TTF are slow

.

Precision 1 and 2 fonts have a different behavior for PostScript in case of
TLatex objects:

��
W

ith precision 1, the PostScript text uses the old convention (see
TPostScript) for som

e special characters to draw
 sub and

superscripts or G
reek text.

��
W

ith precision 2, the "PostScript" special characters are draw
n as such.

To draw
 sub and superscripts it is highly recom

m
ended to use TLatex

objects instead.

For exam
ple: font = 62 is the font w

ith ID
 6 and precision 2

146
D

ecem
ber 2001 - version 3.1d

G
raphics and the G

raphical U
ser Interface

The available fonts are:
Font ID

X

11
True Type nam

e
is italic

"boldness"

1
tim

es-m
edium

-i-norm
al

"Tim
es N

ew
 R

om
an"

Y
es

4

2
tim

es-bold-r-norm
al

"Tim
es N

ew
 R

om
an"

N
o

7

3
tim

es-bold-i-norm
al

"Tim
es N

ew
 R

om
an"

Y
es

7

4
helvetica-m

edium
-r-

norm
al

"A
rial"

N
o

4

5
helvetica-m

edium
-o-

norm
al

"A
rial"

Y
es

4

6
helvetica-bold-r-norm

al
"A

rial"
N

o
7

7
helvetica-bold-o-norm

al
"A

rial"
Y

es
7

8
courier-m

edium
-r-norm

al
"C

ourier N
ew

"
N

o
4

9
courier-m

edium
-o-

norm
al

"C
ourier N

ew
"

Y
es

4

10
courier-bold-r-norm

al
"C

ourier N
ew

"
N

o
7

11
courier-bold-o-norm

al
"C

ourier N
ew

"
Y

es
7

12
sym

bol-m
edium

-r-
norm

al
"Sym

bol"
N

o
6

13
tim

es-m
edium

-r-norm
al

"Tim
es N

ew
 R

om
an"

N
o

4

14

"W
ingdings"

N
o

4

H
ere is an exam

ple of w
hat the fonts look like:

 G
raphics and the G

raphical U
ser Interface

D
ecem

ber 2001 - version 3.1d
147

This script m
akes the im

age of the different fonts:

{ textc = new TCanvas("textc","Example of text",1);
 for (int i=1;i<15;i++) {
 cid = new char[8];
 sprintf(cid,"ID %d :",i);
 cid[7] = 0;

 lid = new TLatex(0.1,1-(double)i/15,cid);
 lid->SetTextFont(62);
 lid->Draw();
 l = new TLatex(.2,1-(double)i/15,

 "The quick brown fox is not here anymore");
 l->SetTextFont(i*10+2);
 l->Draw();
 }
}

H
ow

 to use True Type Fonts
You can activate the True Type Fonts by adding the follow

ing line in your
.rootrc file.

Unix.*.Root.UseTTFonts: true

You can check that you indeed use the TTF in your R
oot session. W

hen the
TTF is active, you get the follow

ing m
essage at the start of a session:

 "Free Type Engine v1.x used to render TrueType fonts."

You can also check w
ith the com

m
and:

gEnv->Print()

Setting Text Size
U

se TAttText::SetTextSize to set the text size.

root[] la->SetTextSize(size)
The size is the text size expressed in percentage of the current pad size.
The text size in pixels w

ill be:

��
If current pad is horizontal, the size in pixels =
textsize * canvas_height

��
If current pad is vertical, the size in pixels =
textsize * canvas_width

148
D

ecem
ber 2001 - version 3.1d

G
raphics and the G

raphical U
ser Interface

Line Attributes
All classes m

anipulating lines have to deal w
ith line attributes. This is done by

using secondary inheritance of the class TAttLine.

Setting Line A
ttributes Interactively

W
hen clicking on an object being a line or having som

e line attributes, one of
the last item

s in the context m
enu is SetLineAttributes. Selecting it

m
akes the follow

ing w
indow

 appear:

This canvas allow

s you to set:

The line color
Style

W
idth

Setting Line C
olor

Line color m
ay be set by a m

ethod call. W
hat is said here applies to all

objects deriving from
 TAttLine, and there are m

any (histogram
s, plots). W

e
w

ill take an exam
ple that m

ay be transposed to other types. Suppose "li" is
a TLine object. The line color is set w

ith:

root[] li->SetLineColor(color)
The argum

ent color is a color num
ber. The colors are described in "C

olor
and C

olor Palettes"

Setting Line Style
Line style m

ay be set by a m
ethod call. W

hat is said here applies to all
objects deriving from

 TAttLine, and there are m
any (histogram

s, plots). W
e

w
ill take an exam

ple that m
ay be transposed to other types. Suppose "li" is

a TLine object. The line style is set w
ith:

root[] li->SetLineStyle(style)

The argum
ent style is one of:

1=solid, 2=dash, 3=dash-dot, 4=dot-dot.

 G
raphics and the G

raphical U
ser Interface

D
ecem

ber 2001 - version 3.1d
149

Setting Line W
idth

Line w
idth m

ay be set by a m
ethod call. W

hat is said here applies to all
objects deriving from

 TAttLine, and there are m
any (histogram

s, plots). W
e

w
ill take an exam

ple that m
ay be transposed to other types. Suppose "li" is

a TLine object. The line w
idth is set w

ith:

root[] li->SetLineWidth(width)
The width is the w

idth expressed in pixel units.

Fill Attributes
Alm

ost all graphics classes have a fill area som
ew

here. These classes have
to deal w

ith fill attributes. This is done by using secondary inheritance of the
class TAttFill.

Setting Fill A
ttributes interactively

W
hen clicking on an object having a fill area, one of the last item

s in the
context m

enu is SetFillAttributes. Selecting it m
akes the follow

ing
w

indow
 appear:

This canvas allow

s you to set :

The fill color
Style

Setting Fill C
olor

Fill color m
ay be set by a m

ethod call. W
hat is said here applies to all objects

deriving from
 TAttFill, and there are m

any (histogram
s, plots). W

e w
ill

take an exam
ple that m

ay be transposed to other types. Suppose "h" is a
TH1F (1 dim

 histogram
) object. The histogram

 fill color is set w
ith:

root[] h->SetFillColor(color)

The color is a color num
ber. The colors are described in "C

olor and color
palettes"

150
D

ecem
ber 2001 - version 3.1d

G
raphics and the G

raphical U
ser Interface

Setting Fill Style
Fill style m

ay be set by a m
ethod call. W

hat is said here applies to all objects
deriving from

 TAttFill, and there are m
any (histogram

s, plots). W
e w

ill
take an exam

ple that m
ay be transposed to other types. Suppose "h" is a

TH1F (1 dim
 histogram

) object. The histogram
 fill style is set w

ith:

root[] h->SetFillStyle(style)
 The convention for style is:

0: hollow

1001: solid
2001: hatch style
3000 + pattern number: patterns
4000 to 4100: transparency, 4000 = fully transparent, 4100 = fully
opaque.

The various patterns are represented here:

C
olor and C

olor Palettes
At initialization tim

e, a table of basic colors is generated w
hen the first

C
anvas constructor is called. This table is a linked list, w

hich can be
accessed from

 the gROOT object (see TROOT::GetListOfColors()).
Each color has an index and w

hen a basic color is defined, tw
o "com

panion"
colors are defined:

 - The dark version (color_index + 100)
 - The bright version (color_index + 150)
The dark and bright colors are used to give 3-D

 effects w
hen draw

ing various
boxes (see TWbox, TPave, TPaveText, TPaveLabel, etc).

 G
raphics and the G

raphical U
ser Interface

D
ecem

ber 2001 - version 3.1d
151

 If you have a black and w
hite copy of the m

anual, here are the basic colors
and their indices:

1 = black
2 = red
3 = bright green
4 = bright blue
5 = yellow

6 = hot pink
7 = aqua
8 = green
9 = blue

0 -> 9: basic colors
10 -> 19: shades of gray
20 -> 29: shades of brow

n
30 -> 39: shades of blue
40 -> 49: shades of red

The list of currently supported basic colors (here dark and bright colors are
not show

n) is show
n in the picture below

:

The color num
bers specified in the basic palette, and the picture above, can

be view
ed by selecting the item

 "Colors" in the "View" m
enu of the canvas

toolbar.

O
ther colors m

ay be defined by the user. To do this, one has to build a new

object of type TColor, w
hich constructor is:

TColor(Int_t color, Float_t r, Float_t g, Float_t b, const
char* name)

O
ne has to give the color num

ber and the three R
ed, G

reen, Blue values,
each being defined from

 0 (m
in) to 1(m

ax). An optional nam
e m

ay be given.
W

hen built, this color is autom
atically added to the existing list of colors.

If the color num
ber already exists, one has to extract it from

 the list and
redefine the R, G, B values. This m

ay be done for exam
ple w

ith:

root[] color = (TColor*)(gROOT->GetListOfColors()-
>At(index_color))
root[] color->SetRGB(r,g,b)

W
here r, g and b go from

 0 to 1 and index_color is the color num
ber you

w
ish to change.

152
D

ecem
ber 2001 - version 3.1d

G
raphics and the G

raphical U
ser Interface

C
olor Palette (for H

istogram
s)

D
efining one color at a tim

e m
ay be tedious. The color palette is used by the

histogram
 classes (see D

raw
 O

ptions). For exam
ple, TH1::Draw("col")

draw
s a 2-D

 histogram
 w

ith cells represented by a box filled w
ith a color CI

function of the cell content. If the cell content is N, the color CI used w
ill be

the color num
ber in colors[N]. If the m

axim
um

 cell content is > ncolors,
all cell contents are scaled to ncolors.
The current color palette does not have a class or global object of it�s ow

n. It
is defined in the current style as an array of color num

bers. O
ne m

ay change
the current palette w

ith the TStyle::SetPalette(Int_t ncolors,
Int_t* color_indexes) m

ethod.

By default, or if ncolors <= 0, a default palette (see above) of 50 colors is
defined. The colors defined in this palette are good for coloring pads, labels,
and other graphic objects.

If ncolors > 0 and colors = 0, the default palette is used w
ith a

m
axim

um
 of ncolors. If ncolors == 1 && colors == 0, then a pretty

palette w
ith a spectrum

 Violet->R
ed is created. It is recom

m
ended to use this

pretty palette w
hen draw

ing legos, surfaces or contours.

For exam
ple, to set the current palette to the �pretty� one, one has to do:

root[] gStyle->SetPalette(1)

A m
ore com

plete exam
ple is show

n below
. It illustrates the definition of a

custom
 palette. You can adapt it to suit your needs. In case you use it for

contour coloring, w
ith the current color/contour algorithm

, alw
ays define tw

o
m

ore colors than the num
ber of contours.

void palette()
{ // Example of creating new colors (purples)
// and defining of a new palette
 const Int_t colNum = 10;
 Int_t palette[colNum];
 for (Int_t i=0;i<colNum;i++) {
 // get the color and
 // if it does not exist create

 if (! gROOT->GetColor(230+i)){
 TColor *color = new TColor
 (230+i,1-(i/((colNum)*1.0)),0.3,0.5,"");
 } else {
 TColor *color = gROOT->GetColor(230+i);
 color->SetRGB(1-(i/((colNum)*1.0)),0.3,0.5);
 }

 palette[i] = 230+i;
 }
 gStyle->SetPalette(colNum,palette);
 TF2 *f2 = new TF2("f2","exp(-(x^2)-(y^2))",-3,3,-3,3);
 // two contours less than the
 // number of colors in palette
 f2->SetContour(colNum-2);
 f2->Draw("cont");
}

 G
raphics and the G

raphical U
ser Interface

D
ecem

ber 2001 - version 3.1d
153

The G
raphical Editor

R
O

O
T has a built-in graphics editor to draw

 and edit graphic
prim

itives starting from
 an em

pty canvas or on top of a picture
(e.g. histogram

). The editor is started by selecting the �Editor�
item

 in the canvas �Edit� m
enu. A m

enu appears into an
independent w

indow
.

You can create the follow
ing graphical objects:

An arc or circle: C
lick on the center of the arc, and then m

ove
the m

ouse. A rubber band circle is show
n. C

lick again w
ith the

left button to freeze the arc.

A line or an arrow
: C

lick w
ith the left button at the point w

here
you w

ant to start the arrow
, then m

ove the m
ouse and click

again w
ith the left button to freeze the arrow

.

A D
iam

ond: C
lick w

ith the left button and freeze again w
ith the

left button. The editor draw
s a rubber band box to suggest the

outline of the diam
ond.

An Ellipse: Proceed like for an arc. You can grow
/shrink the

ellipse by pointing to the sensitive points. They are highlighted.
You can m

ove the ellipse by clicking on the ellipse, but not on
the sensitive points. If, w

ith the ellipse context m
enu, you have

selected a fill area color, you can m
ove a filled-ellipse by

pointing inside the ellipse and dragging it to its new
 position.

U
sing the context m

enu, you can build an arc of ellipse and tilt
the ellipse.

A Pad: C
lick w

ith the left button and freeze again w
ith the left

button. The editor draw
s a rubber band box to suggest the

outline of the pad.

A Pave Label: Proceed like for a pad. Type the text to be put in
the box. Then type a carriage return. The text w

ill be redraw
n to

fill the box.

A Pave Text or Paves Text: Proceed like for a pad. You can
then click on the TPaveText object w

ith the right m
ouse button

and select the option AddText.
A Poly Line: C

lick w
ith the left button for the first point, m

ove the m
oose,

click again w
ith the left button for a new

 point. C
lose the poly-line w

ith a
double click. To edit one vertex point, pick it w

ith the left button and drag to
the new

 point position.

A C
urlyLine: Proceed as for the arrow

/line. O
nce done, click w

ith the third
button to change the characteristics of the curly line, like transform

 it to w
ave,

change the w
avelength, etc�

A C
urlyArc: Proceed like for the arrow

/line. The first click is located at the
position of the center, the second click at the position of the arc beginning.
O

nce done, one obtains a curly ellipse, for w
hich one can click w

ith the third
button to change the characteristics, like transform

 it to w
avy, change the

w
avelength, set the m

inim
um

 and m
axim

um
 angle to m

ake an arc that is not
closed, etc�

A Text /Latex string: C
lick w

ith the left button w
here you w

ant to draw
 the

text, then type in the text term
inated by carriage return. All TLatex

expressions are valid. To m
ove the text or form

ula, point on it keeping the left
m

ouse button pressed and drag the text to its new
 position. You can

grow
/shrink the text if you position the m

ouse to the first top-third part of the
string, then m

ove the m
ouse up or dow

n to grow
 or shrink the text

154
D

ecem
ber 2001 - version 3.1d

G
raphics and the G

raphical U
ser Interface

respectively. If you position the m
ouse near the bottom

-end of the text, you
can rotate it.

A M
arker: C

lick w
ith the left button w

here to place the m
arker. The m

arker
can be m

odified by gStyle->SetMarkerStyle().
A G

raphical C
ut: C

lick w
ith the left button on each point of a polygon

delim
iting the selected area. C

lose the cut by double clicking on the last
point. A TCutG object is created. It can b e used as a selection for a
TTree::Draw. You can get a pointer to this object w

ith TCutG cut =
(TCutG*) gPad->GetPrimitive("CUTG").
O

nce you are happy w
ith your picture, you can select the Save as

canvas.C item
 in the canvas File m

enu. This w
ill autom

atically generate a
script w

ith the C
++ statem

ents corresponding to the picture. This facility also
w

orks if you have other objects not draw
n w

ith the graphics editor
(histogram

s for exam
ple).

 G
raphics and the G

raphical U
ser Interface

D
ecem

ber 2001 - version 3.1d
155

C
opy/Paste W

ith D
raw

C
lone

You can m
ake a copy of a canvas using TCanvas::DrawClonePad. This

m
ethod is unique to TCanvas. It clones the entire canvas to the active pad.

There is a m
ore general m

ethod TObject::DrawClone, w
hich all objects

descendents of TObject, specifically all graphic objects inherit. Below
 are

tw
o exam

ples, one to show
 the use of DrawClonePad and the other to show

the use of DrawClone.

Exam
ple 1: TC

anvas::D
raw

C
lonePad

In this exam
ple w

e w
ill copy an entire canvas to a new

 one w
ith

DrawClonePad.
R

un the script draw2dopt.C.

root [] .x tutorials/draw2dopt.C
This creates a canvas w

ith 2D
 histogram

s. To m
ake a copy of the canvas

follow
s these steps

R
ight-click on it to bring up the context m

enu.

Select DrawClonePad.
This copies the entire canvas and all its sub-pads to a new

 canvas. The
copied canvas is a deep clone, and all the objects on it are copies and
independent of the original objects. For instance, change the fill on one of the
original histogram

s, and the cloned histogram
 retains its attributes.

DrawClonePad w
ill copy the canvas to the active pad; the target does not

have to be a canvas. It can also be a pad on a canvas.

Exam
ple 2: TO

bject::D
raw

C
lone

If you w
ant to copy and paste a graphic object from

 one canvas or pad to
another canvas or pad, you can do so w

ith DrawClone m
ethod inherited

from
 TObject. The TObject::DrawClone m

ethod is inherited by all
graphics objects.

In this exam
ple, w

e create a new
 canvas w

ith one histogram
 from

 each of the
canvases from

 the script draw2dopt.C.

1.
Start a new

 R
O

O
T session and execute the script draw2dopt.C

2.
Select a canvas displayed by the script, and create a new

 canvas from

the File m
enu (c1).

3.
M

ake sure that the target canvas (c1) is the active one by m
iddle

clicking on it. If you do this step right after step 2, c1 w
ill be active.

4.
Select the pad w

ith the first histogram
 you w

ant to copy and paste.
5.

R
ight click on it to show

 the context m
enu, and select DrawClone.

6.
Leave the option blank and hit O

K.

R
epeat these steps for one histogram

 on each of the canvases created by
the script, until you have one pad from

 each type.

156
D

ecem
ber 2001 - version 3.1d

G
raphics and the G

raphical U
ser Interface

If you w
anted to put the sam

e annotation on each of the sub pads in the new

canvas, you could use DrawClone to do so. H
ere w

e added the date to each
pad. The steps to this are:

1.
C

reate the label in on of the pads w
ith the graphics editor.

2.
M

iddle-click on the target pad to m
ake it the active pad

3.
U

se DrawClone m
ethod of the label to draw

 it in each of the other
panels.

The option in the DrawClone m
ethod argum

ent is the D
raw

 option for a
histogram

 or graph. A call to TH1::DrawClone can clone the histogram

w
ith a different draw

 option.

 C
opy/Paste Program

m
atically

To copy and paste the four pads from
 the com

m
and line or in a script you

w
ould execute the follow

ing statem
ents:

root [] .x tutorials/draw2dopt.C
root [] TCanvas c1("c1","Copy Paste",200,200,800,600);
root [] surfaces->cd(1);

// get the first pad
root [] TPad * p1 = gPad;
root [] lego->cd(2);

// get the next pad

root [] TPad * p2 = gPad;
root [] cont->cd(3);

// get the next pad

root [] TPad * p3 = gPad;
root [] c2h->cd(4);

// get the next pad

root [] TPad * p4 = gPad;
root []

// draw the four clones

root [] c1->cd();
root [] p1->DrawClone();
root [] p2->DrawClone();
root [] p3->DrawClone();
root [] p4->DrawClone();

N
ote that the pad is copied to the new

 canvas in the sam
e location as in the

old canvas. For exam
ple if you w

ere to copy the third pad of surf to the top

 G
raphics and the G

raphical U
ser Interface

D
ecem

ber 2001 - version 3.1d
157

left corner of the target canvas you w
ould have to reset the coordinates of the

cloned pad.

Legends Legends for a graph are obtained w
ith a TLegend object. This object points

to m
arkers/lines/boxes/histogram

s/graphs and represent their m
arker/line/fill

attribute. Any object that has a m
arker or line or fill attribute m

ay have an
associated legend.

A TLegend is a panel w
ith several entries (class TLegendEntry) and is

created by the constructor

TLegend(Double_t x1, Double_t y1,Double_t x2, Double_t y2,
const char *header, Option_t *option)

The legend is defined w
ith default coordinates, border size and option

x1,y1,x2,y2 are the coordinates of the legend in the current pad (in N
D

C

coordinates by default). The default text attributes for the legend are:

��
Alignm

ent = 12 left adjusted and vertically centered
��

Angle
= 0 (degrees)

��
C

olor
= 1 (black)

��
Size

= calculate w
hen num

ber of entries is know
n

��
Font

= helvetica-m
edium

-r-norm
al scalable font = 42, and bold =

62 for title

The title It is a regular entry and supports TLatex. The default is no title
(header = 0). The options are the sam

e as for TPave; by default, they are
"brNDC".
O

nce the legend box is created, one has to add the text w
ith the

AddEntry() m
ethod:

TLegendEntry* TLegend::AddEntry(TObject *obj, const char
*label, Option_t *option)

The param
eters are:

��
*obj:

is a pointer to an object having m
arker, line, or fill attributes

(for exam
ple a histogram

, or graph)
��

label:
is the label to be associated to the object

��
option:

o
�L� draw

 line associated w
ith line attributes of obj if obj has

them
 (inherits from

 TAttLine)
o

�P� draw
 poly-m

arker associated w
ith m

arker attributes of
obj if obj has them

 (inherits from
 TAttMarker)

o
�F� draw

 a box w
ith fill associated w

ith fill attributes of obj if
obj has them

 (inherits TAttFill)

O
ne m

ay also use the other form
 of AddEntry:

TLegendEntry* TLegend::AddEntry(const char *name, const
char *label, Option_t *option)

 W
here name is the nam

e of the object in the pad. O
ther param

eters are as in
the previous case.

158
D

ecem
ber 2001 - version 3.1d

G
raphics and the G

raphical U
ser Interface

H
ere's an exam

ple of a legend created w
ith TLegend

The legend part of this plot w

as created as follow
s:

leg = new TLegend(0.4,0.6,0.89,0.89);
leg->AddEntry(fun1,"One Theory","l");
leg->AddEntry(fun3,"Another Theory","f");
leg->AddEntry(gr,"The Data","p");
leg->Draw();
// oops we forgot the blue line... add it after
leg->AddEntry(fun2,
 "#sqrt{2#pi} P_{T} (#gamma) latex formula","f");
// and add a header (or "title") for the legend
leg->SetHeader("The Legend Title");
leg->Draw();

W
here fun1,fun2,fun3 and gr are pre-existing functions and graphs. You

can edit the TLegend by right clicking on it.

The PostScript Interface
To generate a PostScript (or encapsulated PostScript) file for a single im

age
in a canvas, you can:

Select the �Print PostScript� item
 in the canvas �File� m

enu. By
default, a PostScript file called canvas.ps is generated.
C

lick in the canvas area, near the edges, w
ith the right m

ouse button and
select the �Print� item

. You can select the nam
e of the PostScript file. If the

file nam
e is xxx.ps, you w

ill generate a PostScript file nam
ed xxx.ps. If the

file nam
e is xxx.eps, you generate an encapsulated Postscript file instead.

In your program
 (or script), you can type:

 c1->Print("xxx.ps")

O
r

 c1->Print("xxx.eps")

This w
ill generate a file of canvas pointed to by c1.

 G
raphics and the G

raphical U
ser Interface

D
ecem

ber 2001 - version 3.1d
159

 pad1->Print("xxx.ps")

This prints the picture in the pad pointed by pad1.
The TPad::Print m

ethod has a second param
eter called option. Its value

can be:

-
0

w
hich is the default and is the sam

e as "ps"
-

"ps"
a Postscript file is produced

-
"eps"

an Encapsulated Postscript file is produced
-

"gif"
a G

IF file is produced
-

"cxx"
a C

++ m
acro file is produced

You do not need to specify the second param
eter, you can indicate by the

filenam
e extension w

hat form
at you w

ant to save a canvas in (i.e.
canvas.ps, canvas.gif, canvas.C, etc).
The size of the PostScript picture, by default, is com

puted to keep the aspect
ratio of the picture on the screen, w

here the size along x is alw
ays 20 cm

.

You can set the size of the PostScript picture before generating the picture
w

ith a com
m

and such as:

 TPostScript myps("myfile.ps",111)
 myps.Range(xsize,ysize);
 object->Draw();
 myps.Close();

The first param
eter in the TPostScript constructor is the nam

e of the file.
The second param

eter is the form
at option.

-
111

- ps portrait
-

112
- ps landscape

-
113

- eps

You can set the default paper size w
ith:

 gStyle->SetPaperSize(xsize,ysize);

You can resum
e w

riting again in this file w
ith myps.Open(). N

ote that you
m

ay have several Post Script files opened sim
ultaneously.

To add text to a postscript file, use the m
ethod TPostScript::Text(

x,y,"string"). This m
ethod w

rite the string in quotes into a PostScript file
at position x,y in w

orld coordinates.

Special C
haracters

The follow
ing characters have a special action on the PostScript file:

 `: G
o to G

reek

 ': G
o to special

 ~: G
o to Zapf D

ingbats

 ? : G
o to subscript

 ^: G
o to superscript

 !: go to norm
al level of script

160
D

ecem
ber 2001 - version 3.1d

G
raphics and the G

raphical U
ser Interface

 &: Backspace one character
 #: End of G

reek or of Zapf D
ingbats

These special characters are printed as such on the screen. To generate one
of these characters on the PostScript file, you m

ust escape it w
ith the escape

character "@".
The use of these special characters is illustrated in several scripts referenced
by the TPostScript constructor.

M
ultiple Pictures in a PostScript File: C

ase 1
The follow

ing script is an exam
ple illustrating how

 to open a PostScript file
and draw

 several pictures. The generation of a new
 PostScript page is

autom
atic w

hen TCanvas::Clear is called by object->Draw().

{ TFile f("hsimple.root");
 TCanvas c1("c1","canvas",800,600);
 //select PostScript output type
 Int_t type = 111; //portrait ps
// Int_t type = 112; //landscape ps
// Int_t type = 113; //eps
 //create a PostScript file and set the paper size
 TPostScript ps("test.ps",type);
 ps.Range(16,24); //set x,y of printed page
 //draw 3 histograms from file hsimple.root on separate pages
 hpx->Draw();
 c1.Update(); //force drawing in a script
 hprof->Draw();
 c1.Update();
 hpx->Draw("lego1");
 c1.Update();
 ps.Close();
}

 G
raphics and the G

raphical U
ser Interface

D
ecem

ber 2001 - version 3.1d
161

M
ultiple Pictures a PostScript File: C

ase 2
This exam

ple show
s 2 pages. The canvas is divided.

TPostScript::NewPage m
ust be called before starting a new

 picture.
object->Draw does not clear the canvas in this case because w

e clear only
the pads and not the m

ain canvas. N
ote that c1->Update m

ust be called at
the end of the first picture.

{ TFile *f1 = new TFile("hsimple.root");
 TCanvas *c1 = new TCanvas("c1");
 TPostScript *ps = new TPostScript("file.ps",112);
 c1->Divide(2,1);
// picture 1
 ps->NewPage();
 c1->cd(1);
 hpx->Draw();
 c1->cd(2);
 hprof->Draw();
 c1->Update();
// picture 2
 ps->NewPage();
 c1->cd(1);
 hpxpy->Draw();
 c1->cd(2);
 ntuple->Draw("px");
 c1->Update();
 ps->Close();
// invoke PostScript viewer
 gSystem->Exec("gs file.ps");
}

 C
reate or M

odify a Style
All objects that can be draw

n in a pad inherit from
 one or m

ore attribute
classes like TAttLine, TAttFill, TAttText, TAttMarker. W

hen the
objects are created, their default attributes are taken from

 the current style.
The current style is an object of the class TStyle and can be referenced via
the global variable gStyle (in TStyle.h). See the class TStyle for a
com

plete list of the attributes that can be set in one style. R
O

O
T provides

several styles called

��
"Default" The default style

��
"Plain"

 The sim
ple style (black and w

hite)
��

"Bold"
 Bolder lines

��
"Video"

 Suitable for htm
l output or screen view

ing

162
D

ecem
ber 2001 - version 3.1d

G
raphics and the G

raphical U
ser Interface

The "Default" style is created by:

TStyle *default = new TStyle("Default","Default Style");

The "Plain" style can be used if you are w
orking on a m

onochrom
e display

or if you w
ant to get a "conventional" PostScript output. As an exam

ple, these
are the instructions in the R

O
O

T constructor to create the "Plain" style.

TStyle *plain = new TStyle("Plain","Plain Style (no
colors/fill areas)");
 plain->SetCanvasBorderMode(0);
 plain->SetPadBorderMode(0);
 plain->SetPadColor(0);
 plain->SetCanvasColor(0);
 plain->SetTitleColor(0);
 plain->SetStatColor(0);

You can set the current style w
ith:

gROOT->SetStyle(style_name);

You can get a pointer to an existing style w
ith:

TStyle *style = gROOT->GetStyle(style_name);

You can create additional styles w
ith:

TStyle *st1 = new TStyle("st1","my style");
st1->Set....
st1->cd(); // this becomes now the current style gStyle

In your rootlogon.C file, you can redefine the default param
eters via

statem
ents like:

gStyle->SetStatX(0.7);
gStyle->SetStatW(0.2);
gStyle->SetLabelOffset(1.2);
gStyle->SetLabelFont(72);

N
ote that w

hen an object is created, its attributes are taken from
 the current

style. For exam
ple, you m

ay have created a histogram
 in a previous session

and saved it in a file. M
eanw

hile, if you have changed the style, the histogram

w
ill be draw

n w
ith the old attributes. You can force the current style attributes

to be set w
hen you read an object from

 a file by calling ForceStyle before
reading the objects from

 the file.

gROOT->ForceStyle();

W
hen you call gROOT->ForceStyle() and read an object from

 a R
O

O
T

file, the objects m
ethod UseCurrentStyle is called. The attributes saved

w
ith the object are replaced by the current style attributes. You call also call

myObject->UseCurrentStyle()directly. For exam
ple if you have a

canvas or pad w
ith your histogram

 or any other object, you can force these
objects to get the attributes of the current style w

ith:

 G
raphics and the G

raphical U
ser Interface

D
ecem

ber 2001 - version 3.1d
163

canvas->UseCurrentStyle();

The description of the style functions should be clear from
 the nam

e of the
TStyle setters or getters. Som

e functions have an extended description, in
particular:

��
TStyle::SetLabelFont

��
TStyle::SetLineStyleString: set the form

at of dashed lines.
��

TStyle::SetOptStat
��

TStyle::SetPalette to change the colors palette
��

TStyle::SetTitleOffset

 Folders And Tasks
D

ecem
ber 2001 - version 3.1d

165

10
Folders A

nd Tasks

Folders
A TFolder is a collection of objects visible and
expandable in the R

O
O

T object brow
ser. Folders

have a nam
e and a title and are identified in the

folder hierarchy by an "U
N

IX-like" nam
ing

convention. The base of all folders is //root. It is
visible at the top of the left panel in the brow

ser.
The brow

sers show
s several folders under

//root.
N

ew
 folders can be added and rem

oved to/from
 a

folder.

W
hy U

se Folders?
O

ne reason to use folders is to reduce class
dependencies and im

prove m
odularity. Each set of

data has a producer class and one or m
any

consum
er classes. W

hen using folders, the
producer class places a pointer to the data into a
folder, and the consum

er class retrieves a
reference to the folder.

The consum
er can access the objects in a folder

by specifying the path nam
e of the folder.

H
ere is an exam

ple of a folder's path nam
e:

 //root/Event/Hits/TCP

O
ne does not have to specify the full path nam

e. If
the partial path nam

e is unique, it w
ill find it,

otherw
ise it w

ill return the first occurrence of the
path.

166
D

ecem
ber 2001 - version 3.1d

Folders And Tasks

 The first diagram
 show

s a system
 w

ithout folders. The objects have pointers to
each other to access each other's data. Pointers are an efficient w

ay to share
data betw

een classes. H
ow

ever, a direct pointer creates a direct coupling
betw

een classes. This design can becom
e a very tangled w

eb of dependencies
in a system

 w
ith a large num

ber of classes.

In the second diagram
, a reference to the data is in the folder and the

consum
ers refer to the folder rather than each other to access the data. The

nam
ing and search service provided by the R

O
O

T folders hierarchy provides an
alternative. It loosely couples the classes and greatly enhances I/O

 operations. In
this w

ay, folders separate the data from
 the algorithm

s and greatly im
prove the

m
odularity of an application by m

inim
izing the class dependencies.

 In addition, the folder hierarchy creates a picture of the data organization. This is
useful w

hen discussing data design issues or w
hen learning the data

organization. The exam
ple below

 illustrates this point.

H
ow

 to U
se Folders

U
sing folders m

eans building a hierarchy of folders, posting the reference to the
data in the folder by the producer, and creating a reference to the folder by the
consum

er.

C
reating a Folder H

ierarchy
To create a folder hierarchy you add the top folder of your hierarchy to //root.
Then you add a folder to an existing folder w

ith the TFolder::AddFolder
m

ethod. This m
ethod takes tw

o param
eters: the nam

e and title of the folder to be
added. It returns a pointer of the new

ly created folder.

 Folders And Tasks
D

ecem
ber 2001 - version 3.1d

167

The code below
 creates the folder hierarchy show

n in the brow
ser.

{ // Add the top folder of my hierary to //root
TFolder *aliroot = gROOT->GetRootFolder()

->AddFolder("aliroot","aliroot top level folders");

// Add the hierarchy to the list of browsables
gROOT->GetListOfBrowsables()->Add(aliroot, "aliroot");
 // Create and add the constants folder
TFolder *constants = aliroot

->AddFolder ("Constants", "Detector constants");
// Create and add the pdg folder to pdg
TFolder *pdg = constants
 ->AddFolder ("DatabasePDG", "PDG database");
 // Create and add the run folder
TFolder *run = aliroot
 ->AddFolder ("Run", "Run dependent folders");
// Create and add the configuration folder to run
TFolder *configuration = run
 ->AddFolder ("Configuration", "Run configuration");

// Create and add the run_mc folder
TFolder *run_mc = aliroot
 ->AddFolder ("RunMC", "MonteCarlo run dependent folders");
 // Create and add the configuration_mc folder to run_mc
TFolder *configuration_mc = run_mc
 ->AddFolder ("Configuration", "MonteCarlo run configuration");
}

In this m
acro, the folder is also added to the

list of brow
sables. This w

ay, it is visible in
the brow

ser on the top level.

Posting D
ata to a Folder

(Producer)
A TFolder can contain other folders as
show

n above or any TObject
descendents. In general, users w

ill not post
a single object to a folder, they w

ill store a
collection or m

ultiple collections in a folder.
For exam

ple, to add an array to a folder:

TObjArray *array;
run_mc->Add(array);

R
eading D

ata from
 a Folder

(C
onsum

er)
O

ne can search for a folder or an object in a
folder using the TROOT::FindObjectAny
m

ethod. FindObjectAny analyzes the
string passed as its argum

ent and searches

168
D

ecem
ber 2001 - version 3.1d

Folders And Tasks

in the hierarchy until it finds an object or folder m
atching the nam

e.

W
ith FindObjectAny, you can give the full path nam

e, or the nam
e of the

folder. If only the nam
e of the folder is given, it w

ill return the first instance of that
nam

e.

conf = (TFolder*) gROOT-> FindObjectAny("/aliroot/Run/Configuration");
// or
conf = (TFolder*) gROOT-> FindObjectAny("Configuration");

A string-based search is tim
e consum

ing. If the retrieved object is used
frequently or inside a loop, you should save a pointer to the object as a class
data m

em
ber. U

se the nam
ing service only in the initialization of the consum

er
class.

W
hen a folder is deleted, any reference to it in the parent or other folder is

deleted also.

By default, a folder does not ow
n the object it contains. You can overw

rite that
w

ith TFolder::SetOwner. O
nce the folder is the ow

ner of its contents, the
contents are deleted w

hen the folder is deleted.

Som
e R

O
O

T objects are autom
atically added to the folder hierarchy. For

exam
ple, the follow

ing folders exist on start up:
 //root/ROOT Files

w
ith the list of open R

oot files
//root/Classes

w

ith the list of active classes
//root/Geometries

w
ith active geom

etries
//root/Canvases

w

ith the list of active canvases
//root/Styles

w

ith the list of graphics styles
//root/Colors

w

ith the list of active colors

For exam
ple, if a file myFile.root is added to the list of files, one can retrieve a

pointer to the corresponding TFile object w
ith a statem

ent like:

TFile *myFile = (TFile*)gROOT->FindObjectAny("/ROOT Files/myFile.root");
// or
TFile *myFile = (TFile*)gROOT->FindObjectAny ("myFile.root");

Tasks
Tasks can be organized into a hierarchy and displayed in the brow

ser. The
TTask class is the base class from

 w
hich the tasks are derived. To give a task

functionality, you need to subclass the TTask class and override the Exec
m

ethod.

An exam
ple of TTask subclasses is in $ROOTSYS/tutorials/MyTasks.cxx.

An exam
ple script that creates a task hierarchy and adds it to the brow

ser is
$ROOTSYS/tutorials/tasks.C.

 Folders And Tasks
D

ecem
ber 2001 - version 3.1d

169

H
ere is part of MyTasks.cxx that show

s how
 to subclass from

 TTask.

// A set of classes deriving from TTask
// see macro tasks.C to see an example of use
// The Exec function of each class prints one
// line when it is called.

#include "TTask.h"

class MyRun : public TTask {

public:
 MyRun() {;}
 MyRun(const char *name, const char *title);
 virtual ~MyRun() {;}
 void Exec(Option_t *option="");

 ClassDef(MyRun,1) // Run Reconstruction task
};

class MyEvent : public TTask {

public:
 MyEvent() {;}
 MyEvent(const char *name, const char *title);
 virtual ~MyEvent() {;}
 void Exec(Option_t *option="");

 ClassDef(MyEvent,1) // Event Reconstruction task
};
�

Later in MyTasks.cxx, w
e can see exam

ples of the constructor and overridden
Exec() m

ethod:

� ClassImp(MyRun)

MyRun::MyRun(const char *name, const char *title)
 :TTask(name,title)
{ } void MyRun::Exec(Option_t *option)
{ printf("MyRun executing\n");
} �

Each TTask derived class m
ay contain other TTasks that can be executed

recursively. In this w
ay, a com

plex program
 can be dynam

ically built and
executed by invoking the services of the top level task or one of its subtasks.

The constructor of TTask has tw
o argum

ents: the nam
e and the title. This script

creates the task defined above, and creates a hierarchy of tasks.

170
D

ecem
ber 2001 - version 3.1d

Folders And Tasks

// Show the tasks in a browser.
// To execute a Task, use the context context menu and select
// the item "ExecuteTask"
// see also other functions in the TTask context menu, such as
// -setting a breakpoint in one or more tasks
// -enabling/disabling one task, etc

void tasks()
{ gROOT->ProcessLine(".L MyTasks.cxx+");

 TTask *run = new MyRun("run","Process one run");
 TTask *event = new MyEvent("event","Process one event");
 TTask *geomInit = new MyGeomInit("geomInit","Geometry Initialisation");
 TTask *matInit = new MyMaterialInit("matInit","MaterialsInitialisation");
 TTask *tracker = new MyTracker("tracker","Tracker manager");
 TTask *tpc = new MyRecTPC("tpc","TPC Reconstruction");
 TTask *its = new MyRecITS("its","ITS Reconstruction");
 TTask *muon = new MyRecMUON("muon","MUON Reconstruction");
 TTask *phos = new MyRecPHOS("phos","PHOS Reconstruction");
 TTask *rich = new MyRecRICH("rich","RICH Reconstruction");
 TTask *trd = new MyRecTRD("trd","TRD Reconstruction");
 TTask *global = new MyRecGlobal("global","Global Reconstruction");
 // Create a hierarchy by adding sub tasks
 run->Add(geomInit);
 run->Add(matInit);
 run->Add(event);
 event->Add(tracker);
 event->Add(global);
 tracker->Add(tpc);
 tracker->Add(its);
 tracker->Add(muon);
 tracker->Add(phos);
 tracker->Add(rich);
 tracker->Add(trd);
 // Add the top level task
 gROOT->GetListOfTasks()->Add(run);
 // Add the task to the browser
 gROOT->GetListOfBrowsables()->Add(run);
 new TBrowser;
}

N
ote the first line, it loads the class definitions in MyTasks.cxx w

ith AC
LiC

.
AC

LiC
 builds a shared library and adds the classes to the C

IN
T dictionary (see

"H
ow

 to Add a C
lass w

ith AC
LiC

" in the chapter "Adding a C
lass").

To execute a TTask, you call the ExecuteTask m
ethod. ExecuteTask w

ill
recursively call:

��
the TTask::Exec m

ethod of the derived class
��

TTask::ExecuteTasks to execute for each task the list of its subtasks.

If the top level task is added to the list of R
O

O
T brow

se-able objects, the tree of
tasks can be seen in the R

O
O

T brow
ser. To add it to the brow

ser, get the list of
brow

se-able objects first and add it to the collection.

gROOT->GetListOfBrowsables()->Add(run);

The first param
eter of the Add m

ethod is a pointer to a TTask, the second
param

eter is the string to show
 in the brow

ser. If the string is left out, the nam
e of

the task is used.

 Folders And Tasks
D

ecem
ber 2001 - version 3.1d

171

After executing the script above the brow
ser w

ill look like this.

Execute and D
ebug Tasks

The brow
ser can be used to start a task, set break points at the beginning of a

task or w
hen the task has com

pleted. At a breakpoint, data structures generated
by the execution up this point m

ay be inspected asynchronously and then the
execution can be resum

ed by selecting the "C
ontinue" function of a task.

 A Task m
ay be active or inactive (controlled by TTask::SetActive). W

hen a
task is inactive, its sub tasks are not executed.

 A Task tree m
ay be m

ade persistent, saving the status of all the tasks.

 Input/O
utput

D
ecem

ber 2001 - version 3.1d
173

11
Input/O

utput

This chapter covers the saving and reading of objects to and from
 R

O
O

T files. It
begins w

ith an explanation of the physical layout of a R
O

O
T file. It includes a

discussion on com
pression, and file recovery. Then w

e explain the logical file,
the class TFile and its m

ethods. W
e show

 how
 to navigate in a file, how

 to save
objects and read them

 back. W
e also include a discussion on Stream

ers.
Stream

ers are the m
ethods responsible to capture an objects current state to

save it to disk or send it over the netw
ork. At the end of the chapter is a

discussion on the tw
o specialized R

O
O

T files: TNetFile and TWebFile.

The Physical Layout of R
O

O
T Files

A R
O

O
T file is like a U

N
IX file directory. It can contain directories and objects

organized in unlim
ited num

ber of levels. It also is stored in m
achine independent

form
at (ASC

II, IEEE floating point, Big Endian byte ordering).

To look at the physical layout of a R
O

O
T file, w

e first create one. This exam
ple

creates a R
O

O
T file and 15 histogram

s, fills each histogram
 w

ith 1000 entries
from

 a gaussian distribution, and w
rites them

 to the file.

{ char name[10], title[20];
 // Create an array of Histograms
 TObjArray Hlist(0);
 // create a pointer to a histogram
 TH1F* h;
 // make and fill 15 histograms
 // and add them to the object array
 for (Int_t i = 0; i < 15; i++) {
 sprintf(name,"h%d",i);
 sprintf(title,"histo nr:%d",i);
 h = new TH1F(name,title,100,-4,4);
 Hlist.Add(h);
 h->FillRandom("gaus",1000);
 }
 // open a file and write the array to the file
 TFile f("demo.root","recreate");
 Hlist->Write();
 f.Close();
}

The exam
ple begins w

ith a call to the TFile constructor. TFile is the class
describing the R

O
O

T file. In the next section, w
hen w

e discuss the logical file
structure, w

e w
ill cover TFile in detail. You can also see that the file has the

174
D

ecem
ber 2001 - version 3.1d

Input/O
utput

extension ".root", this convention is encouraged, how
ever R

O
O

T does not
depend on it.

The last line of the exam
ple closed the file. To view

 its contents it needs to be
opened again, and once opened w

e can view
 the contents in the R

O
O

T O
bject

brow
ser by creating a TBrowser object.

root [] TFile f("demo.root")
root [] TBrowser browser;

In the brow
ser, w

e can see the 15 histogram
s w

e created.

O

nce w
e have the TFile object, w

e can call the TFile::Map() m
ethod to view

the physical layout. The output of Map() prints the date/tim

e, the start address of
the record, the num

ber of bytes in the record, the class nam
e of the record, and

the com
pression factor.

root [] f.Map()
20010404/092347 At:64 N=84 TFile
20010404/092347 At:148 N=380 TH1F CX = 2.49
20010404/092347 At:528 N=377 TH1F CX = 2.51
20010404/092347 At:905 N=378 TH1F CX = 2.50
20010404/092347 At:1283 N=376 TH1F CX = 2.52
20010404/092347 At:1659 N=374 TH1F CX = 2.53
20010404/092347 At:2033 N=390 TH1F CX = 2.43
20010404/092347 At:2423 N=380 TH1F CX = 2.49
20010404/092347 At:2803 N=380 TH1F CX = 2.49
20010404/092347 At:3183 N=385 TH1F CX = 2.46
20010404/092347 At:3568 N=374 TH1F CX = 2.53
20010404/092347 At:3942 N=382 TH1F CX = 2.49
20010404/092347 At:4324 N=380 TH1F CX = 2.50
20010404/092347 At:4704 N=387 TH1F CX = 2.45
20010404/092347 At:5091 N=382 TH1F CX = 2.49
20010404/092347 At:5473 N=381 TH1F CX = 2.49
20010404/092347 At:5854 N=2390 StreamerInfo CX = 3.41
20010404/092347 At:8244 N=732 KeysList
20010404/092347 At:8976 N=53 FreeSegments
20010404/092347 At:9029 N=1 END

W
e see the fifteen histogram

s (TH1F's) w
ith the first one starting at byte 148.

W
e also see an entry TFile. You m

ay notice that the first entry starts at byte 64.
The first 64 bytes are taken by the file header.

 Input/O
utput

D
ecem

ber 2001 - version 3.1d
175

 The File H
eader

This table show
s the file header inform

ation:
 File H

eader Inform
ation

Byte
Value N

am
e

D
escription

1 -> 4
"root"

R
oot file identifier

5 -> 8
fVersion

File form
at version

9 -> 12
fBEGIN

Pointer to first data record

13 -> 16
fEND

Pointer to first free w
ord at the EO

F

17 -> 20
fSeekFree

Pointer to FR
EE data record

21 -> 24
fNbytesFree

N
um

ber of bytes in FR
EE data record

25 -> 28
nfree

N
um

ber of free data records

29 -> 32
fNbytesName

N
um

ber of bytes in TN
am

ed at creation tim
e

33 -> 33
fUnits

N
um

ber of bytes for file pointers

34 -> 37
fCompress

Zip com
pression level

The first four bytes of the file header contain the string "root" w
hich identifies a

file as a R
O

O
T file. Because of this identifier, R

O
O

T is not dependent on the
".root" extension. It is still a good idea to use the extension, just for us to
recognize them

 easier.

The nfree and value is the num
ber of free records. A R

O
O

T file has a m
axim

um

size of 2 gigabytes. This variable along w
ith FNBytesFree keeps track of the

free space in term
s of records and bytes. This count also includes the deleted

records, w
hich are available again.

The Top D
irectory D

escription
The 84 bytes after the file header contain the top directory description, including
the nam

e, the date and tim
e it w

as created, and the date and tim
e of the last

m
odification.

20010404/092347 At:64 N=84 TFile

The H
istogram

 R
ecords

W
hat follow

s are the 15 histogram
s, in records of variable length.

20010404/092347 At:148 N=380 TH1F CX = 2.49
20010404/092347 At:528 N=377 TH1F CX = 2.51
�

The first four bytes of each record is an integer holding the num
ber of bytes in

this record. A negative num
ber flags the record as deleted, and m

akes the space
available for recycling in the next w

rite. The rest of bytes in the header contain all
the inform

ation to uniquely identify a data block on the file. This is follow
ed by the

object data.

176
D

ecem
ber 2001 - version 3.1d

Input/O
utput

This table explains the values in each individual record:

R
ecord Inform

ation

Byte
Value N

am
e

D
escription

1 -> 4
Nbytes

Length of com
pressed object (in bytes)

5 -> 6
Version

TKey version identifier
7 -> 10

ObjLen
Length of uncom

pressed object

11 -> 14
Datime

D
ate and tim

e w
hen object w

as w
ritten to file

15 -> 16
KeyLen

Length of the key structure (in bytes)

17 -> 18
Cycle

C
ycle of key

19 -> 22
SeekKey

Pointer to record itself (consistency check)

23 -> 26
SeekPdir

Pointer to directory header

27
lname

N
um

ber of bytes in the class nam
e

28->..
ClassName

O
bject C

lass N
am

e

..->..
lname

N
um

ber of bytes in the object nam
e

..->..
Name

lName bytes w
ith the nam

e of the object

..->..
lTitle

N
um

ber of bytes in the object title

..->..
Title

Title of the object

----->
DATA

D
ata bytes associated to the object

You see a reference to TKey. It is explained in detail in the next section.

The C
lass D

escription List (Stream
erInfo List)

The histogram
 records are follow

ed by a list of class descriptions called
StreamerInfo. The list contains the description of each class that has been
w

ritten to file.

� 20010404/092347 At:5854 N=2390 StreamerInfo CX = 3.41
�

The class description is recursive, because to fully describe a class, its ancestors
and object data m

em
bers have to be described also.

In demo.root, the class description list contains the description for:

��
TH

1F
��

all classes in the TH
1F inheritance tree

��
all classes of the object data m

em
bers

��
all classes in the object data m

em
bers' inheritance tree.

This description is im
plem

ented by the TStreamerInfo class, and is often
referred to as sim

ply StreamerInfo.

 Input/O
utput

D
ecem

ber 2001 - version 3.1d
177

You can print a file's StreamerInfo list w
ith the TFile::ShowStreamerInfo

m
ethod. Below

 is an exam
ple of the output. O

nly the first line of each class
description is show

n.

The demo.root exam
ple contains only TH1F objects. H

ere w
e see the recursive

nature of the class description, it contains the StreamerInfo of all the classes
needed to describe TH1F.

root [] f.ShowStreamerInfo()
StreamerInfo for class: TH1F, version=1
 BASE TH1 offset= 0 type= 0 1-Dim histogram base class
 BASE TArrayF offset= 0 type= 0 Array of floats
 StreamerInfo for class: TH1, version=3
 BASE TNamed offset= 0 type=67 The basis for a named
 object (name, title)
 BASE TAttLine offset= 0 type= 0 Line attributes
 BASE TAttFill offset= 0 type= 0 Fill area attributes
 BASE TAttMarker offset= 0 type= 0 Marker attributes
 Int_t fNcells offset= 0 type= 3 number of bins(1D),
 cells (2D) +U/Overflows
 TAxis fXaxis offset= 0 type=61 X axis descriptor
 TAxis fYaxis offset= 0 type=61 Y axis descriptor
 TAxis fZaxis offset= 0 type=61 Z axis descriptor
 Short_t fBarOffset offset= 0 type= 2 (1000*offset) for bar
 charts or legos
 Short_t fBarWidth offset= 0 type= 2 (1000*width) for bar
 charts or legos
 Stat_t fEntries offset= 0 type= 8 Number of entries
 Stat_t fTsumw offset= 0 type= 8 Total Sum of weights
 Stat_t fTsumw2 offset= 0 type= 8 Total Sum of squares of weights
 Stat_t fTsumwx offset= 0 type= 8 Total Sum of weight*X
 Stat_t fTsumwx2 offset= 0 type= 8 Total Sum of weight*X*X
 Double_t fMaximum offset= 0 type= 8 Maximum value for plotting
 Double_t fMinimum offset= 0 type= 8 Minimum value for plotting
 Double_t fNormFactor offset= 0 type= 8 Normalization factor
 TArrayD fContour offset= 0 type=62 Array to display contour levels
 TArrayD fSumw2 offset= 0 type=62 Array of sum of squares of weights
 TString fOption offset= 0 type=65 histogram options
 TList* fFunctions offset= 0 type=63 ->Pointer to list of
 functions (fits and user)
 StreamerInfo for class: TNamed, version=1
� StreamerInfo for class: TAttLine, version=1
� StreamerInfo for class: TAttFill, version=1
� StreamerInfo for class: TAttMarker, version=1
� StreamerInfo for class: TArrayF, version=1
� StreamerInfo for class: TArray, version=1
� StreamerInfo for class: TAxis, version=6
� StreamerInfo for class: TAttAxis, version=4
�

R
O

O
T allow

s a class to have m
ultiple versions, and each version has its ow

n
description in form

 of a StreamerInfo. Above you see the class nam
e and

version num
ber.

The StreamerInfo list has only one description for each class/version
com

bination it encountered. The file can have m
ultiple versions of the sam

e
class, for exam

ple objects of old and new
 versions of a class can be in the sam

e
file.

The StreamerInfo is described in detail in the section on Stream
ers.

178
D

ecem
ber 2001 - version 3.1d

Input/O
utput

The List of K
eys and The List of Free B

locks
The last three entries on the output of TFile::Map() are the list of keys, the list
of free segm

ents, and the address w
here the data ends.. W

hen a file is closed, it
w

rites a linked list of keys at the end of the file. This is w
hat w

e see in the second
to last entry. In our exam

ple, the list of keys is stored in 732 bytes beginning at
byte# 8244.

20010404/092347 At:8244 N=732 KeysList
20010404/092347 At:8976 N=53 FreeSegments
20010404/092347 At:9029 N=1 END

The second to last entry is a list of free segm
ents. In our case, this starts 8976

and is not very long, only 53 bytes, since w
e have not deleted any objects.

The last entry is the address of the last byte in the file.

File R
ecovery

A file m
ay becom

e corrupted or it m
ay be im

possible to w
rite it to disk and close

it properly. For exam
ple if the file is too large and exceeds the disk quota, or the

job crashes or a batch job reaches its tim
e lim

it before the file can be closed. In
these cases, it is im

perative to recover and retain as m
uch inform

ation as
possible. R

O
O

T provides an intelligent and elegant file recovery m
echanism

using the redundant directory inform

ation in the record header.

If the file is not closed due to for exam
ple exceeded the tim

e lim
it, and it is

opened again, it is scanned and rebuilt according to the inform
ation in the record

header. The recovery algorithm
 reads the file and creates the saved objects in

m
em

ory according to the header inform
ation. It then rebuilds the directory and

file structure.

If the file is opened in w
rite m

ode, the recovery m
akes the correction on disk

w
hen the file is closed; how

ever if the file is opened in read m
ode, the correction

can not be w
ritten to disk. You can also explicitly invoke the recovery procedure

by calling the TFile::Recover() m
ethod.

You m
ust be aw

are of the 2G
B size lim

it before you attem
pt a recovery. If the file

has reached this lim
it, you cannot add m

ore data. You can still recover the
directory structure, but you cannot save w

hat you just recovered to the file on
disk.

H
ere w

e interrupted and aborted the previous R
O

O
T session, causing the file not

to be closed. W
hen w

e start a new
 session and attem

pt to open the file, it gives
us an explanation and status on the recovery attem

pt.

root [] TFile f("demo.root")
Warning in <TFile::TFile>: file demo.root probably not
closed, trying to recover
successfully recovered 15 keys

The Logical R
O

O
T File: TFile and TK

ey
W

e saw
 that the TFile::Map() m

ethod reads the file sequentially and prints
inform

ation about each record w
hile scanning the file. It is not feasible to only

support sequential access and hence R
O

O
T provides random

 or direct access,
i.e. reading a specified object at a tim

e. To do so, TFile keeps a list of TKeys,
w

hich is essentially an index to the objects in the file. The TKey class describes
the record headers of objects in the file. For exam

ple, w
e can get the list of keys

 Input/O
utput

D
ecem

ber 2001 - version 3.1d
179

and print them
. To find a specific object on the file w

e can use the
TFile::Get() m

ethod.

root [] TFile f("demo.root")
root [] f.GetListOfKeys()->Print()
TKey Name = h0, Title = histo nr:0, Cycle = 1
TKey Name = h1, Title = histo nr:1, Cycle = 1
TKey Name = h2, Title = histo nr:2, Cycle = 1
TKey Name = h3, Title = histo nr:3, Cycle = 1
TKey Name = h4, Title = histo nr:4, Cycle = 1
TKey Name = h5, Title = histo nr:5, Cycle = 1
TKey Name = h6, Title = histo nr:6, Cycle = 1
TKey Name = h7, Title = histo nr:7, Cycle = 1
TKey Name = h8, Title = histo nr:8, Cycle = 1
TKey Name = h9, Title = histo nr:9, Cycle = 1
TKey Name = h10, Title = histo nr:10, Cycle = 1
TKey Name = h11, Title = histo nr:11, Cycle = 1
TKey Name = h12, Title = histo nr:12, Cycle = 1
TKey Name = h13, Title = histo nr:13, Cycle = 1
TKey Name = h14, Title = histo nr:14, Cycle = 1
root [] TH1F *h9 = (TH1F*)f.Get("h9");

The TFile::Get() finds the TKey object w
ith nam

e "h9". U
sing the TKey info

it w
ill im

port in m
em

ory the object in the file at the file address #3352 (see the
output from

 the TFile::Map above). This is done by the Streamer m
ethod that

is covered in detail in a later section.

Since the keys are available in a TList of TKeys w
e can iterate over the list of

keys:
{ TFile f("demo.root");
 TIter next(f.GetListOfKeys());
 TKey *key;
 while ((key=(TKey*)next())) {
 printf(
 "key: %s points to an object of class: %s at %d\n",
 key->GetName(),
 key->GetClassName(),key->GetSeekKey()
);
 }
}

The output of this script is:

root [] .x iterate.C
key: h0 points to an object of class: TH1F at 150
key: h1 points to an object of class: TH1F at 503
key: h2 points to an object of class: TH1F at 854
key: h3 points to an object of class: TH1F at 1194
key: h4 points to an object of class: TH1F at 1539
key: h5 points to an object of class: TH1F at 1882
key: h6 points to an object of class: TH1F at 2240
key: h7 points to an object of class: TH1F at 2582
key: h8 points to an object of class: TH1F at 2937
key: h9 points to an object of class: TH1F at 3293
key: h10 points to an object of class: TH1F at 3639
key: h11 points to an object of class: TH1F at 3986
key: h12 points to an object of class: TH1F at 4339
key: h13 points to an object of class: TH1F at 4694
key: h14 points to an object of class: TH1F at 5038

180
D

ecem
ber 2001 - version 3.1d

Input/O
utput

In addition to the list of keys, TFile also keeps tw
o other lists:

TFile::fFree is a TList of free blocks used to recycle freed up space in the
file. R

O
O

T tries to find the best free block. If a free block m
atches the size of the

new
 object to be stored, the object is w

ritten in the free block and this free block
is deleted from

 the list. If not, the first free block bigger than the object is used.

TFile::fListHead contains a sorted list (TSortedList) of objects in
m

em
ory.

The diagram
 below

 illustrates the logical view
 of the TFile and TKey.

 Input/O
utput

D
ecem

ber 2001 - version 3.1d
181

View
ing the Logical File C

ontents

TFile is a descendent of TDirectory, w
hich m

eans it behaves like a
TDirectory. W

e can list the contents, print the nam
e, and create

subdirectories. In a R
O

O
T session, you are alw

ays in a directory and the
directory you are in is called the current directory and is stored in the global
variable gDirectory.

Let's look at a m
ore detailed exam

ple of a R
O

O
T file and its role as the current

directory. First, w
e create a R

O
O

T file by executing a sam
ple script.

root [] .x $ROOTSYS/tutorials/hsimple.C

N
ow

 you should have hsimple.root in your directory. The file w
as closed by

the script so w
e have to open it again to w

ork w
ith it.

W
e open the file w

ith the intent to update it, and list its contents.

root [] TFile f ("hsimple.root", "UPDATE")
root [] f.ls()
TFile** hsimple.root
TFile* hsimple.root
KEY: TH1F hpx;1 This is the px distribution
KEY: TH2F hpxpy;1 py vs px
KEY: TProfile hprof;1 Profile of pz versus px
KEY: TNtuple ntuple;1 Demo ntuple

It show
s the tw

o lines starting w
ith TFile follow

ed by four lines starting w
ith the

w
ord "KEY". The four keys tell us that there are four objects on disk in this file.

The syntax of the listing is:

KEY: <class> <variable>;<cycle number> <title>
For exam

ple, the first line in the list m
eans there is an object in the file on disk,

called hpx. It is of the class TH
1F (one-dim

ensional histogram
 of floating

num
bers). The object's title is "This is the px distribution".

If the line starts w
ith O

BJ, the object is in m
em

ory. The <class> is the nam
e of

the R
O

O
T class (T-som

ething). The <variable> is the nam
e of the object. The

cycle num
ber along w

ith the variable nam
e uniquely identifies the object. The

<title> is the string given in the constructor of the object as title.

182
D

ecem
ber 2001 - version 3.1d

Input/O
utput

This picture show
s a TFile w

ith five objects in the top directory (kObjA;1,
kObjA;2, kObjB;1, kObjC;1 and kObjD;1). ObjA is on file tw

ice w
ith tw

o
different cycle num

bers. It also show
s four objects in m

em
ory (mObjE,

mObjeF, mObjM, mObjL). It also show
s several subdirectories.

 The C
urrent D

irectory
W

hen you create a TFile object, it becom
es the current directory. Therefore,

the last file to be opened is alw
ays the current directory. To check your current

directory you can type:

root[] gDirectory->pwd()
Rint:/ This m

eans that the current directory is the R
O

O
T session (Rint). W

hen you
create a file, and repeat the com

m
and the file becom

es the current directory.

root[] TFile f1("AFile1.root");
root[] gDirectory->pwd()
AFile1.root:/

If you create tw
o files, the last becom

es the current directory.

root[] TFile f2("AFile2.root");
root[] gDirectory->pwd()
AFile2.root:/

To sw
itch back to the first file, or to sw

itch to any file in general, you can use the
TDirectory::cd m

ethod. The next com
m

and changes the current directory
back to the first file.

root [] f1.cd();
root [] gDirectory->pwd()
AFile1.root:/

N
ote that even if you open the file in "R

EAD
" m

ode, it still becom
es the current

directory.

 Input/O
utput

D
ecem

ber 2001 - version 3.1d
183

C
IN

T also offers a shortcut for gDirectory->pwd() and gDirectory->ls(),
you can type:

root [] .pwd
AFile1.root:/
root [] .ls
TFile** AFile1.root
 TFile* AFile1.root

To return to the hom
e directory, the one w

e w
ere in before w

e opened any files:

root [] gROOT->cd()
(unsigned char)1
root [] gROOT->pwd()
Rint:/ O

bjects in M
em

ory and O
bjects on D

isk
The TFile::ls() m

ethod has an option to list the objects on disk ("-d") or the
objects in m

em
ory ("-m

"). If no option is given it lists both, first the objects in
m

em
ory, then the objects on disk. For exam

ple:

root [] TFile *f = new TFile("hsimple.root");
root [] gDirectory->ls("-m")
TFile** hsimple.root
 TFile* hsimple.root

R
em

em
ber that gDirectory is the current directory and at this tim

e is
equivalent to "f". This correctly states that no objects are in m

em
ory. The next

com
m

and lists the objects on disk in the current directory.

root [] gDirectory->ls("-d")
TFile** hsimple.root
 TFile* hsimple.root
 KEY: TH1F hpx;1 This is the px distribution
 KEY: TH2F hpxpy;1 py vs px
 KEY: TProfile hprof;1 Profile of pz versus px
 KEY: TNtuple ntuple;1 Demo ntuple

To bring an object from
 disk into m

em
ory, w

e have to use it or "G
et" it explicitly.

W
hen w

e use the object, R
O

O
T gets it for us. Any reference to hprof w

ill read it
from

 the file. For exam
ple draw

ing hprof w
ill read it from

 the file and create an
object in m

em
ory. H

ere w
e draw

 the profile histogram
, and then w

e list the
contents.

184
D

ecem
ber 2001 - version 3.1d

Input/O
utput

root [] hprof->Draw()
<TCanvas::MakeDefCanvas>: created default TCanvas with name
c1
root [] f->ls()
TFile** hsimple.root
TFile* hsimple.root
OBJ: TProfile hprof Profile of pz versus px : 0
KEY: TH1F hpx;1 This is the px distribution
KEY: TH2F hpxpy;1 py vs px
KEY: TProfile hprof;1 Profile of pz versus px
KEY: TNtuple ntuple;1 Demo ntuple

W
e now

 see a new
 line that starts w

ith O
BJ. This m

eans that an object of class
TProfile, called hprof has been added in m

em
ory to this directory. This new

hprof in m

em
ory is independent from

 the hprof on disk. If w
e m

ake changes to
the hprof in m

em
ory, they are not propagated to the hprof on disk. A new

version of hprof w

ill be saved once w
e call Write.

You m
ay w

onder w
hy hprof is added to the objects in the current directory.

hprof is of the class TProfile that inherits from
 TH1D, w

hich inherits from

TH1. TH1 is the basic histogram
. All histogram

s and trees are created in the
current directory (also see "H

istogram
s and the C

urrent D
irectory"). The

reference to "all histogram
s" includes objects of any class descending directly or

indirectly from
 TH1. H

ence, our TProfile hprof is created in the current
directory f.
There w

as another side effect w
hen w

e called the TH1::Draw m
ethod. C

IN
T

printed this statem
ent:

<TCanvas::MakeDefCanvas>: created default TCanvas with name c1

It tells us that a TCanvas w
as created and it nam

ed it c1. This is w
here R

O
O

T is
being nice, and it creates a canvas for draw

ing the histogram
 if no canvas w

as
nam

ed in the draw
 com

m
and, and if no active canvas exists.

The new
ly created canvas, how

ever, is N
O

T listed in the contents of the current
directory. W

hy is that? The canvas is not added to the current directory, because
by default O

N
LY histogram

s and trees are added to the object list of the current
directory. Actually, TEventList objects are also added to the current directory,
but at this tim

e, w
e don't have to w

orry about those.

If the canvas is not in the current directory then w
here is it? Because it is a

canvas, it w
as added to the list of canvases. This list can be obtained by the

com
m

and gROOT->GetListOfCanvases()->ls(). The ls() w
ill print the

contents of the list. In our list, w
e have one canvas called c1. It has a TFrame, a

TProfile, and a TPaveStats.

root [] gROOT->GetListOfCanvases()->ls()
Canvas Name=c1 Title=c1 Option=
 TCanvas fXlowNDC=0 fYlowNDC=0 fWNDC=1 fHNDC=1 Name= c1 Title= c1
Option= TFrame X1= -4.000000 Y1=0.000000 X2=4.000000 Y2=19.384882
 OBJ: TProfile hprof Profile of pz versus px : 0
 TPaveText X1= -4.900000 Y1=20.475282 X2=-0.950000 Y2=21.686837 title
 TPaveStats X1= 2.800000 Y1=17.446395 X2=4.800000 Y2=21.323371 stats

 Lets proceed w
ith our exam

ple and draw
 one m

ore histogram
, and w

e see one
m

ore O
BJ entry.

 Input/O
utput

D
ecem

ber 2001 - version 3.1d
185

root [] hpx->Draw()
root [] f->ls()
TFile** hsimple.root
 TFile* hsimple.root
 OBJ: TProfile hprof Profile of pz versus px : 0
 OBJ: TH1F hpx This is the px distribution : 0
 KEY: TH1F hpx;1 This is the px distribution
 KEY: TH2F hpxpy;1 py vs px
 KEY: TProfile hprof;1 Profile of pz versus px
 KEY:f TNtuple ntuple;1 Demo ntuple

TFile::ls() loops over the list of objects in m
em

ory and the list of objects on
disk. In both cases, it calls the ls() m

ethod of each object. The im
plem

entation
of the ls m

ethod is specific to the class of the object, all of these objects are
descendants of TObject and inherit the TObject::ls() im

plem
entation. The

histogram
 classes are descendants of TNamed that in turn is a descent of

TObject. In this case, TNamed::ls() is executed, and it prints the nam
e of the

class, and the nam
e and title of the object.

Each directory keeps a list of its the objects in m
em

ory. You can get this list by
using TDirectory::GetList. To see the lists in m

em
ory contents you can:

root []f->GetList()->ls()
OBJ: TProfile hprof Profile of pz versus px : 0
OBJ: TH1F hpx This is the px distribution : 0

Since the file f is the current directory (gDirectory), this w
ill yield the sam

e
result:

root [] gDirectory->GetList()->ls()
OBJ: TProfile hprof Profile of pz versus px : 0
OBJ: TH1F hpx This is the px distribution : 0

Saving H
istogram

s to D
isk

At this tim
e, the objects in m

em
ory (O

BJ) are identical to the objects on disk
(KEY). Let's change that by adding a fill to the hpx w

e have in m
em

ory.

root [] hpx->Fill(0)
N

ow
 the hpx in m

em
ory is different from

 the histogram
 (hpx) on disk.

O
nly one version of the object can be in m

em
ory, how

ever, on disk w
e can store

m
ultiple versions of the object. The TFile::Write m

ethod w
ill w

rite the list of
objects in the current directory to disk. It w

ill add a new
 version of hpx and

hprof.

186
D

ecem
ber 2001 - version 3.1d

Input/O
utput

root [] f->Write()
root [] f->ls()
TFile** hsimple.root
 TFile* hsimple.root
 OBJ: TProfile hprof Profile of pz versus px : 0
 OBJ: TH1F hpx This is the px distribution : 0
 KEY: TH1F hpx;2 This is the px distribution
 KEY: TH1F hpx;1 This is the px distribution
 KEY: TH2F hpxpy;1 py vs px
 KEY: TProfile hprof;2 Profile of pz versus px
 KEY: TProfile hprof;1 Profile of pz versus px
 KEY: TNtuple ntuple;1 Demo ntuple

The TFile::Write m
ethod w

rote the entire list of objects in the current
directory to the file. You see that it added tw

o new
 keys: hpx;2 and hprof;2 to

the file. U
nlike m

em
ory, a file is capable of storing m

ultiple objects w
ith the sam

e
nam

e. Their cycle num
ber, the num

ber after the sem
icolon, differentiates objects

on disk w
ith the sam

e nam
e.

This picture show
s the file before and after the call to Write.

If you w

anted to save only hpx to the file, but not the entire list of objects, you
could use the TH1::Write m

ethod of hpx:

root [] hpx->Write()
 A call to obj->Write w

ithout any param
eters w

ill call obj->GetName() to find
the nam

e of the object and use it to create a key w
ith the sam

e nam
e. You can

specify a new
 nam

e by giving it as a param
eter to the Write m

ethod.

root [] hpx->Write("newName")
If you w

ant to re-w
rite the sam

e object, w
ith the sam

e key, use the overw
rite

option.

 Input/O
utput

D
ecem

ber 2001 - version 3.1d
187

root [] hpx->Write("", TObject::kOverwrite)
If you give a new

 nam
e and use the kOverwrite, the object on disk w

ith the
m

atching nam
e is overw

ritten if such an object exists. If not, a new
 object w

ith
the new

 nam
e w

ill be created.

root [] hpx->Write("newName", TObject::kOverwrite)
The Write m

ethod did not affect the objects in m
em

ory at all. H
ow

ever, if the file
is closed, the directory is em

ptied and the objects on the list are deleted.

root [] f->Close()
root [] f->ls()
TFile** hsimple.root
 TFile* hsimple.root

In the code snipped above you can see that the directory is now
 em

pty. If you
follow

ed along so far, you can see that c1 w
hich w

as displaying hpx is now

blank. Furtherm
ore, hpx no longer exists.

root [] hpx->Draw()
Error: No symbol hpx in current scope

This is im
portant to rem

em
ber, do not close the file until you are done w

ith the
objects or any attem

pt to reference the objects w
ill fail.

H
istogram

s and the C
urrent D

irectory
W

hen a histogram
 is created, it is added by default to the list of objects in the

current directory. You can get the list of histogram
s in a directory and retrieve a

pointer to a specific histogram
.

TH1F *h = (TH1F*)gDirectory->Get("myHist");

or

TH1F *h = (TH1F*)gDirectory->GetList()->FindObject("myHist");

The m
ethod TDirectory::GetList()returns a TList of objects in the

directory.

You can change the directory of a histogram
 w

ith the SetDirectory m
ethod.

h->SetDirectory(newDir)

If the param
eter is 0, the histogram

 is no longer associated w
ith a directory.

h->SetDirectory(0)

O
nce a histogram

 is rem
oved from

 the directory, it w
ill no longer be deleted w

hen
the directory is closed. It is now

 your responsibility to delete this histogram
 object

once you are finished w
ith it.

To change the default that autom
atically adds the histogram

 to the current
directory, you can call the static function:

TH1::AddDirectory(kFALSE);

188
D

ecem
ber 2001 - version 3.1d

Input/O
utput

In this case, you w
ill need to do all the bookkeeping for all the created

histogram
s.

Saving O
bjects to D

isk
In addition to histogram

s and trees, you can save any object in a R
O

O
T file. To

save a canvas to the R
O

O
T file you can use TDirectory::Write.

root [] TFile *f = new TFile("hsimple.root", "UPDATE")
root [] hpx->Draw()
<TCanvas::MakeDefCanvas>: created default TCanvas with name
c1
root [] c1->Write()
root [] f->ls()
TFile** hsimple.root
TFile* hsimple.root
OBJ: TH1F hpx This is the px distribution : 0
 KEY: TH1F hpx;2 This is the px distribution
 KEY: TH1F hpx;1 This is the px distribution
 KEY: TH2F hpxpy;1 py vs px
 KEY: TProfile hprof;2 Profile of pz versus px
 KEY: TProfile hprof;1 Profile of pz versus px
 KEY: TNtuple ntuple;1 Demo ntuple
 KEY: TCanvas c1;1 c1

Saving C
ollections to D

isk
All collection classes inherit from

 TCollection and hence inherit the
TCollection::Write m

ethod. W
hen you call TCollection::Write() each

object in the container is w
ritten individually into its ow

n key in the file.

To w
rite all objects into one key you can specify the nam

e of the key and use the
TObject::kSingleKey option. For exam

ple:

root[] TList * list = new TList;
root[] TNamed * n1, * n2;
root[] n1 = new TNamed("name1", "title1");
root[] n2 = new TNamed("name2", "title2");
root[] list->Add(n1);
root[] list->Add(n2);
root[] list->Write("list", TObject::kSingleKey);

A TFile O
bject going O

ut of Scope
There is another im

portant point to rem
em

ber about TFile::Close and
TFile::Write . W

hen a variable is declared on the stack in a function such as
in the code below

, it w
ill be deleted w

hen it goes out of scope.

void foo() {

TFile f("AFile.root", "RECREATE");
}

As soon as the function foo has finished executing, the variable f is deleted.
W

hen a TFile object is deleted an im
plicit call to TFile::Close is m

ade. This
w

ill save only the file descriptor to disk. It contains: the file header, the
StreamerInfo list, the key list, the free segm

ent list, and the end address (see

 Input/O
utput

D
ecem

ber 2001 - version 3.1d
189

"The Physical Layout of R
O

O
T Files"). A TFile::Close does not m

ake a call to
Write, w

hich m
eans that the objects in m

em
ory w

ill not be saved in the file.

You need to explicitly call TFile::Write() to save the object in m
em

ory to file
before the exit of the function.

void foo() {

TFile f("AFile.root", "RECREATE");

� stuff �

f->Write();
}

To prevent an object in a function from
 being deleted w

hen it goes out of scope,
you can create it on the heap instead of on the stack. This w

ill create a TFile
object f, that is available on a global scope, and it w

ill still be available w
hen

exiting the function.

void foo() {

TFile *f = new TFile("AFile.root", "RECREATE");
}

R
etrieving O

bjects from
 D

isk
If you have a R

O
O

T session running, please quit and start fresh.

W
e saw

 that m
ultiple versions of an object w

ith the sam
e nam

e can be in a
R

O
O

T file. In our exam
ple, w

e saved a m
odified histogram

 hpx to the file, w
hich

resulted in tw
o hpx's uniquely identified by the cycle num

ber: hpx;1 and
hpx;2. The question is how

 do w
e retrieve the right version of hpx.

W
hen opening the file and using hpx, C

IN
T retrieves the one w

ith the highest
cycle num

ber.

To read the hpx;1 into m
em

ory, rather than the hpx:2 w
e w

ould get by default,
w

e have to explicitly get it and assign it to a variable.

root [] TFile *f1 = new TFile("hsimple.root")
root [] TH1F *hpx1 = (TH1F*) f1->Get("hpx;1")
root [] hpx1->Draw()

Subdirectories and N
avigation

The TDirectory class lets you organize its contents into subdirectories, and
TFile being a descendent of TDirectory inherits this ability.
H

ere is an exam
ple of a R

O
O

T file w
ith m

ultiple subdirectories as seen in the
R

O
O

T brow
ser.

C
reating Subdirectories

To add a subdirectory to a file use Directory::mkdir.

190
D

ecem
ber 2001 - version 3.1d

Input/O
utput

The exam
ple below

 opens the file for w
riting and creates a subdirectory called

"W
ed011003". Listing the contents of the file show

s the new
 directory in the file

and the TDirectory object in m
em

ory.

root [] TFile *f = new TFile("AFile.root","RECREATE")
root [] f->mkdir("Wed011003")
(class TDirectory*)0x1072b5c8
root [] f->ls()
TFile** AFile.root
 TFile* AFile.root
 TDirectory* Wed011003 Wed011003

 KEY: TDirectory Wed011003;1 Wed011003

 N
avigating to Subdirectories

W
e can change the current directory by navigating into the subdirectory, and

after changing directory; w
e can see that gDirectory is now

 "W
ed011003".

root [] f->cd("Wed011003")
root [] gDirectory->pwd()
AFile.root:/Wed011003

In addition to gDirectory w
e have gFile, another global that points to the

current file.
In our exam

ple, gDirectory points to the subdirectory, and gFile points to the
file (i.e. the files' top directory).

root [] gFile->pwd()
AFile.root:/

 To return to the file's top directory, use cd() w
ithout any argum

ents.

root [] f->cd()
AFile.root:/

C
hange to the subdirectory again, and create a histogram

. It is added to the
current directory, w

hich is the subdirectory "Wed011003".

root [] f->cd("Wed011003")
root [] TH1F *histo=new TH1F("histo","histo",10,0, 10);
root [] gDirectory->ls()
TDirectory* Wed011003 Wed011003
 OBJ: TH1F histo histo : 0

If you are in a subdirectory and you w
ould like to have a pointer to the file

containing the subdirectory, you can do so:

root [] gDirectory->GetFile()
If you are in the top directory gDirectory is the sam

e as gFile.
W

e w
rite the file to save the histogram

 on disk, to show
 you how

 to retrieve it
later.

 Input/O
utput

D
ecem

ber 2001 - version 3.1d
191

root [] f->Write()
root [] gDirectory->ls()
TDirectory* Wed011003 Wed011003
 OBJ: TH1F histo histo : 0
 KEY: TH1F histo;1 histo

W
hen retrieving an object from

 a subdirectory, you can navigate to the
subdirectory first or give it the path nam

e relative to the file. The read object is
created in m

em
ory in the current directory.

In this first exam
ple, w

e get histo from
 the top directory and the object w

ill be in
the top directory.

root [] TH1 *h = (TH1*) f->Get("Wed011003/histo;1")
If file is w

ritten, a copy of histo w
ill be in the top directory. This is an effective

w
ay to copy an object from

 one directory to another.

In contrast, in the code box below
, histo w

ill be in m
em

ory in the subdirectory
because w

e changed the current directory.

root [] f->cd("Wed011003");
root [] TH1 *h = (TH1*) gDirectory->Get("histo;1")

 N
ote that there is no w

arning if the retrieving w
as not successful. You need to

explicitly check the value of h, and if it is null, the object could not be found. For
exam

ple, if you did not give the path nam
e the histogram

 cannot be found and
the pointer to h is null:

root [] TH1 *h =(TH1*)gDirectory->Get("Wed011003/histo;1")
root [] h
(class TH1*)0x10767de0
root [] TH1 *h = (TH1*) gDirectory->Get("histo;1")
root [] h
(class TH1*)0x0

R
em

oving Subdirectories
To rem

ove a subdirectory you need to use TDirectory::Delete. There is no
TDirectory::rmdir. The D

elete m
ethod takes a string containing the variable

nam
e and cycle num

ber as a param
eter.

void Delete(const char *namecycle)

The namecycle string has the form
at name;cycle. H

ere are som
e rules to

rem
em

ber:

-
name =

*
m

eans all, but don't rem
ove the subdirectories

-
cycle =

*
m

eans all cycles (m
em

ory and file)
-

cycle =
""

m
eans apply to a m

em
ory object

-
cycle = 9999

also m
eans apply to a m

em
ory object

-
namecycle = "" m

eans the sam
e as namecycle ="T*"

-
namecycle = T*

delete subdirectories

For exam
ple to delete a directory from

 a file, you m
ust specify the directory cycle,

192
D

ecem
ber 2001 - version 3.1d

Input/O
utput

root [] f->Delete("Wed011003;1")
Som

e other exam
ples of namecycle form

at are:

��
foo: delete the object nam

ed foo from
 m

em
ory

��
foo;1: delete the cycle 1 of the object nam

ed foo from
 the file

��
foo;*: delete all cycles of foo from

 the file and also from
 m

em
ory

��
*;2: delete all objects w

ith cycle num
ber 2 from

 the file
��

;: delete all objects from
 m

em
ory and from

 the file
��

T*;*: delete all objects from
 m

em
ory and from

 the file including all
subdirectories

Stream
ers

To follow
 the discussion on Stream

ers, you need to know
 w

hat a sim
ple data

type is. A variable is of a sim
ple data type if it cannot be decom

posed into other
types. Exam

ples of sim
ple data types are longs, shorts, floats, and chars. In

contrast, a variable is of a com
posite data type if it can be decom

posed. For
exam

ple, classes, structures, and arrays are com
posite types. Sim

ple types are
also called prim

itive types, basic types, and C
IN

T som
etim

es calls them

fundam
ental types.

W
hen w

e say, "w
riting an object to a file", w

e actually m
ean w

riting the current
values of the data m

em
bers. The m

ost com
m

on w
ay to do this is to decom

pose
(also called the serialization of) the object into its data m

em
bers and w

rite them

to disk. The decom
position is the job of the Stream

er. Every class w
ith am

bitions
to be stored in a file has a Stream

er that decom
poses it and "stream

s" its
m

em
bers into a buffer.

The m
ethods of the class are not w

ritten to the file, it contains only the persistent
data m

em
bers.

To decom
pose the parent classes, the Stream

er calls the Stream
er of the parent

classes. It m
oves up the inheritance tree until it reaches an ancestor w

ithout a
parent.

To serialize the object data m
em

bers it calls their Stream
er. They in turn m

ove
up their ow

n inheritance tree and so forth.

The sim
ple data m

em
bers are w

ritten to the buffer directly. Eventually the buffer
contains all sim

ple data m
em

bers of all the classes that m
ake up this particular

object.

Stream
ing Pointers

An object pointer data m
em

ber presents a challenge to the stream
ing softw

are. If
the object pointed to is saved every tim

e it could create circular dependencies
and consum

e large am
ounts of disk space. The netw

ork of references m
ust be

preserved on disk and recreated upon reading the file.

W
hen R

O
O

T encounters a pointer data m
em

ber it calls the stream
er of the

object and labels it w
ith a unique object identifier. The object identifier is unique

for one I/O
 operation. If there is another reference to the object in the sam

e I/O

operation, the first object only referenced by its ID
, it is not saved again.

 Input/O
utput

D
ecem

ber 2001 - version 3.1d
193

 W
hen reading the file, the object is rebuilt and the references recalculated. In this

w
ay, the netw

ork of pointers and their objects is rebuilt and ready to use the
sam

e w
ay it w

as used before it w
as persistent.

 Autom
atically G

enerated Stream
ers

A Stream
er usually calls other Stream

ers: the Stream
er of its parents and data

m
em

bers. This architecture depends on all classes having Stream
ers, because

eventually they w
ill be called. To ensure that a class has a Stream

er, rootcint
autom

atically creates one in the ClassDef m
acro w

hich is defined in
$ROOTSYS/include/Rtypes.h. ClassDef defines several m

ethods for any
class, and one of them

 is the Stream
er. The autom

atically generated Stream
er is

com
plete and can be used as long as no custom

ization is needed.

The Event class is defined in $ROOTSYS/test/Event.h. Looking at the class
definition, w

e find that it inherits from
 TObject. It is a sim

ple exam
ple of a class

w
ith diverse data m

em
bers.

class Event : public TObject {
 private:
 TDirectory *fTransient; //! current directory
 Float_t

fPt; //! transient value

 char fType[20];
 Int_t fNtrack;
 Int_t fNseg;
 Int_t fNvertex;
 UInt_t fFlag;
 Float_t fTemperature;
 EventHeader fEvtHdr; //|| don't split
 TClonesArray *fTracks; //->
 TH1F *fH; //->
 Int_t fMeasures[10];
 Float_t fMatrix[4][4];
 Float_t *fClosestDistance; //[fNvertex]
�

194
D

ecem
ber 2001 - version 3.1d

Input/O
utput

The Event class is added to the C
IN

T dictionary by the rootcint utility. This is
the rootcint statem

ent in the $ROOTSYS/test/Makefile:

@rootcint -f EventDict.cxx -c Event.h EventLinkDef.h

The EventDict.cxx file contains the autom
atically generated Stream

er for
Event:

void Event::Streamer(TBuffer &R__b)
{ // Stream an object of class Event.
 if (R__b.IsReading()) {
 Event::Class()->ReadBuffer(R__b, this);
 } else {
 Event::Class()->WriteBuffer(R__b, this);
 }
}

W
hen w

riting an Event object, TClass::WriteBuffer is called.
WriteBuffer w

rites the current version num
ber of the Event class, and its

contents into the buffer R__b .
The Stream

er calls TClass::ReadBuffer w
hen reading an Event object. The

ReadBuffer m
ethod reads the inform

ation from
 buffer R__b into the Event

object.

Transient D
ata M

em
bers (//!)

To prevent a data m
em

ber from
 being w

ritten to the file, insert a "!" as the first
character after the com

m
ent m

arks. For exam
ple, in this version of Event, the

fPt and fTransient data m
em

bers are not persistent.

class Event : public TObject {
 private:
 TDirectory *fTransient; //! current directory
 Float_t

fPt; //! transient value

�

The Pointer To O
bjects (//->)

The string "->" in the com
m

ent field of the m
em

bers *fH and *fTracks instruct
the autom

atic Stream
er to assum

e these w
ill never be null and the Stream

er of
the objects can be called rather than the m

ore expensive R__b << fH .

 TClonesArray *fTracks; //->
 TH1F *fH; //->

Variable Length Array
W

hen the Stream
er com

es across a pointer to a sim
ple type, it assum

es it is an
array. Som

ehow
, it has to know

 how
 m

any elem
ents are in the array to reserve

enough space in the buffer and w
rite out the appropriate num

ber of elem
ents.

This is done in the class definition.

 Input/O
utput

D
ecem

ber 2001 - version 3.1d
195

For exam
ple:

class Event : public TObject {
 private:
 char fType[20];
 Int_t fNtrack;
 Int_t fNseg;
 Int_t fNvertex;
� Float_t *fClosestDistance; //[fNvertex]
�

The array fClosestDistance is defined as a pointer of floating point num
bers.

A com
m

ent m
ark (//) , and the num

ber in square brackets tell the Stream
er the

length of the array for this object. In general the syntax is:

<simple type>
*<name>

//[<length>]

The length cannot be an expression. If a variable is used, it needs to be an
integer data m

em
ber of the class. It m

ust be defined ahead of its use, or in a
base class.

Prevent Splitting (//||)
If you w

ant to prevent a data m
em

ber from
 being split w

hen w
riting it to a tree

append the characters || right after the com
m

ent string. This only m
akes sense

for object data m
em

bers. For exam
ple:

 EventHeader fEvtHdr; //|| do not split the header

Stream
ers W

ith Special Additions
M

ost of the tim
e you can let rootcint generate a Streamer for you. H

ow
ever

if you w
ant to w

rite your ow
n Stream

er you can do so.

For som
e classes, it m

ay be necessary to execute som
e code before or after the

read or w
rite block in the autom

atic Stream
er. For exam

ple after the execution of
the read block, one can initialize som

e non persistent m
em

bers.

There are tw
o reasons w

hy you w
ould need to w

rite your ow
n Stream

er. If you
have a com

plex STL container type data m
em

ber that is not yet supported by
R

O
O

T, or if you have a non-persistent data m
em

ber that you w
ant to initialize to

a value depending on the read data m
em

bers. In addition, the autom
atic

Stream
er does not support C

-structures. It is best to convert the structure to a
class definition.

First, you need to tell rootcint not to build a Stream
er for you. The input to the

rootcint com
m

and (in the makefile) is a list of classes in a LinkDef.h file.
For exam

ple, the list of classes for Event are listed in
$ROOTSYS/test/EventLinkDef.h. The "-" at the end of the class nam

e tells
rootcint not to generate a Stream

er. In the exam
ple, you can see the Event

class is the only one for w
hich rootcint is instructed not to generate a

Stream
er.

196
D

ecem
ber 2001 - version 3.1d

Input/O
utput

#ifdef __CINT__
 #pragma link off all globals;
#pragma link off all classes;
#pragma link off all functions;
 #pragma link C++ class EventHeader+;
#pragma link C++ class Event-;
#pragma link C++ class HistogramManager+;
#pragma link C++ class Track+;
 #endif
#pragma link C++ class EventHeader+;

The "+" sign tells rootcint to use the new
 Stream

er system
 introduced in R

O
O

T
3.0.

This is an exam
ple of a custom

ized Stream
er for Event:

The Stream
er takes a TBuffer as a param

eter, and first checks to see if this is
a case of reading or w

riting the buffer.

void Event::Streamer(TBuffer &R__b)
{ if (R__b.IsReading()) {
 Event::Class()->ReadBuffer(R__b, this);
 fTransient = gDirectory; //save current directory
 fPt= TMath::Sqrt(fPx*fPx + fPy*fPy + fPz*fPz);
 } else {
 Event::Class()->WriteBuffer(R__b, this);
 }
}

W
riting O

bjects
The Streamer decom

poses the objects into data m
em

bers and w
rites them

 to a
buffer. It does not w

rite the buffer to a file, it sim
ply populates a buffer w

ith bytes
representing the object. This allow

s us to w
rite the buffer to a file or do anything

else w
e could do w

ith the buffer. For exam
ple, w

e can w
rite it to a socket to send

it over the netw
ork. This is beyond the scope of this chapter, but it is w

orthw
hile

to em
phasize the need and advantage of separating the creation of the buffer

from
 its use. Let's look how

 a buffer is w
ritten to a file.

A class needs to inherit from
 TObject or use TDirectory->Write(obj) to

be saved to disk. H
ow

ever, a class that is a data m
em

ber of another class does
not have to inherit from

 TObject, it only has to have a Stream
er. EventHeader

is an exam
ple of such a case.

The TObject::Write m
ethod does the follow

ing:

1.
C

reates a TKey object in the current directory
2.

C
reates a TBuffer object w

hich is part of the new
ly created TKey

3.
Fills the TBuffer w

ith a call to the class::Streamer m
ethod

4.
C

reates a second buffer for com
pression, if needed

5.
R

eserves space by scanning the TFree list. At this point, the size of
the buffer is know

n.
6.

W
rites the buffer to the file

7.
R

eleases the TBuffer part of the key

 Input/O
utput

D
ecem

ber 2001 - version 3.1d
197

In other w
ords, the TObject::Write calls the Stream

er m
ethod of the class to

build the buffer. The buffer is in the key and the key is w
ritten to disk. O

nce
w

ritten to disk the m
em

ory consum
ed by the buffer part is released. The key part

of the TKey is kept. The key consum
es about 60 bytes, w

here the buffer since it
contains the object data can be very large.

This is a diagram
 of a stream

ed TH1F in the buffer:
 Ignore O

bject Stream
ers

You can instruct your class to ignore the TObject Stream
er w

ith the
MyClass::Class::IgnoreTObjectStreamer m

ethod. W
hen the class

kIgnoreTObjectStreamer bit is set (by calling the
IgnoreTObjectStreamer method), the autom

atically generated Stream
er

w
ill not call TObject::Streamer, and the TObject part of the class is not

stream
ed to the file. This is useful in case you do not use the TObject fBits

and fUniqueID data m
em

bers. You gain space on the file, and you do not
loose functionality if you do not use the fBits and fUniqueID (see the section
on TO

bject on the use of fBits and fUniqueID).

Stream
ing a TC

lonesArray
W

hen w
riting a TClonesArray it bypasses by default the Stream

er of the
m

em
ber class and uses a m

ore efficient internal m
echanism

 to w
rite the

m
em

bers to the file.

You can override the default and specify that the m
em

ber class Stream
er is used

by setting the TConesArray::BypassStreamer bit to false:

TClonesArray *fTracks;
fTracks->BypassStreamer(kFALSE); // use the member Streamer

 W
hen the kBypassStreamer bit is set, the autom

atically generated Stream
er

can call TClass::WriteBuffer directly. Bypassing the Stream
er im

proves
the perform

ance w
hen w

riting/reading the objects in the TClonesArray.
H

ow
ever, the draw

back is: w
hen a TClonesArray is w

ritten w
ith split=0

bypassing the Stream
er, the StreamerInfo of the class in the array being

optim
ized, one cannot later use the TClonesArray w

ith split>0.
For exam

ple, there is a problem
 w

ith the follow
ing scenario:

1-
a class Foo has a TClonesArray of Bar objects

198
D

ecem
ber 2001 - version 3.1d

Input/O
utput

2-
the Foo object is w

ritten w
ith split=0 to Tree T1.

In this case the StreamerInfo for the class Bar is created in optim
ized

m
ode in such a w

ay that data m
em

bers of the sam
e type are w

ritten as
an array im

proving the I/O
 perform

ance.

3-
in a new

 program
, T1 is read and a new

 Tree T2 is created w
ith the

object Foo in split>1.
4-

W
hen the T2 branch is created, the StreamerInfo for the class Bar is

created w
ith no optim

ization (m
andatory for the split m

ode). The
optim

ized Bar StreamerInfo is going to be used to read the
TClonesArray in T1. The result w

ill be Bar objects w
ith data m

em
ber

values not in the right sequence. The solution to this problem
 is to call

BypassStreamer(kFALSE) for the TClonesArray. In this case, the
norm

al Bar::Streamer function w
ill be called. The BAR::Streamer

function w
orks O

K independently if the Bar StreamerInfo had been
generated in optim

ized m
ode or not.

 Input/O
utput

D
ecem

ber 2001 - version 3.1d
199

Schem
a Evolution

Schem
a evolution is a problem

 faced by long-lived data. W
hen a schem

a
changes, existing persistent data can becom

e inaccessible unless the system

provides a m
echanism

 to access data created w
ith previous versions of the

schem
a.

In the lifetim
e of a collaboration, the class definitions (i.e. the schem

a) are likely
to change frequently. N

ot only can the class itself change, but any of its parent
classes or data m

em
ber classes can change also. This m

akes the support for
schem

a evolution necessary.

R
O

O
T fully supports schem

a evolution. The diagram
 below

 illustrates som
e of

the scenarios.

The top half represents different versions of the shared library w
ith the class

definitions. These are the in-m
em

ory class versions.

The bottom
 half represents data files that contain different versions of the

classes.

 1)
An old version of a shared library and a file w

ith new
 class definitions. This

can be the case w
hen som

eone has not updated the library and is reading a
new

 file.

2)
R

eading a file w
ith a shared library that is m

issing a class definition (i.e.
m

issing class D
).

3)
R

eading a file w
ithout any class definitions. This can be the case w

here the
class definition is lost, or unavailable.

4)
The current version of a shared library and an old file w

ith old class versions
(backw

ard com
patibility). This is often the case w

hen reading old data.

200
D

ecem
ber 2001 - version 3.1d

Input/O
utput

5)
R

eading a file w
ith a shared library built w

ith MakeProject. This is the case
w

hen som
eone has already read the data w

ithout a shared library and has
used R

O
O

T's MakeProject feature to reconstruct the class definitions and
shared library (MakeProject is explained in detail later on).

In case of a m
ism

atch betw
een the in-m

em
ory version and the persistent version

of a class, R
O

O
T m

aps the persistent one to the one in m
em

ory. This allow
s you

to change the class definition at w
ill, for exam

ple:

1)
C

hange the order of data m
em

bers in the class.

2)
Add new

 data m
em

bers. By default the value of the m
issing m

em
ber w

ill be 0
or in case of an object it w

ill be set to null.

3)
 R

em
ove data m

em
bers.

4)
M

ove a data m
em

ber to a base class or vice �versa.

5)
C

hange the type of a m
em

ber if it is a sim
ple type or a pointer to a sim

ple
type. If a loss of precision occurs, a w

arning is given.

6)
Add or rem

ove a base class

 R

O
O

T supports schem
a evolution by keeping a class description of each version

of the class that w
as ever w

ritten to disk, w
ith the class. W

hen it w
rites an object

to file, it also w
rites the description of the current class version along w

ith it. This
description is im

plem
ented in the StreamerInfo class.

The Stream
erInfo C

lass
Each class has a list of StreamerInfo objects, one for each version of the
class if that version w

as w
ritten to disk at least once. W

hen reading an object
from

 a file, the system
 uses the StreamerInfo list to decode an object into the

current version.

The StreamerInfo is m
ade up of StreamerInfoElements . Each describes

one persistent data m
em

ber of the class.

By default all data m
em

bers of a class are persistent. To exclude a data m
em

ber
(i.e. m

ake it not persistent), add a "!" after the com
m

ent m
arks.

 Input/O
utput

D
ecem

ber 2001 - version 3.1d
201

For exam
ple the pointer *fPainter of a TH1 is not persistent:

TVirtualHistPainter* fPainter //!pointer to histogram painter

Exam
ple: TH

1 Stream
erInfo

In the StreamerInfo of the TH1 class w
e see the four base classes: TNamed,

TAttLine, TAttFill, and TAttMarker. These are follow
ed by a list of

the data m
em

bers. Each data m
em

ber is im
plem

ented by a
StreamerInfoElement.

root [] TH1::Class()->GetStreamerInfo()->ls()
StreamerInfo for class: TH1, version=3
 BASE TNamed offset= 0 type=67 The basis for a named object
 BASE TAttLine offset= 28 type= 0 Line attributes
 BASE TAttFill offset= 40 type= 0 Fill area attributes
 BASE TAttMarker offset= 48 type= 0 Marker attributes
 Int_t fNcells offset= 60 type= 3 number of bins(1D
 TAxis fXaxis offset= 64 type=61 X axis descriptor
 TAxis fYaxis offset=192 type=61 Y axis descriptor
 TAxis fZaxis offset=320 type=61 Z axis descriptor
 Short_t fBarOffset offset=448 type= 2 (1000*offset)for bar charts or legos
 Short_t fBarWidth offset=450 type= 2 (1000*width)for bar charts or legos
 Stat_t fEntries offset=452 type= 8 Number of entries
 Stat_t fTsumw offset=460 type= 8 Total Sum of weights
 Stat_t fTsumw2 offset=468 type= 8 Total Sum of squares of weights
 Stat_t fTsumwx offset=476 type= 8 Total Sum of weight*X
 Stat_t fTsumwx2 offset=484 type= 8 Total Sum of weight*X*X
 Double_t fMaximum offset=492 type= 8 Maximum value for plotting
 Double_t fMinimum offset=500 type= 8 Minimum value for plotting
 Double_t fNormFactor offset=508 type= 8 Normalization factor
 TArrayD fContour offset=516 type=62 Array to display contour levels
 TArrayD fSumw2 offset=528 type=62 Array of sum of squares of weights
 TString fOption offset=540 type=65 histogram options
 TList* fFunctions offset=548 type=63 ->Pointer to list of functions
 i= 0, TNamed type= 67, offset= 0, len=1, method=0
 i= 1, TAttLine type= 0, offset= 28, len=1, method=142484480
 i= 2, TAttFill type= 0, offset= 40, len=1, method=142496992
 i= 3, TAttMarker type= 0, offset= 48, len=1, method=142509704
 i= 4, fNcells type= 3, offset= 60, len=1, method=0
 i= 5, fXaxis type= 61, offset= 64, len=1, method=1081287424
 i= 6, fYaxis type= 61, offset=192, len=1, method=1081287548
 i= 7, fZaxis type= 61, offset=320, len=1, method=1081287676
 i= 8, fBarOffset type= 22, offset=448, len=2, method=0
 i= 9, fEntries type= 28, offset=452, len=8, method=0
 i=10, fContour type= 62, offset=516, len=1, method=1081287804
 i=11, fSumw2 type= 62, offset=528, len=1, method=1081287924
 i=12, fOption type= 65, offset=540, len=1, method=1081288044
 i=13, fFunctions type= 63, offset=548, len=1, method=1081288164

The Stream
erInfoElem

ent C
lass

A StreamerInfoElement describes a data m
em

ber of a sim
ple type, object,

array, pointer, or container.

The offset in the StreamerInfoElement is the starting address of the data for
that data m

em
ber.

 BASE TNamed offset= 0 type=67 The basis for a named object
 BASE TAttLine offset= 28 type= 0 Line attributes

202
D

ecem
ber 2001 - version 3.1d

Input/O
utput

In this exam
ple, the TNamed data starts at byte 0, and TAttLine starts at byte

28. The offset is m
achine and com

piler dependent and is com
puted w

hen the
StreamerInfo is analyzed. The TClass::GetStreamerInfo m

ethod
analyzes the StreamerInfo the sam

e w
ay it w

ould be analyzed by referring to
the class. W

hile analyzing the StreamerInfo, it com
putes the offsets.

The type field is the type of the StreamerInfoElement. It is specific to the
StreamerInfo definition. The types are defined in the file StreamerInfo.h
and listed below

:

enum EReadWrite {
 kBase = 0, kOffsetL = 20, kOffsetP = 40, kCounter = 6,
 kChar = 1, kShort = 2, kInt = 3, kLong = 4,
 kFloat= 5, kDouble = 8, kUChar = 11, kUShort = 12,
 kUInt = 13, kULong = 14, kObject = 61, kAny = 62,
 kObjectp = 63, kObjectP = 64, kTString = 65,
 kTObject = 66,
 kTNamed = 67, kMissing = 99999, kSkip = 100,
 kSkipL = 120, kSkipP = 140, kConv = 200,
 kConvL = 220, kConvP = 240, kStreamer = 500,
 kStreamLoop = 501s
};

O
ptim

ized Stream
erInfo

The entries starting w
ith "i = 0" is the optim

ized form
at of the StreamerInfo.

C
onsecutive data m

em
bers of the sam

e sim
ple type and size are collapsed and

read at once into an array for perform
ance optim

ization.

i= 0, TNamed type= 67, offset= 0, len=1, method=0
i= 1, TAttLine type= 0, offset= 28, len=1, method=142484480
i= 2, TAttFill type= 0, offset= 40, len=1, method=142496992
i= 3, TAttMarker type= 0, offset= 48, len=1, method=142509704

For exam
ple, the five data m

em
bers beginning w

ith fEnties and the three data
m

em
bers beginning w

ith fMaximum, are put into an array called fEntries (i =
9) w

ith the length 8.

 i= 9, fEntries type= 28, offset=452, len=8, method=0

O
nly sim

ple type data m
em

bers are com
bined, object data m

em
bers are not

com
bined. For exam

ple the three axis data m
em

bers rem
ain separate.

The "m
ethod" is a handle to the m

ethod that reads the object.

Autom
atic Schem

a Evolution
W

hen a class is defined in R
O

O
T, it m

ust include the ClassDef m
acro as the

last line in the header file inside the class definition. The syntax is:

ClassDef (<ClassName>,<VersionNumber>)

The version num
ber identifies this particular version of the class. The version

num
ber is w

ritten to the file in the Stream
er by the call

TBuffer::WriteVersion. You, as the designer of the class, do not need to
do any m

anual m
odification in the Stream

er. R
O

O
T's schem

a evolution
m

echanism
 is autom

atic and handled by the StreamerInfo.

 Input/O
utput

D
ecem

ber 2001 - version 3.1d
203

M
anual Schem

a Evolution
If you have w

ritten your ow
n Stream

er as described in the section "Stream
ers

W
ith Special Additions", you w

ill have to m
anually add code for each version and

m
anage the evolution of your class.

W
hen you add or rem

ove data m
em

bers, you m
ust m

odify the Stream
er by hand.

R
O

O
T assum

es that you have increased the class version num
ber in the

ClassDef statem
ent and introduced the relevant test in the read part of the

Streamer.
For exam

ple, if a new
 version of the Event class above includes a new

 m
em

ber:
Int_t fNew the ClassDef statem

ent should be changed to
ClassDef(Event,2) and the follow

ing lines should be added to the read part
of the Stream

er:

 if (R__v > 1) {
 R__b >> fNew;
 } else {
 fNew = 0; // set to some default value
 }

If, in the sam
e new

 version 2 you rem
ove the m

em
ber fH, you m

ust add the
follow

ing code to read the histogram
 object into som

e tem
porary object and

delete it:

 if (R__v) < 2 {
 TH1F *dummy = 0;
 R__b >> dummy;
 delete dummy;
 }

O
ur experience w

ith m
anual schem

a evolution show
s that it is easy to m

ake and
m

ism
atches betw

een Stream
er w

riters and readers are frequent and increase as
the num

ber of classes increases.

W
e recom

m
end you use rootcint generated Stream

ers w
henever you can, and

profit from
 the autom

atic schem
a evolution.

B
uilding C

lass D
efinitions W

ith The Stream
erInfo

A R
O

O
T file's StreamerInfo list contains the description of all versions of all

classes in the file. W
hen a file is opened the StreamerInfo is read into

m
em

ory and it provides enough inform
ation to m

ake the file brow
s able.

The StreamerInfo enables us to recreate a header file for the class in case the
com

piled class is not available. This is done w
ith the TFile::MakeProject

m
ethod. It creates a directory w

ith the header files for the nam
ed classes and a

m
akefile to com

pile a shared library w
ith the class definitions.

Exam
ple: M

akeProject
To explain the details, w

e use the exam
ple of the ATLFast project w

hich is a
fast sim

ulation for the ATLAS experim
ent. The com

plete source for ATLFast can
be dow

n loaded at: ftp://root.cern.ch/root/atlfast.tar.gz .

O
nce w

e com
pile and run ATLFast w

e get a R
O

O
T file called atlfast.root,

containing the ATLFast objects.
W

hen w
e open the file, w

e get a w
arning that the file contains classes that are

not in the C
IN

T dictionary. This is correct since w
e did not load the class

204
D

ecem
ber 2001 - version 3.1d

Input/O
utput

definitions.

root [] TFile f("atlfast.root")
Warning in <TClass::TClass>: no dictionary for class TMCParticle is available
Warning in <TClass::TClass>: no dictionary for class ATLFMuon is available
�

W
e can see the StreamerInfo for the classes:

root[] f.ShowStreamerInfo()
� StreamerInfo for class: ATLFMuon, version=1
 BASE TObject offset= 0 type=66 Basic ROOT object
 BASE TAtt3D offset= 0 type= 0 3D attributes
 Int_t m_KFcode offset= 0 type= 3 Muon KF-code
 Int_t m_MCParticle offset= 0 type= 3 Muon position in MCParticles list
 Int_t m_KFmother offset= 0 type= 3 Muon mother KF-code
 Int_t m_UseFlag offset= 0 type= 3 Muon energy usage flag
 Int_t m_Isolated offset= 0 type= 3 Muon isolation (1 for isolated)
 Float_t m_Eta offset= 0 type= 5 Eta coordinate
 Float_t m_Phi offset= 0 type= 5 Phi coordinate
 Float_t m_PT offset= 0 type= 5 Transverse energy
 Int_t m_Trigger offset= 0 type= 3 Result of trigger
�

H
ow

ever, w
hen w

e try to use a specific class, w
e get a w

arning because the
class is not in the C

IN
T dictionary.

W
e can create a C

lass using gROOT->GetClass, w
hich m

akes a fake class
from

 the StreamerInfo.

// Build a 'fake' class
root [] gROOT->GetClass("ATLFMuon")
(const class TClass*)0x87e5c08
 // The fake class has a StreamerInfo
root [] gROOT->GetClass("ATLFMuon")->GetStreamerInfo()->ls()
StreamerInfo for class: ATLFMuon, version=1
 BASE TObject offset= 0 type=66 Basic ROOT object
 BASE TAtt3D offset= 0 type= 0 3D attributes
 Int_t m_KFcode offset= 16 type= 3 Muon KF-code
 Int_t m_MCParticle offset= 20 type= 3 Muon position in
 MCParticles list
 Int_t m_KFmother offset= 24 type= 3 Muon mother KF-code
 Int_t m_UseFlag offset= 28 type= 3 Muon energy usage flag
 Int_t m_Isolated offset= 32 type= 3 Muon isolation
 Float_t m_Eta offset= 36 type= 5 Eta coordinate
 Float_t m_Phi offset= 40 type= 5 Phi coordinate
 Float_t m_PT offset= 44 type= 5 Transverse energy
 Int_t m_Trigger offset= 48 type= 3 Result of trigger
 i= 0, TObject type= 66, offset= 0, len=1, method=0
 i= 1, TAtt3D type= 0, offset= 0, len=1, method=142684688
 i= 2, m_KFcode type= 23, offset= 16, len=5, method=0
 i= 3, m_Eta type= 25, offset= 36, len=3, method=0
 i= 4, m_Trigger type= 3, offset= 48, len=1, method=0

MakeProject has three param
eters:

MakeProject(const char *dirname, const char *classes, Option_t *option)

The first is the directory nam
e in w

hich to place the generated header files.

The second param
eter is the nam

e of the classes to include in the project. By
default all classes are included. It recognizes the w

ild card character *, for
exam

ple: "ATLF*" includes all classes beginning w
ith ATLF.

The third param
eter is an option w

ith the follow
ing values:

 Input/O
utput

D
ecem

ber 2001 - version 3.1d
205

��
"new

" :
If the directory does not exist, it is created.

��
"recreate": If the directory does not exist, it is creates as in "new

", in addition
if the directory does exist, all existing files are deleted before
creating the new

 files.
��

"update" : The new
 classes are added to the existing directory and the

existing classes are replaced w
ith the new

 definition. If the
directory does not exist, it creates it as in "new

".
��

"+":
This option can be used in com

bination w
ith the other three. It

w
ill create the necessary files to easily build a shared library

containing the class definitions. Specifically it w
ill:

-
G

enerate a script called MAKE that builds the shared library
containing the definition of all classes in the directory.

-
G

enerate a LinkDef.h files to use w
ith rootcint in MAKE.

-
R

un rootcint to generate a <dirname>ProjectDict.cxx file
-

C
om

pile the <dirname>ProjectDict.cxx w
ith the current

options in compiledata.h.
-

Build a shared library <dirname>.so.

��
"++":

This option can be used instead of the single "+" . It does
everything the single "+" does, and dynam

ically loads the shared
library <dirname>.so .

This exam
ple, m

akes a directory called MyProject that w
ill contain all class

definition from
 the atlfast.root file. The necessary m

akefile to build a shared
library are also created, and since the '++' is appended, the shared library is also
loaded.

root [] f.MakeProject("MyProject","*", "recreate++")
MakeProject has generated 0 classes in MyProject
MyProject/MAKE file has been generated
Shared lib MyProject/MyProject.so has been generated
Shared lib MyProject/MyProject.so has been dynamically linked

The contents of MyProject:

root [] .! ls MyProject
ATLFCluster.h ATLFJet.h ATLFMiscMaker.h
ATLFTrack.h MAKE TMCParticle.h
ATLFClusterMaker.h ATLFJetMaker.h ATLFMuon.h
ATLFTrackMaker.h MyProject.so
ATLFElectron.h ATLFMCMaker.h ATLFMuonMaker.h
ATLFTrigger.h MyProjectProjectDict.cxx
ATLFElectronMaker.h ATLFMaker.h ATLFPhoton.h
ATLFTriggerMaker.h MyProjectProjectDict.h
ATLFHistBrowser.h ATLFMisc.h ATLFPhotonMaker.h
LinkDef.h MyProjectProjectDict.o

N
ow

 you can load the shared library in any consecutive root session to use the
atlfast classes.

root [] gSystem->Load("MyProject/MyProject")
root [] ATLFMuon muon

206
D

ecem
ber 2001 - version 3.1d

Input/O
utput

This is an exam
ple of a generated header file:

//
// This class has been generated by TFile::MakeProject
// (Thu Apr 5 10:18:37 2001 by ROOT version 3.00/06)
// from the StreamerInfo in file atlfast.root
//
 #ifndef ATLFMuon_h
#define ATLFMuon_h
 #include "TObject.h"
#include "TAtt3D.h"
 class ATLFMuon : public TObject , public TAtt3D {
 public:
 Int_t m_KFcode; //Muon KF-code
 Int_t m_MCParticle; //Muon position in MCParticles list
 Int_t m_KFmother; //Muon mother KF-code
 Int_t m_UseFlag; //Muon energy usage flag
 Int_t m_Isolated; //Muon isolation (1 for isolated)
 Float_t m_Eta; //Eta coordinate
 Float_t m_Phi; //Phi coordinate
 Float_t m_PT; //Transverse energy
 Int_t m_Trigger; //Result of trigger
 ATLFMuon() {;}
 virtual ~ATLFMuon() {;}
 ClassDef(ATLFMuon,1) //
};
 ClassImp(ATLFMuon)
#endif

 Input/O
utput

D
ecem

ber 2001 - version 3.1d
207

M
igrating to R

O
O

T 3
W

e w
ill distinguish the follow

ing cases:

C
ase A

: You have your ow
n Streamer m

ethod in your class im
plem

entation file.
This also m

eans that you have specified MyClass- in the LinkDef.h file.
keep MyClass- unchanged

��
Increm

ent your class version id in ClassDef by 1, e.g.
ClassDef(MyClass, 2)

��
C

hange your Streamer function in the follow
ing w

ay: The old w
rite block

can be replaced by the new
 standard W

rite. C
hange the read block to use

the new
 schem

e for the new
 versions and the old code for the old versions.

 void MyClass::Streamer(TBuffer &R__b)
 {
 // Stream an object of class MyClass.
 if (R__b.IsReading()) {
 UInt_t R__s, R__c;
 Version_t R__v = R__b.ReadVersion(&R__s, &R__c);
 if (R__v > 1) {
 MyClass::Class()->ReadBuffer(R__b, this, R__v, R__s, R__c);
 return;
 }
// process old versions before automatic schema evolution
 R__b >> xxxx;
 R__b >> .. etc
 R__b.CheckByteCount(R__s, R__c, MyClass::IsA());
// end of old versions

 } else {
 MyClass::Class()->WriteBuffer(R__b,this);
 }
 }

C
ase B

: You use the autom
atic stream

er in the dictionary file.

��
M

ove the old Stream
er from

 the file generated by rootcint to your class
im

plem
entation file, then m

odify the Streamer function as in C
ase A above.

��
Increm

ent your class version id in C
lassD

ef by 1, for exam
ple

ClassDef(MyClass, 2)
��

Add option "-" in the pragm
a line of LinkDef.

C
ase C

: You use the autom
atic stream

er in the dictionary file and you already
use the option "+" in the LinkDef file. If the old autom

atic Stream
er does not

contain any statem
ent using the function WriteArray, you have nothing to do,

except running rootcint again to regenerate the new
 form

 of the Stream
er

function, otherw
ise proceed like for case B.

208
D

ecem
ber 2001 - version 3.1d

Input/O
utput

C
om

pression and Perform
ance

R
O

O
T uses a com

pression algorithm
 based on the w

ell-know
n gzip algorithm

. It
supports nine levels of com

pression. The default for R
O

O
T is one.

The com
pression level can be set w

ith the m
ethod

TFile::SetCompressionLevel. Experience w
ith this algorithm

 show
s that a

com
pression level of 1.3 for raw

 data files and around tw
o on m

ost D
ST files is

the optim
um

. The choice of one for the default is a com
prom

ise betw
een the tim

e
it takes to read and w

rite the object vs. the disk space savings.

To specify no com
pression, set the level to zero.

W
e recom

m
end using com

pression w
hen the tim

e spent in I/O
 is sm

all com
pared

to the total processing tim
e. If the I/O

 operation is increased by a factor of 5 it is
still a sm

all percentage of the total tim
e and it m

ay com
press the data by a factor

of 10. O
n the other hand if the tim

e spend on I/O
 is large, com

pression m
ay have

a large im
pact on the program

's perform
ance.

The com
pression factor, i.e. the savings of disk space, varies w

ith the type of
data. A buffer w

ith a sam
e value array is com

pressed so that the value is only
w

ritten once. For exam
ple a track has the m

ass of a pion w
hich it is alw

ays the
sam

e, and the charge of the pion w
hich is either positive or negative. For 1000

pions, the m
ass w

ill be w
ritten only once, and the charge only tw

ice (positive and
negative).

W
hen the data is sparse, i.e. w

hen there are m
any zeros, the com

pression factor
is also high.

The tim
e to uncom

press an object is sm
all com

pared to the com
pression tim

e
and is independent of the selected com

pression level. N
ote that the com

pression
level m

ay be changed at any tim
e, but the new

com

pression level w
ill only apply to new

ly
w

ritten objects. C
onsequently, a R

O
O

T file m
ay

contain objects w
ith different com

pression
levels.

This table show
s four runs of the dem

o script
that creates 15 histogram

s w
ith different

com
pression param

eters. To m
ake the num

bers
m

ore significant, the m
acro w

as m
odified to

create 1000 histogram
s.

W
e have included tw

o m
ore exam

ples to show
 the im

pact of com
pression on

Trees in the next chapter.

C
om

pression
level

Bytes
W

rite
Tim

e
(sec)

R
ead

Tim
e

(sec.)

0
1,004,998

4.77
0.07

1
 438,366

6.67
0.05

5
 429,871

7.03
0.06

9
 426,899

8.47
0.05

 Input/O
utput

D
ecem

ber 2001 - version 3.1d
209

Accessing R
O

O
T Files R

em
otely via a rootd

R
eading and w

riting R
O

O
T files over the net can be done by creating a

TNetFile object instead of a TFile object. Since the TNetFile class inherits
from

 the TFile class, it has exactly the sam
e interface and behavior. The only

difference is that it reads and w
rites to a rem

ote rootd daem
on.

TN
etFile U

R
L

TNetFile file nam
es are in standard U

R
L form

at w
ith protocol "root". The

follow
ing are valid TNetFile U

R
L's:

root://hpsalo/files/aap.root
root://hpbrun.cern.ch/root/hsimple.root
root://pcna49a:5151/~na49/data/run821.root
root://pcna49d.cern.ch:5050//v1/data/run810.root

The only difference w
ith the w

ell-know
n httpd U

R
L's is that the root of the rem

ote
file tree is the rem

ote user's hom
e directory. Therefore an absolute pathnam

e
requires a // after the host or port (as show

n in the last exam
ple above). Further

the expansion of the standard shell characters, like ~, $, .., etc. is handled
as expected. The default port on w

hich the rem
ote rootd listens is 1094 and this

default port is assum
ed by TNetFile (actually by TUrl w

hich is used by
TNetFile). The port num

ber has been allocated by the IAN
A and is reserved for

R
O

O
T.

R
em

ote Authentication
C

onnecting to a rootd daem
on requires a rem

ote user id and passw
ord.

TNetFile supports three w
ays for you to provide your login inform

ation:

1.
Setting it globally via the static TNetFile functions
TNetFile::SetUser() and TNetFile::SetPasswd()

2.
Via the ~/.netrc file (sam

e form
at and file as used by ftp)

3.
Via com

m
and line prom

pt

The different m
ethods w

ill be tried in the order given above. O
n m

achines w
ith

AFS, rootd w
ill obtain an AFS token.

210
D

ecem
ber 2001 - version 3.1d

Input/O
utput

A Sim
ple Session

root [] TFile *f1 = TFile::Open("local/file.root", "update")
root [] TFile *f2 =
TFile::Open("root://pcna49a.cern.ch/data/file.root", "new")
Name (pcna49a:rdm):
Password:
root [] TFile *f3 =
TFile::Open("http://root.cern.ch/~rdm/hsimple.root")
root [] f3.ls()
TWebFile** http://root.cern.ch/~rdm/hsimple.root
TWebFile* http://root.cern.ch/~rdm/hsimple.root
KEY: TH1F hpx;1 This is the px distribution
KEY: TH2F hpxpy;1 py vs px
KEY: TProfile hprof;1 Profile of pz versus px
KEY: TNtuple ntuple;1 Demo ntuple
root [] hpx.Draw()

The rootd D
aem

on
The rootd daem

on w
orks w

ith the TNetFile class. It allow
s rem

ote access to
R

O
O

T database files in read or read/w
rite m

ode. The rootd daem
on can be

found in the directory $ROOTSYS/bin. It can be started either via inetd or by
hand from

 the com
m

and line (no need to be super user). Its perform
ance is

com
parable w

ith N
FS but w

hile N
FS requires all kind of system

 perm
issions to

setup, rootd can be started by any user. The sim
plest w

ay to start rootd is by
starting it from

 the com
m

and line w
hile being logged in to the rem

ote m
achine.

O
nce started rootd goes im

m
ediately in the background (no need for the &) and

you can log out from
 the rem

ote node. The only argum
ent required is the port

num
ber (1094) on w

hich your private rootd w
ill listen. U

sing TNetFile you can
now

 read and w
rite files on the rem

ote m
achine.

For exam
ple:

hpsalo [] telnet fsgi02.fnal.gov
login: minuser
Password:
<fsgi02> rootd -p 1094
<fsgi02> exit
hpsalo [] root
root [] TFile *f =
TFile::Open("root://fsgi02.fnal.gov:1094/file.root","new")
Name (fsgi02.fnal.gov:rdm): minuser
Password:
root [] f.ls()

In the above exam
ple, rootd runs on the rem

ote node under user id minuser
and listens to port 1094. W

hen creating a TNetFile object you have to specify
the sam

e port num
ber 1094and use minuser (and corresponding passw

ord) as
login id. W

hen rootd is started in this w
ay, you can only login w

ith the user id
under w

hich rootd w
as started on the rem

ote m
achine. H

ow
ever, you can m

ake
m

any connections since the original rootd w
ill fork (spaw

n) a new
 rootd that

w
ill service the requests from

 the TNetFile. The original rootd keeps listening
on the specified port for other connections. Each tim

e a TNetFile m
akes a

connection; it gets a new
 private rootd that w

ill handle its requests. At the end
of a R

O
O

T, session w
hen all TNetFiles are closed only the original rootd w

ill
stay alive ready to service future TNetFiles.

 Input/O
utput

D
ecem

ber 2001 - version 3.1d
211

Starting rootd via inetd
If you expect to often connect via TNetFile to a rem

ote m
achine, it is m

ore
efficient to install rootd as a service of the inetd super daem

on. In this w
ay, it

is not necessary for each user to run a private rootd. H
ow

ever, this requires a
one-tim

e m
odification of tw

o system
 files (and super user privileges to do so).

Add to /etc/services the line:

rootd 1094/tcp

To /etc/inetd.conf the line:

rootd stream tcp nowait root /usr/local/root/bin/rootd rootd
-i

After these changes force inetd to reread, its config file w
ith "kill -HUP

<pid inetd>".
W

hen setup in this w
ay it is not necessary to specify a port num

ber in the U
R

L
given to TNetFile. TNetFile assum

es the default port to be 1094 as specified
above in the /etc/services file.

C
om

m
and Line Argum

ents for rootd
rootd support the follow

ing argum
ents:

 -i says we are started by inetd
 -p port# specifies port number to listen on
 -d level level of debug info written to syslogd
 0 = no debug (default)
 1 = minimum
 2 = medium
 3 = maximum

R
eading R

O
O

T Files via Apache W
eb Server

By adding one R
O

O
T specific m

odule to your Apache w
eb server, you can

distribute R
O

O
T files to any R

O
O

T user. There is no longer a need to send your
files via FTP and risking (out of date) histogram

s or other objects. Your latest up-
to-date results are alw

ays accessible to all your colleagues.

To access R
O

O
T files via a w

eb server, create a TWebFile object instead of a
TFile object w

ith a standard U
R

L as file nam
e. For exam

ple:

root [] TWebFile f("http://root.cern.ch/~rdm/hsimple.root")
root [] f.ls()
TWebFile** http://root.cern.ch/~rdm/hsimple.root
TWebFile* http://root.cern.ch/~rdm/hsimple.root
KEY: TH1F hpx;1 This is the px distribution
KEY: TH2F hpxpy;1 py vs px
KEY: TProfile hprof;1 Profile of pz versus px
KEY: TNtuple ntuple;1 Demo ntuple
root [] hpx.Draw()

Since TWebFile inherits from
 TFile all TFile operations w

ork as expected.
H

ow
ever, due to the nature of a w

eb server a TWebFile is a read-only file. A
TWebFile is ideally suited to read relatively sm

all objects (like histogram
s or

other data analysis results). Although possible, you don't w
ant to analyze large

TTree's via a TWebFile.

212
D

ecem
ber 2001 - version 3.1d

Input/O
utput

H
ere follow

s a step-by-step recipe for m
aking your Apache 1.1 or 1.2 w

eb server
R

O
O

T aw
are:

1.
G

o to your Apache source directory and add the file
ftp://root.cern.ch/root/m

od_root.c or ftp://root.cern.ch/root/m
od_root133.c

w
hen your Apache server is > 1.2 (renam

e the file mod_root.c).
2.

Add to the end of the Configuration file the line:
Module root_module mod_root.o

3.
R

un the Configure script
4.

Type make
5.

C
opy the new

 httpd to its expected place
6.

G
o to the conf directory and add at the end of the srm.conf file the line:

AddHandler root-action root
7.

R
estart the httpd server

U
sing the G

eneral TFile::O
pen() Function

To m
ake life sim

ple w
e provide a general function to open any type of file (except

shared m
em

ory files of class TMapFile). This functionality is provided by the
static TFile::Open() function:

TFile *TFile::Open(const Text_t *name, Option_t *option="",

const Text_t *title="",

D
epending on the name argum

ent, the function returns a TFile, a TNetFile or
a TWebFile object. In case a TNetFile U

R
L specifies a local file, a TFile

object w
ill be returned (and of course no login inform

ation is needed). The
argum

ents of the Open() function are the sam
e as the ones for the TFile

constructor.

 Trees
D

ecem
ber 2001 - version 3.1d

213

12
Trees

W
hy should you U

se a Tree?
In the Input/O

utput chapter, w
e saw

 how
 objects can be saved in R

O
O

T files.
In case you w

ant to store large quantities of sam
e-class objects, R

O
O

T has
designed the TTree and TNtuple classes specifically for that purpose. The
TTree class is optim

ized to reduce disk space and enhance access speed. A
TNtuple is a TTree that is lim

ited to only hold floating-point num
bers; a

TTree on the other hand can hold all kind of data, such as objects or arrays
in addition to all the sim

ple types.

W
hen using a TTree, w

e fill its branch buffers w
ith leaf data and the

buffers are w
ritten to file w

hen it is full. Branches, buffers, and leafs,
are explained a little later in this chapter, but for now

, it is im
portant

to realize that not each object is w
ritten individually, but rather

collected and w
ritten a bunch at a tim

e.

This is w
here the TTree takes advantage of com

pression and w
ill produce a

m
uch sm

aller file than if the objects w
ere w

ritten individually. Since the
unit to be com

pressed is a buffer, and the TTree contains m
any sam

e-class
objects, the header of the objects can be com

pressed. The TTree
reduces the header of each object, but it still contains the class nam

e.
U

sing com
pression, the class nam

e of each sam
e-class object has a good

chance of being com
pressed, since the com

pression algorithm
 recognizes

the bit pattern representing the class nam
e. U

sing a TTree and com
pression

the header is reduced to about 4 bytes com
pared to the original 60 bytes.

H
ow

ever, if com
pression is turned off, you w

ill not see these large savings.

The TTree is also used to optim
ize the data access. A tree uses a hierarchy

of branches, and each branch can be read independently from
 any other

branch. N
ow

, assum
e that Px and Py are data m

em
bers of the event, and w

e
w

ould like to com
pute Px

2 + Py
2 for every event and histogram

 the result. If
w

e had saved the m
illion events w

ithout a TTree w
e w

ould have to: 1) read
each event in its entirety into m

em
ory, 2) extract the Px and Py from

 the
event, 3) com

pute the sum
 of the squares, and 4) fill a histogram

. W
e w

ould
have to do that a m

illion tim
es! This is very tim

e consum
ing, and w

e really do
not need to read the entire event, every tim

e. All w
e need are tw

o little data
m

em
bers (Px and Py). O

n the other hand, if w
e use a tree w

ith one branch
containing Px and another branch containing Py, w

e can read all values of
Px and Py by only reading the Px and Py branches. This m

akes the use of
the TTree very attractive.

214
D

ecem
ber 2001 - version 3.1d

Trees

A Sim
ple TTree

This script builds a TTree from
 an ASC

II file containing statistics about the
staff at C

ER
N

. This script, staff.C and its input file staff.dat are in
$ROOTSYS/tutorials.

{ // example of macro to read data from an ascii file and
// create a root file with an histogram and a TTree.
 gROOT->Reset();
 // the structure to hold the variables for the branch
 struct staff_t {
 Int_t cat;
 Int_t division;
 Int_t flag;
 Int_t age;
 Int_t service;
 Int_t children;
 Int_t grade;
 Int_t step;
 Int_t nation;
 Int_t hrweek;
 Int_t cost;
 };
 staff_t staff;
 // open the ASCII file
 FILE *fp = fopen("staff.dat","r");
 char line[81];
 // create a new ROOT file
 TFile *f = new TFile("staff.root","RECREATE");
 // create a TTree
 TTree *tree = new TTree("tree",
 "staff data from ascii file");
 // create one branch with all the information from
 // the stucture
 tree->Branch("staff",&staff.cat,"cat/I:division:
 flag:age:service:children:grade:step:
 nation:hrweek:cost");
 // fill the tree from the values in ASCII file
 while (fgets(&line,80,fp)) {
 sscanf(&line[0] ,"%d%d%d%d",
 &staff.cat,&staff.division,&staff.flag,&staff.age);
 sscanf(&line[13],"%d%d%d%d",&staff.service,
 &staff.children, &staff.grade,&staff.step);
 sscanf(&line[24],"%d%d%d",&staff.nation,
 &staff.hrweek, &staff.cost);
 tree->Fill();
 }
 // check what the tree looks like
 tree->Print();
 fclose(fp);
 f->Write();
}

 Trees
D

ecem
ber 2001 - version 3.1d

215

The script declares a structured called staff_t, w
ith several integers

representing the relevant attribute of a staff m
em

ber.

The script opens the ASC
II file, creates a R

O
O

T file and a TTree. Then it
creates one branch w

ith the TTree::Branch m
ethod.

The first param
eter of the Branch m

ethod is the branch nam
e. The second

param
eter is the address from

 w
hich the first leaf is to be read. In this

exam
ple it is the address of the structure staff.

O
nce the branch is defined, the script reads the data from

 the ASC
II file into

the staff_t structure and fills the tree.
The ASC

II file is closed, and the R
O

O
T file is w

ritten to disk saving the tree.
R

em
em

ber, trees and histogram
s are created in the current directory, w

hich
is the file in our exam

ple. H
ence an f->Write() saves the tree.

Show
 An Entry w

ith TTree::Show

An easy w
ay to access one entry of a tree is the use the TTree::Show

m
ethod. For exam

ple to look at the 10
th entry in the staff.root tree:

root [] TFile f("staff.root")
root [] tree->Show(10)
======> EVENT:10
 cat = 361
 division = 9
 flag = 15
 age = 51
 service = 29
 children = 0
 grade = 7
 step = 13
 nation = 7
 hrweek = 40
 cost = 7599

Print the tree structure w
ith TTree::Print

A helpful com
m

and to see the tree structure m
eaning the num

ber of entries,
the branches and the leaves, is TTree::Print.

root [] tree->Print()

*Tree :tree : staff data from ascii file
*Entries :3354 : Total = 134680 bytes File Size = 46302
* Tree compression factor = 3.24

*Br 0 :staff :cat/I:division:flag:age:service:children:grade:step:
* nation:hrweek:cost
*Entries :3354 : Total Size = 127856 bytes File Size = 39478
*Baskets : 4 : Basket Size = 32000 bytes Compression= 3.24

216
D

ecem
ber 2001 - version 3.1d

Trees

Scan a Variable the tree w
ith TTree::Scan

The TTree::Scan m
ethod show

s all values of the list of leaves separated
by a colon.

root [11] tree->Scan("cost:age:children")
**
* Row * cost * age * children *
**
* 0 * 11975 * 58 * 0 *
* 1 * 10228 * 63 * 0 *
* 2 * 10730 * 56 * 2 *
* 3 * 9311 * 61 * 0 *
* 4 * 9966 * 52 * 2 *
* 5 * 7599 * 60 * 0 *
* 6 * 9868 * 53 * 1 *
* 7 * 8012 * 60 * 1 *
�

The Tree View
er

The tree view
er, a quick and

easy w
ay to exam

ine a tree.

To start the tree view
er, open

a file and object brow
ser.

R
ight click on a TTree and

select StartViewer.
You can also start the tree
view

er from
 the com

m
and

line. First load the view
er

library.
root[] TFile f("staff.root")
root[] tree->StartViewer()

If you w
ant to start a tree

view
er w

ithout a tree, you
need to load the tree player
library first:

root[] gSystem->Load("libTreePlayer.so")
root[] new TTreeViewer()

 Trees
D

ecem
ber 2001 - version 3.1d

217

H
ere is w

hat the tree view
er looks like for the exam

ple file staff.root.

The left panel contains the list of trees and their branches, in this case there
is only one tree. You can add m

ore trees w
ith the File-O

pen com
m

and to
open the file containing the new

 tree, then use the context m
enu on the right

panel, select SetTreeName and enter the nam
e of the tree to add.

O
n the right are the leaves or variables in the tree. You can double click on

any leaf to a histogram
 it.

To draw
 m

ore than one dim
ension you can drag and drop any leaf to the X,Y,

and Z "boxes". Then push the D
raw

 button, w
itch is m

arked w
ith the purple

icon on the bottom
 left.

To add a cut/w
eight to the histogram

, enter an expression in the "cut box". The
cut box is the one w

ith the scissor icon.

You can create a new
 expression by right clicking on any of the E() boxes.

The expression can be dragged and dropped into any of the boxes (X, Y, Z,
C

ut, or Scan).

To scan one or m
ore variables, drop them

 into the Scan box, then double
click on the box. You can also redirect the result of the scan to a file by
checking the Scan box on top.

W
hen the "Rec" box is checked, the Draw and Scan com

m
ands are recorded

in the history file and echoed on the com
m

and line.

The "H
istogram

" text box contains the nam
e of the resulting histogram

. By
default it is htem

p. You can type any nam
e, if the histogram

 does not exist it
w

ill create one.

The O
ption text box contains the list of D

raw
 options (see D

raw
 O

ptions in
the H

istogram
 C

hapter). You can select the options w
ith the O

ptions m
enu.

The C
om

m
and box lets you enter any com

m
and that you could also enter on

the com
m

and line.

218
D

ecem
ber 2001 - version 3.1d

Trees

The vertical slider on the far left side can be used to select the m
inim

um
 and

m
axim

um
 of an event range. The actual start and end index are show

n in on
the bottom

 in the status w
indow

.

The IList and O
List are to specify an input list of entry indices and a nam

e for
the output list respectively. Both need be of type TList and contain integers
of entry indices. These lists are described below

 in the paragraph "C
reating

an Event List".

There is an extensive help utility accessible w
ith the H

elp m
enu.

H
ere are a couple of graphs. The first is a plot of the age distribution, the

second a scatter plot of the cost vs. age. The second one w
as generated by

dragging the age leaf into the Y-box and the cost leaf into the X-box, and
pressing the D

raw
 button. By default this w

ill generate a scatter plot. Select a
different option, for exam

ple "lego" to create a 2D
 histogram

.

 Trees
D

ecem
ber 2001 - version 3.1d

219

C
reating and Saving Trees

This pictures show
s the TTree class:

To create a TTree w
e use its constructor. Then w

e design our data layout
and add the branches.

A tree can be created by giving a nam
e and title:

TTree t("MyTree", "Example Tree")

220
D

ecem
ber 2001 - version 3.1d

Trees

C
reating a Tree from

 a Folder H
ierarchy

An alternative w
ay to create a tree and organize it, is to use folders. You can

build a folder structure (see the chapter on Folders and Tasks), and create a
tree w

ith branches for each of the sub-folders:

TTree folder_tree("MyFolderTree", "/MyFolder")

The second argum
ent is the top folder, and the "/" signals the TTree

constructor that this is a folder not just the title. You fill the tree by placing the
data into the folder structure and calling TTree::Fill.
The reverse is also true, one can recreate the folder hierarchy from

 the tree
w

ith the TTree::SetFolder m
ethod.

Autosave
Autosave gives the option to save all branch buffers every n byte. W

e
recom

m
end using Autosave for large acquisitions. If the acquisition fails to

com
plete, you can recover the file and all the contents since the last

Autosave. To set the num
ber of bytes betw

een Autosave you can use the
TTree::SetAutosave() m

ethod. You can also call TTree::Autosave in
the acquisition loop every n entry.

B
ranches The class for a branch is called TBranch. The organization of branches

allow
s the designer to optim

ize the data for the anticipated use.

If tw
o variables are independent, and the designer know

s the variables w
ill

not be used together, she w
ould place them

 on separate branches. If,
how

ever, the variables are related, such as the coordinates of a point, it is
m

ost efficient to create one branch w
ith both coordinates on it. A variable on

a TBranch is called a leaf (yes - TLeaf).
Another point to keep in m

ind w
hen designing trees is the branches of the

sam
e TTree can be w

ritten to separate files.

To add a TBranch to a TTree w
e call the TTree::Branch() m

ethod. N
ote

that w
e D

O
 N

O
T use the TBranch constructor.

The TTree::Branch m
ethod has several signatures. The branch type

differs by w
hat is stored in it. A branch can hold an entire object, a list of

sim
ple variables, contents of a folder, contents of a TList, or an array of

objects. Let's see som
e exam

ples.

To follow
 along you w

ill need the shared library libEvent.so. First, check if
it is in $ROOTSYS/test. If it is, copy it to your ow

n area. If it is not there, you
have to build it.

 Trees
D

ecem
ber 2001 - version 3.1d

221

Adding a B
ranch to hold a List of Variables

As in the very first exam
ple (staff.root) the data w

e w
ant to save is a list

of sim
ple variables, such as integers or floats. In this case, w

e use the
follow

ing TTree::Branch signature:

tree->Branch
("Ev_Branch",&event,"temp/F:ntrack/I:nseg:nvtex:flag/i ");

The first param
eter is the branch nam

e.

The second param
eter is the address from

 w
hich the first

variable is to be read. In the code above, �event� is a structure
w

ith one float and three integers and one unsigned integer.

You should not assum
e that the com

piler aligns the
elem

ents of a structure w
ithout gaps. To avoid alignm

ent
problem

s, you need to use structures w
ith sam

e length
m

em
bers. If your structure does not qualify, you need to

create one branch for each elem
ent of the structure.

The leaf nam
e is N

O
T used to pick the variable out of the

structure, but is only used the nam
e for the leaf. This m

eans that the list of
variables needs to be in a structure in the order described in the third
param

eter.

This third param
eter is a string describing the leaf list. Each leaf has a nam

e
and a type separated by a "/" and it is separated from

 the next leaf by a ":".

<Variable>/<type>:<Variable>/<type>

The exam
ple on the next line has tw

o leafs: a floating-point num
ber called

temp and an integer nam
ed ntrack.

" temp/F:ntrack/I: "

The type can be om
itted and if no type is given, the sam

e type as the
previous variable is assum

ed. This leaf list has three integers called ntrack,
nseg, and nvtex.

"ntrack/I:nseg:nvtex"

There is one m
ore rule: w

hen no type is given for the very first leaf, it
becom

es a float (F). This leaf list has three floats called temp, mass, and
px.

"temp:mass:px"

The sym
bols used for the type are:

C
:

a character string term
inated by the 0 character.

B:
an 8 bit signed integer.

b:
an 8 bit unsigned integer.

S:
a 16 bit signed integer.

s:
a 16 bit unsigned integer.

I:
a 32 bit signed integer.

i:
a 32 bit unsigned integer.

F:
a 32 bit floating point.

D
:

a 64 bit floating point.

222
D

ecem
ber 2001 - version 3.1d

Trees

The type is used for a byte count to decide how
 m

uch space to allocate. The
variable w

ritten is sim
ply the block of bytes starting at the starting address

given in the second param
eter. It m

ay or m
ay not m

atch the leaf list
depending on w

hether or not the program
m

er is being careful w
hen choosing

the leaf address, nam
e, and type.

By default, a variable w
ill be copied w

ith the num
ber of bytes specified in the

type descriptor sym
bol. H

ow
ever, if the type consists of tw

o characters, the
num

ber specifies the num
ber of bytes to be used w

hen copying the variable
to the output buffer. The line below

 describes ntrack to be w
ritten as a 16-

bit integer (rather than a 32-bit integer).

"ntrack/I2"

W
ith this Branch m

ethod, you can also add a leaf that holds an entire array of
variables. To add an array of floats use the f[n] notation w

hen describing
the leaf.

Float_t f[10];
tree->Branch("fBranch",&f,"f[10]/F");

You can also add an array of variable length:

{ TFile *f = new TFile("peter.root","recreate");
 Int_t nPhot;
 Float_t E[500];
 TTree* nEmcPhotons = new TTree("nEmcPhotons","EMC Photons");
 nEmcPhotons->Branch("nPhot",&nPhot,"nPhot/I");
 nEmcPhotons->Branch("E",E,"E[nPhot]/F");
}

For an exam
ple see Exam

ple 2 below
 ($ROOTSYS/tutorials/tree2.C)

and staff.C at the beginning of this chapter.

Adding a TB
ranch to hold an O

bject
To w

rite a branch to hold an event object, w
e need to load the definition of

the Event class, w
hich is in $ROOTSYS/test/libEvent.so. For an

object to be in a tree it's class definition needs to include the
ClassDef/ClassImp m

acros. W
e expect to rem

ove this restriction in the
near future.

root [] .L libEvent.so
First, w

e need to open a file and create a tree.

root [] TFile *f = new TFile("AFile.root", "RECREATE")
root [] TTree *tree = new TTree("T","A Root Tree")

 Trees
D

ecem
ber 2001 - version 3.1d

223

W
e need to create a pointer to an Event object that w

ill be used as a
reference in the TTree::Branch m

ethod. Then w
e create a branch w

ith the
TTree::Branch m

ethod.

root[] Event *event = new Event()
root[] tree->Branch("EventBranch","Event", &event, 32000, 99)

To add a branch to hold an object w
e use the signature above. The first

param
eter is the nam

e of the branch. The second param
eter is the nam

e of
the class of the object to be stored. The third param

eter is the address of a
pointer to the object to be stored.

N
ote that it is an address of a pointer to the object, not just a pointer to the

object.

The fourth param
eter is the buffer size and is by default 32000 bytes. It is the

num
ber of bytes of data for that branch to save to a buffer until it is saved to

the file.

The last param
eter is the split-level, w

hich is the topic of the next section.

Static class m
em

bers are not part of an object and thus not w
ritten w

ith the
object. You could store them

 separately by collecting these values in a
special "status" object and w

rite it to the file outside of the tree. If it m
akes

sense to store them
 for each object, m

ake them
 a regular data m

em
ber.

Setting the Split-level
To split a branch m

eans to create a sub-branch for each data m
em

ber in the
object. The split-level can be set to 0 to disable splitting or it can be a set to a
num

ber betw
een 1 and 99 indicating the depth of splitting.

If the split-level is set to zero, the w
hole object is w

ritten in its entirety to one
branch. The TTree w

ill look like the one on the right, w
ith one branch and

one leaf holding the entire event object.

A
 tree that is split

A
 tree that is not split

 W
hen the split level is 1, an object data m

em
ber is assigned a branch. If the

split level is 2, the data m
em

ber objects w
ill be split also, and a split level of 3

its data m
em

bers objects, w
ill be split. As the split level increases so does the

splitting depth.

R
O

O
T's default for the split level is 99, this m

eans the object w
ill be split to

the m
axim

um
.

224
D

ecem
ber 2001 - version 3.1d

Trees

M
em

ory C
onsiderations w

hen Splitting a B
ranch

Splitting a branch can quickly generate m
any branches. Each branch has its

ow
n buffer in m

em
ory. In case of m

any branches (say m
ore than 100), you

should adjust the buffer size accordingly. A recom
m

ended buffer size is
32000 bytes if you have less than 50 branches. Around 16000 bytes if you
have less than 100 branches and 4000 bytes if you have m

ore than 500
branches. These num

bers are recom
m

ended for com
puters w

ith m
em

ory
size ranging from

 32M
B to 256M

B. If you have m
ore m

em
ory, you should

specify larger buffer sizes. H
ow

ever, in this case, do not forget that your file
m

ight be used on another m
achine w

ith a sm
aller m

em
ory configuration.

Perform
ance C

onsiderations w
hen Splitting a B

ranch
A split branch is faster to read, but slightly slow

er to w
rite. The reading is

quicker because variables of the sam
e type are stored consecutively and the

type does not have to be read each tim
e. It is slow

er to w
rite because of the

large num
ber of buffers as described above. See Perform

ance Benchm
arks

for perform
ance im

pact of split and non-split m
ode.

R
ules for Splitting

W
hen splitting a branch, variables of different types are handled differently.

H
ere are the rules that apply w

hen splitting a branch.

��
If a data m

em
ber is a basic type, it becom

es one branch of class
TBranchElement.

��
A data m

em
ber can be an array of basic types. In this case, one single

branch is created for the array.
��

A data m
em

ber can be a pointer to an array of basic types. The length
can vary, and m

ust be specified in the com
m

ent field of the data
m

em
ber in the class definition. (see I/O

 chapter).
��

Pointer data m
em

ber are not split, except for pointers to a
TClonesArray. The TClonesArray (pointed to) is split if the split
level is greater than tw

o. W
hen the split level is one, the TClonesArray

is not split.
��

If a data m
em

ber is a pointer to an object, a special branch is created.
The branch w

ill be filled by calling the class Streamer function to
serialize the object into the branch buffer.

��
If a data m

em
ber is an object, the data m

em
bers of this object are split

into branches according to the split level (i.e. split level > 2).
��

Base classes are split w
hen the object is split.

��
Abstract base classes are never split

��
M

ost STL containers are supported except for som
e extrem

e cases.
These exam

ples are not supported:

// STL vector of vectors of TAxis*
vector<vector<TAxis *> > fVectAxis;
// STL map of string/vector
map<string,vector<int> > fMapString;
// STL deque of pair
deque<pair<float,float> > fDequePair;

��
C

-structure data m
em

bers are not supported in split m
ode.

��
An object that is not split m

ay be slow
 to brow

se.
��

An STL container that is not split w
ill not be accessible in the brow

ser.

 Trees
D

ecem
ber 2001 - version 3.1d

225

Exem
pt a D

ata M
em

ber from
 Splitting

If you are creating a branch w
ith an object and in general you w

ant the data
m

em
bers to be split, but you w

ant to exem
pt a data m

em
ber from

 the split.
You can specify this in the com

m
ent field of the data m

em
ber:

class Event : public TObject {
 private:
 EventHeader fEvtHdr; //|| Don't split the header

Adding a B
ranch to hold a TC

lonesArray
R

O
O

T has tw
o classes to m

anage arrays of objects. The TObjArray that
can m

anage objects of different classes, and the TClonesArray that
specializes in m

anaging objects of the sam
e class (hence the nam

e C
lones

Array). TClonesArray takes advantage of the constant size of each
elem

ent w
hen adding the elem

ents to the array. Instead of allocating m
em

ory
for each new

 object as it is added, it reuses the m
em

ory. H
ere is an exam

ple
of the tim

e a TClonesArray can save over a TObjArray.
W

e have 100,000 events, and each has 10,000 tracks, w
hich gives

1,000,000,000 tracks. If w
e use a TObjArray for the tracks, w

e im
plicitly

m
ake a call to new

 and a corresponding call to delete for each track. The
tim

e it takes to m
ake a pair of new

/delete calls is about 7 �s (10
-6). If w

e
m

ultiply the num
ber of tracks by 7 �s, (1,000,000,000 * 7 * 10

-6) w
e calculate

that the tim
e allocating and freeing m

em
ory is about 2 hours. This is the

chunk of tim
e saved w

hen a TClonesArray is used rather than a
TObjArray. If you don't w

ant to w
ait 2 hours for your tracks (or equivalent

objects), be sure to use a TClonesArray for sam
e-class objects arrays.

Branches w
ith TClonesArrays use the sam

e m
ethod (TTree::Branch) as

any other object described above. If splitting is specified the objects in the
TClonesArray are split, not the TClonesArray itself.

Identical B
ranch N

am
es

W
hen a top-level object (say event), has tw

o data m
em

bers of the sam
e

class the sub branches end up w
ith identical nam

es. To distinguish the sub
branch w

e m
ust associate them

 w
ith the m

aster branch by including a �.�
(dot) at the end of the m

aster branch nam
e. This w

ill force the nam
e of the

sub branch to be master.sub branch instead of sim
ply sub branch.

For exam
ple, a tree has tw

o branches Trigger and MuonTrigger, each
containing an object of the sam

e class (Trigger). To uniquely identify the
sub branches w

e add the dot:

tree->Branch("Trigger.","Trigger",&b1,8000,1);
tree->Branch("MuonTrigger.","Trigger",&b2,8000,1);

If Trigger has three m
em

bers, T1, T2, T3, the tw
o instructions above w

ill
generate sub branches called:
Trigger.T1, Trigger.T2 , Trigger.T3,
MuonTrigger.T1, MuonTrigger.T2 , MuonTrigger.T3.

226
D

ecem
ber 2001 - version 3.1d

Trees

Adding a B
ranch w

ith a Folder
To add a branch from

 a folder use the syntax:

tree->Branch("/aFolder");

This m
ethod creates one branch for each elem

ent in the folder. The m
ethod

returns the total num
ber of branches created.

Adding a B
ranch w

ith a TList
To add a branch from

 a TList of TObjects use the syntax:

tree->Branch(anObjectList, 8000, 99);

This new
 m

ethod creates one branch for each elem
ent in the list. The m

ethod
returns the total num

ber of branches created.

Exam
ples For W

riting and R
eading Trees

The follow
ing sections are exam

ples of w
riting and reading trees increasing

in com
plexity from

 a sim
ple tree w

ith a few
 variables to a tree containing

folders and com
plex Event objects.

Each exam
ple has a nam

ed script in the $ROOTSYS/tutorials directory.
They are called tree1.C

 to tree4.C
. The exam

ples are:

��
tree1.C

 : A tree w
ith several sim

ple (integers and floating point)
variables.

��
tree2.C

 : A tree built from
 a C

 structure (struct). This exam
ple uses

the Geant3 C
 w

rapper as an exam
ple of a Fortran com

m
on block

ported to C
 w

ith a C
 structure.

��
tree3.C

: In this exam
ple w

e w
ill show

 how
 to extend a tree w

ith a branch
from

 another tree w
ith the Friends feature. These trees have branches

w
ith variable length arrays. Each entry has a variable num

ber of tracks,
and each track has several variables.

��
tree4.C

 : A tree w
ith a class (Event). The class Event is defined in

$R
O

O
TSYS/test. In this exam

ple w
e first encounter the im

pact of
splitting a branch.

 Each script contains the m
ain function, w

ith the sam
e nam

e as the file (i.e.
tree1), the function to w

rite - tree1w , and the function to read - tree1r. If
the script is not run in batch m

ode, it displays the tree in the brow
ser and tree

view
er.

 Trees
D

ecem
ber 2001 - version 3.1d

227

To study the exam
ple scripts, you can either execute the m

ain script, or load
the script and execute a specific function. For exam

ple:

// execute the tree1() function
// that writes, reads, and shows the tree
root [] .x tree1.C
// use ACLiC to build a shared library and
//check syntax, then execute as above
root [] .x tree1.C++
// Load the script and select a function to execute
root [] .L tree1.C
root [] tree1w()
root [] tree1r()

Exam
ple 1: A Tree w

ith Sim
ple Variables

This exam
ple show

s how
 to w

rite, view
, and read a tree w

ith several sim
ple

(integers and floating point) variables.

W
riting the Tree

Below
 is the function that w

rites the tree (tree1w). First, the variables are
defined (px, py, pz, random and ev). Then w

e add a branch for each of
the variables to the tree, by calling the TTree::Branch m

ethod for each
variable.

void tree1w()
{ //create a Tree file tree1.root

 //create the file, the Tree and a few branches
 TFile f("tree1.root","recreate");
 TTree t1("t1","a simple Tree with simple variables");
 Float_t px, py, pz;
 Double_t random;
 Int_t ev;
 t1.Branch("px",&px,"px/F");
 t1.Branch("py",&py,"py/F");
 t1.Branch("pz",&pz,"pz/F");
 t1.Branch("random",&random,"random/D");
 t1.Branch("ev",&ev,"ev/I");

 //fill the tree
 for (Int_t i=0;i<10000;i++) {
 gRandom->Rannor(px,py);
 pz = px*px + py*py;
 random = gRandom->Rndm();
 ev = i;
 t1.Fill();
 }
 //save the Tree header.
 //The file will be automatically closed
 //when going out of the function scope
 t1.Write();
}

228
D

ecem
ber 2001 - version 3.1d

Trees

C
reating B

ranches w
ith A

 single Variable
This is the signature of TTree::Branch to create a branch w

ith a list of
variables:

TBranch* TTree::Branch(const char* name, void* address,
 const char* leaflist, Int_t bufsize = 32000)

The first param
eter is the branch nam

e.

The second param
eter is the address from

 w
hich to read the value.

The third param
eter is the leaf list w

ith the nam
e and type of each leaf.

In this exam
ple each branch has only one leaf. In the box below

, the branch
is nam

ed px and has one floating point type leaf also called px.

t1.Branch("px",&px,"px/F");

Filling the Tree
First w

e find som
e random

 values for the variables. W
e assign px and py a

gaussian w
ith m

ean = 0 and sigm
a = 1 by calling gRandom->Rannor(px,

py), and calculate pz. Then w
e call the TTree::Fill m

ethod. Because
w

e have already organized the tree into branches and told each branch
w

here to get the value from
, the call t1.Fill(), fills all branches in the tree.

After this script is executed w
e have a R

O
O

T file called tree1.root w
ith a

tree called t1.

View
ing the Tree

This is the tree1.root file and its tree in the brow
ser.

In the right panel are the branches ev, px, py, pz, and random. N

ote
that these are show

n as leaves because they are "end" branches w
ith only

one leaf.

 Trees
D

ecem
ber 2001 - version 3.1d

229

To histogram
 a leaf w

e can sim
ply double click on it in the brow

ser:

This is how

 the tree t1 looks in the Tree View
er. H

ere w
e can add a cut and

add other operations for histogram
m

ing the leaves (see the section on Tree
View

er). For exam
ple, w

e can plot a tw
o dim

ensional histogram
.

230
D

ecem
ber 2001 - version 3.1d

Trees

R
eading the Tree

The tree1r function show
s how

 to read the tree and access each entry and
each leaf.

W
e first define the variables to hold the read values.

Float_t px, py, pz;

Then w
e tell the tree to populate these variables w

hen reading an entry. W
e

do this w
ith the TTree::SetBranchAddress m

ethod. The first param
eter

is the branch nam
e, and the second is the address of the variable w

here the
branch data is to be placed.

In this exam
ple the branch nam

e is px. This nam
e w

as given w
hen the tree

w
as w

ritten (see tree1w). The second param
eter is the address of the

variable px.

t1->SetBranchAddress("px",&px);

O
nce the branches have been given the address, a specific entry can be

read into the variables w
ith the m

ethod TTree::GetEntry(n).
The TTree::GetEntry m

ethod reads all the branches for entry (n) and
populates the given address accordingly.

R
eading selected branches is quicker than reading an entire entry. If you are

interested in only one branch, you can use the TBranch::GetEntry
m

ethod and only that branch is read.

H
ere is the script tree1r:

void tree1r()
{ //read the Tree generated by tree1w
 //and fill two histograms

 //note that we use "new" to create the TFile
 //and TTree objects, because we want to keep
 //these objects alive when we leave this function.
 TFile *f = new TFile("tree1.root");
 TTree *t1 = (TTree*)f->Get("t1");
 Float_t px, py, pz;
 Double_t random;
 Int_t ev;
 t1->SetBranchAddress("px",&px);
 t1->SetBranchAddress("py",&py);
 t1->SetBranchAddress("pz",&pz);
 t1->SetBranchAddress("random",&random);
 t1->SetBranchAddress("ev",&ev);
 //create two histograms
 TH1F *hpx = new TH1F("hpx","px distribution",100,-3,3);
 TH2F *hpxpy = new TH2F("hpxpy","py vs px",30,-3,3,30,-3,3);
 // continuied �

 Trees
D

ecem
ber 2001 - version 3.1d

231

� //read all entries and fill the histograms
 Int_t nentries = (Int_t)t1->GetEntries();
 for (Int_t i=0;i<nentries;i++) {
 t1->GetEntry(i);
 hpx->Fill(px);
 hpxpy->Fill(px,py);
 }

 //we do not close the file.
 //We want to keep the generated histograms
 //we open a browser and the TreeViewer
 if (gROOT->IsBatch()) return;
 new TBrowser();
 t1->StartViewer();
 //In the browser, click on "ROOT Files",
 //then on "tree1.root".
 //You can click on the histogram icons
 //in the right panel to draw them.
 //in the TreeViewer, follow the instructions
 //in the Help button.
}

Exam
ple 2: A Tree w

ith a C
 Structure

The executable script for this exam
ple is $ROOTSYS/tutorials/tree2.C.

In this exam
ple w

e show
:

��
how

 to build branches from
 a C

 structure
��

how
 to m

ake a branch w
ith a fixed length array

��
how

 to m
ake a branch w

ith a variable length array
��

how
 to read selective branches

��
how

 to fill a histogram
 from

 a branch
��

how
 to use TTree::Draw to show

 a 3D
 plot.

A C
 structure (struct) is used to build a R

O
O

T tree. In general w
e

discourage the use of C structures, w
e recom

m
end using a class instead.

H
ow

ever, w
e do support them

 for legacy applications w
ritten in C

 or Fortran.

The exam
ple struct holds sim

ple variables and arrays. It m
aps to a

G
eant3 com

m
on block /gctrak/. This is the definition of the com

m
on

block/structure:

const Int_t MAXMEC = 30;
// PARAMETER (MAXMEC=30)
// COMMON/GCTRAK/VECT(7),GETOT,GEKIN,VOUT(7)
// + ,NMEC,LMEC(MAXMEC)
// + ,NAMEC(MAXMEC),NSTEP
// + ,PID,DESTEP,DESTEL,SAFETY,SLENG
// + ,STEP,SNEXT,SFIELD,TOFG,GEKRAT,UPWGHT
 typedef struct {
 Float_t vect[7];
// continued ..

232
D

ecem
ber 2001 - version 3.1d

Trees

 �
 Float_t getot;
 Float_t gekin;
 Float_t vout[7];
 Int_t nmec;
 Int_t lmec[MAXMEC];
 Int_t namec[MAXMEC];
 Int_t nstep;
 Int_t pid;
 Float_t destep;
 Float_t destel;
 Float_t safety;
 Float_t sleng;
 Float_t step;
 Float_t snext;
 Float_t sfield;
 Float_t tofg;
 Float_t gekrat;
 Float_t upwght;
} Gctrak_t;

W
hen using G

eant3, the com
m

on block is filled by G
eant3 routines at each

step and only the Tree::Fill m
ethod needs to be called. In this exam

ple
w

e em
ulate the G

eant3 step routine w
ith the helixStep function. W

e also
em

ulate the filling of the particle values. The calls to the Branch m
ethods are

the sam
e as if G

eant3 w
ere used.

void helixStep(Float_t step, Float_t *vect, Float_t *vout)
{ // extrapolate track in constant field
 Float_t field = 20; // field in kilogauss
 enum Evect {kX,kY,kZ,kPX,kPY,kPZ,kPP};
 vout[kPP] = vect[kPP];
 Float_t h4 = field*2.99792e-4;
 Float_t rho = -h4/vect[kPP];
 Float_t tet = rho*step;
 Float_t tsint = tet*tet/6;
 Float_t sintt = 1 - tsint;
 Float_t sint = tet*sintt;
 Float_t cos1t = tet/2;
 Float_t f1 = step*sintt;
 Float_t f2 = step*cos1t;
 Float_t f3 = step*tsint*vect[kPZ];
 Float_t f4 = -tet*cos1t;
 Float_t f5 = sint;
 Float_t f6 = tet*cos1t*vect[kPZ];
 vout[kX] = vect[kX] + (f1*vect[kPX] - f2*vect[kPY]);
 vout[kY] = vect[kY] + (f1*vect[kPY] + f2*vect[kPX]);
 vout[kZ] = vect[kZ] + (f1*vect[kPZ] + f3);
 vout[kPX] = vect[kPX] + (f4*vect[kPX] - f5*vect[kPY]);
 vout[kPY] = vect[kPY] + (f4*vect[kPY] + f5*vect[kPX]);
 vout[kPZ] = vect[kPZ] + (f4*vect[kPZ] + f6);
}

 Trees
D

ecem
ber 2001 - version 3.1d

233

W
riting The Tree

void tree2w() // write tree2 example
{ //create a Tree file tree2.root
 TFile f("tree2.root","recreate");

 //create the file, the Tree
 TTree t2("t2","a Tree with data from a fake Geant3");
 // declare a variable of the C structure type
 Gctrak_t gstep;
 // add the branches for a subset of gstep
 t2.Branch("vect",gstep.vect,"vect[7]/F");
 t2.Branch("getot",&gstep.getot,"getot/F");
 t2.Branch("gekin",&gstep.gekin,"gekin/F");
 t2.Branch("nmec",&gstep.nmec,"nmec/I");
 t2.Branch("lmec",gstep.lmec,"lmec[nmec]/I");
 t2.Branch("destep",&gstep.destep,"destep/F");
 t2.Branch("pid",&gstep.pid,"pid/I");
 //Initialize particle parameters at first point
 Float_t px,py,pz,p,charge=0;
 Float_t vout[7];
 Float_t mass = 0.137;
 Bool_t newParticle = kTRUE;
 gstep.step = 0.1;
 gstep.destep = 0;
 gstep.nmec = 0;
 gstep.pid = 0;
 //transport particles
 for (Int_t i=0; i<10000; i++) {
 //generate a new particle if necessary
 //(Geant3 emulation)
 if (newParticle) {
 px = gRandom->Gaus(0,.02);
 py = gRandom->Gaus(0,.02);
 pz = gRandom->Gaus(0,.02);
 p = TMath::Sqrt(px*px+py*py+pz*pz);
 charge = 1; if (gRandom->Rndm() < 0.5) charge = -1;
 gstep.pid += 1;
 gstep.vect[0] = 0;
 gstep.vect[1] = 0;
 gstep.vect[2] = 0;
 gstep.vect[3] = px/p;
 gstep.vect[4] = py/p;
 gstep.vect[5] = pz/p;
 gstep.vect[6] = p*charge;
 gstep.getot = TMath::Sqrt(p*p + mass*mass);
 gstep.gekin = gstep.getot - mass;
 newParticle = kFALSE;
 }
// continued �

234
D

ecem
ber 2001 - version 3.1d

Trees

 // fill the Tree with current step parameters
 t2.Fill();

 //transport particle in magnetic field
 //(Geant3 emulation)
 helixStep(gstep.step, gstep.vect, vout); //make one step

 //apply energy loss
 gstep.destep = gstep.step*gRandom->Gaus(0.0002,0.00001);
 gstep.gekin -= gstep.destep;
 gstep.getot = gstep.gekin + mass;
 gstep.vect[6]= charge*TMath::Sqrt
 (gstep.getot*gstep.getot - mass*mass);
 gstep.vect[0] = vout[0];
 gstep.vect[1] = vout[1];
 gstep.vect[2] = vout[2];
 gstep.vect[3] = vout[3];
 gstep.vect[4] = vout[4];
 gstep.vect[5] = vout[5];
 gstep.nmec = (Int_t)(5*gRandom->Rndm());
 for (Int_t l=0;l<gstep.nmec;l++) gstep.lmec[l] = l;
 if (gstep.gekin < 0.001) newParticle = kTRUE;
 if (TMath::Abs(gstep.vect[2]) > 30)
 newParticle = kTRUE;
 }

 //save the Tree header. The file will be automatically
 // closed when going out of the function scope
 t2.Write();
}

A
dding a B

ranch w
ith a Fixed Length A

rray
At first, w

e create a tree and create branches for a subset of variables in the
C

 structure Gctrak_t. Then w
e add several types of branches.

The first branch reads seven floating point values beginning at the address of
'gstep.vect'. You do not need to specify &gstep.vect, because in C

and C

++ the array variable holds the address of the first elem
ent.

t2.Branch("vect",gstep.vect,"vect[7]/F");
t2.Branch("getot",&gstep.getot,"getot/F");
t2.Branch("gekin",&gstep.gekin,"gekin/F");

A
dding a B

ranch w
ith a Variable Length A

rray
The next tw

o branches are dependent on each other. The first holds the
length of the variable length array and the second holds the variable length
array.

The lmec branch reads nmec num
ber of integers beginning at the address

gstep.destep.

t2.Branch("nmec",&gstep.nmec,"nmec/I");
t2.Branch("lmec",gstep.lmec,"lmec[nmec]/I");

 Trees
D

ecem
ber 2001 - version 3.1d

235

The variable nmec is a random
 num

ber and is reset for each entry.

gstep.nmec = (Int_t)(5*gRandom->Rndm());

Filling the Tree
In this em

ulation of G
eant3, w

e generate and transport particles in a
m

agnetic field and store the particle param
eters at each tracking step in a

R
O

O
T tree.

Analysis
In this analysis w

e do not read the entire entry, w
e only read one branch.

First w
e set the address for the branch to the file dstep, the w

e use the
TBranch::GetEntry m

ethod.

Then w
e fill a histogram

 w
ith the dstep branch entries, draw

 it and fit it w
ith

a gaussian.

In addition w
e draw

 the particle's path using the three values in the vector.
H

ere w
e use the TTree::Draw m

ethod. It autom
atically creates a histogram

and plots the 3 expressions (see U

sing Trees in Analysis).

void tree2r()
{ // read the Tree generated by tree2w and fill one histogram
 // we are only interested by the destep branch.

 // note that we use "new" to create the TFile and TTree objects
 // because we want to keep these objects alive when we leave
 // this function.
 TFile *f = new TFile("tree2.root");
 TTree *t2 = (TTree*)f->Get("t2");
 static Float_t destep;
 TBranch *b_destep = t2->GetBranch("destep");
 b_destep->SetAddress(&destep);

 //create one histogram
 TH1F *hdestep =
 new TH1F("hdestep","destep in Mev",100,1e-5,3e-5);
 //read only the destep branch for all entries
 Int_t nentries = (Int_t)t2->GetEntries();
 for (Int_t i=0;i<nentries;i++) {
 b_destep->GetEntry(i);
 // fill the histogram with the destep entry
 hdestep->Fill(destep);
 }
 // we do not close the file.
 // We want to keep the generated histograms
 // We fill a 3-d scatter plot with the particle
 // step coordinates
 TCanvas *c1 = new TCanvas("c1","c1",600,800);
 c1->SetFillColor(42);
 c1->Divide(1,2);
 c1->cd(1);
 // continued �

236
D

ecem
ber 2001 - version 3.1d

Trees

� hdestep->SetFillColor(45);
 hdestep->Fit("gaus");
 c1->cd(2);
 gPad->SetFillColor(37);
 t2->SetMarkerColor(kRed);
 t2->Draw("vect[0]:vect[1]:vect[2]");
 if (gROOT->IsBatch()) return;

 // invoke the x3d viewer
 gPad->x3d();
}

 Trees
D

ecem
ber 2001 - version 3.1d

237

Exam
ple 3: Adding Friends to Trees

In this exam
ple w

e w
ill show

 how
 to extend a tree w

ith a branch from
 another

tree w
ith the Friends feature.

Adding a B
ranch to an Existing Tree

You m
ay w

ant to add a branch to an existing tree. For exam
ple, if one

variable in the tree w
as com

puted w
ith a certain algorithm

, you m
ay w

ant to
try another algorithm

 and com
pare the results.

O
ne solution is to add a new

 branch, fill it, and save the tree. The code below

adds a sim
ple branch to an existing tree.

N
ote the kOverwrite option in the Write m

ethod, it overw
rites the existing

tree. If it is not specified, tw
o copies of the tree headers are saved.

void tree3AddBranch(){
 TFile f("tree3.root","update");

 Float_t new_v;
 TTree *t3 = (TTree*)f->Get("t3");
 TBranch *newBranch = t3-> Branch("new_v",&new_v,"new_v/F");

 //read the number of entries in the t3
 Int_t nentries = (Int_t)t3->GetEntries();
 for (Int_t i = 0; i < nentries; i++){
 new_v= gRandom->Gaus(0,1);
 newBranch->Fill();
 }
 // save only the new version of the tree
 t3->Write("",TObject::kOverwrite);
}

Adding a branch is often not possible because the tree is in a read-only file
and you do not have perm

ission to save the m
odified tree w

ith the new

branch. Even if you do have the perm
ission, you risk loosing the original tree

w
ith an unsuccessful attem

pt to save the m
odification. Since trees are

usually large, adding a branch could extend it over the 2G
B lim

it. In this
case, the attem

pt to w
rite the tree fails, and the original data is m

ay also be
corrupted.

In addition, adding a branch to a tree enlarges the tree and increases the
am

ount of m
em

ory needed to read an entry, and therefore decreases the
perform

ance.

For these reasons, R
O

O
T offers the concept of friends for trees (and chains).

W
e encourage you to use TTree::AddFriend rather than adding a branch

m
anually.

TTree::AddFriend
A tree keeps a list of friends. In the context of a tree (or a chain), friendship
m

eans unrestricted access to the friends data. In this w
ay it is m

uch like
adding another branch to the tree w

ithout taking the risk of dam
aging it. To

add a friend to the list, you can use the TTree::AddFriend m
ethod.

238
D

ecem
ber 2001 - version 3.1d

Trees

The TTree (tree) below
 has tw

o friends (ft1 and ft2) and now
 has

access to the variables a,b,c,i,j,k,l and m.

The AddFriend m

ethod has tw
o param

eters, the first is the tree nam
e and

the second is the nam
e of the R

O
O

T file w
here the friend tree is saved.

AddFriend autom
atically opens the friend file. If no file nam

e is given, the
tree called ft1 is assum

ed to be in the sam
e file as the original tree.

tree.AddFriend("ft1","friendfile1.root");

If the friend tree has the sam
e nam

e as the original tree, you can give it an
alias in the context of the friendship:

tree.AddFriend("tree1 = tree","friendfile1.root");

O
nce the tree has friends, w

e can use TTree::Draw as if the friend's
variables w

ere in the original tree. To specify w
hich tree to use in the Draw

m
ethod, use the syntax:

<treeName>.<branchname>.<varname>

If the variablename is enough to uniquely identify the variable, you can
leave out the tree and/or branch nam

e.

For exam
ple, these com

m
ands generate a 3-d scatter plot of variable "var"

in the TTree tree versus variable v1 in TTree ft1 versus variable v2 in
TTree ft2.

tree.AddFriend("ft1","friendfile1.root");
tree.AddFriend("ft2","friendfile2.root");
tree.Draw("var:ft1.v1:ft2.v2"); The picture illustrates the access of the

tree and its friends w
ith a Draw com

m
and.

W
hen AddFriend is called, the R

O
O

T file
is autom

atically opened and the friend tree
(ft1) header is read the into m

em
ory.

The new
 friend (ft1) is added to the list of

friends of tree.
The num

ber of entries in the friend m
ust

be equal or greater to the num
ber of

entries of the original tree. If the friend tree
has few

er entries a w
arning is given and

the m
issing entries are not included in the

histogram
.

 Trees
D

ecem
ber 2001 - version 3.1d

239

To retrieve the list of friends from
 a tree use TTree::GetListOfFriends.

W
hen the tree is w

ritten to file (TTree::Write), the friends list is saved w
ith

it. And w
hen the tree is retrieved, the trees on the friends list are also

retrieved and the friendship restored.

W
hen a tree is deleted, the elem

ents of the friend list are also deleted.

It is possible to declare a friend tree that has the sam
e internal structure

(sam
e branches and leaves) as the original tree, and com

pare the sam
e

values by specifying the tree.

 tree.Draw("var:ft1.var:ft2.var")

The exam
ple code is in $ROOTSYS/tutorials/tree3.C. H

ere is the
script:

void tree3w() {
// Example of a Tree where branches are variable length
// arrays
// A second Tree is created and filled in parallel.
// Run this script with
// .x tree3.C
// In the function treer, the first Tree is open.
// The second Tree is declared friend of the first tree.
// TTree::Draw is called with variables from both Trees.
//
// Author: Rene Brun

 const Int_t kMaxTrack = 500;
 Int_t ntrack;
 Int_t stat[kMaxTrack];
 Int_t sign[kMaxTrack];
 Float_t px[kMaxTrack];
 Float_t py[kMaxTrack];
 Float_t pz[kMaxTrack];
 Float_t pt[kMaxTrack];
 Float_t zv[kMaxTrack];
 Float_t chi2[kMaxTrack];
 Double_t sumstat;

// create the first root file with a tree
 TFile f("tree3.root","recreate");
 TTree *t3 = new TTree("t3","Reconst ntuple");
 t3->Branch("ntrack",&ntrack,"ntrack/I");
 t3->Branch("stat",stat,"stat[ntrack]/I");
 t3->Branch("sign",sign,"sign[ntrack]/I");
 t3->Branch("px",px,"px[ntrack]/F");
 t3->Branch("py",py,"py[ntrack]/F");
 t3->Branch("pz",pz,"pz[ntrack]/F");
 t3->Branch("zv",zv,"zv[ntrack]/F");
 t3->Branch("chi2",chi2,"chi2[ntrack]/F");
 // create the second root file with a different tree
 TFile fr("tree3f.root","recreate");
 TTree *t3f = new TTree("t3f","a friend Tree");
 t3f->Branch("ntrack",&ntrack,"ntrack/I");
 t3f->Branch("sumstat",&sumstat,"sumstat/D");
 t3f->Branch("pt",pt,"pt[ntrack]/F");
// continued �

240
D

ecem
ber 2001 - version 3.1d

Trees

 // Fill the trees
 for (Int_t i=0;i<1000;i++) {
 Int_t nt = gRandom->Rndm()*(kMaxTrack-1);
 ntrack = nt;
 sumstat = 0;
 // set the values in each track
 for (Int_t n=0;n<nt;n++) {
 stat[n] = n%3;
 sign[n] = i%2;
 px[n] = gRandom->Gaus(0,1);
 py[n] = gRandom->Gaus(0,2);
 pz[n] = gRandom->Gaus(10,5);
 zv[n] = gRandom->Gaus(100,2);
 chi2[n] = gRandom->Gaus(0,.01);
 sumstat += chi2[n];
 pt[n] = TMath::Sqrt(px[n]*px[n] + py[n]*py[n]);
 }
 t3->Fill();
 t3f->Fill();
 }
 // Write the two files
 t3->Print();
 f.cd();
 t3->Write();
 fr.cd();
 t3f->Write();
} // Function to read the two files and add the friend
void tree3r()
{ TFile *f = new TFile("tree3.root");
 TTree *t3 = (TTree*)f->Get("t3");
 // Add the second tree to the first tree as a friend
 t3->AddFriend("t3f","tree3f.root");
 // Draw pz which is in the first tree and use pt
 // in the condition. pt is in the friend tree.
 t3->Draw("pz","pt>3");
} // This is executed when typing .x tree3.C
void tree3()
{ tree3w();
 tree3r();
}

 Trees
D

ecem
ber 2001 - version 3.1d

241

Exam
ple 4: A Tree w

ith an Event C
lass

This exam
ple is a sim

plified version of $ROOTSYS/test/MainEvent.cxx
and w

here Event objects are saved in a tree. The full definition of Event is in
$ROOTSYS/test/Event.h. To execute this m

acro, you w
ill need the library

$ROOTSYS/test/libEvent.so. If it does not exist you can build the test
directory applications by follow

ing the instruction in the
$ROOTSYS/test/README file.
 In this exam

ple w
e w

ill show

��
the difference in splitting or not splitting a branch

��
how

 to read selected branches of the tree,
��

how
 to print a selected entry

The Event C
lass

Event is a descendent of TObject. As such it inherits the data m
em

bers of
TObject and it's m

ethods such as Dump() and Inspect() and Write().
Also, because it inherits from

 TObject it can be a m
em

ber of a collection.

To sum
m

arize, the advantages of inheriting from
 a TObject are:

��
Inherit the Write, Inspect, and Dump m

ethods
��

Enables a class to be a m
em

ber of a R
O

O
T collection

��
Enables R

TTI

Below
 is the list of the Event data m

em
bers. It contains a character array,

several integers, a floating point num
ber, and an EventHeader object. The

EventHeader class is described in the follow
ing paragraph. Event also has

tw
o pointers, one to a TClonesArray of tracks and one to a histogram

.

The string "->" in the com
m

ent field of the m
em

bers *fTracks and *fH
instructs the autom

atic Streamer to assum
e that the objects *fTracks and

*fH are never null pointers and that fTracks->Streamer can be used
instead of the m

ore tim
e consum

ing form
 R__b << fTracks.

class Event : public TObject {
private:
 char fType[20];
 Int_t fNtrack;
 Int_t fNseg;
 Int_t fNvertex;
 UInt_t fFlag;
 Float_t fTemperature;
 EventHeader fEvtHdr;
 TClonesArray *fTracks; //->
 TH1F *fH; //->
 Int_t fMeasures[10];
 Float_t fMatrix[4][4];
 Float_t *fClosestDistance; //[fNvertex]
 static TClonesArray *fgTracks;
 static TH1F *fgHist;
// � list of methods
� ClassDef(Event,1) //Event structure
};

242
D

ecem
ber 2001 - version 3.1d

Trees

The EventH
eader C

lass
The EventHeader class (also defined in Event.h) does not inherit from

TObject. Beginning w

ith R
O

O
T 3.0, an object can be placed on a branch

even though it does not inherit from
 TObject. In previous releases branches

w
ere restricted to objects inheriting from

 the TObject. H
ow

ever, it has
alw

ays been possible to w
rite a class not inheriting from

 TObject to a tree
by encapsulating it in a TObject descending class as is the case in
EventHeader and Event.

class EventHeader {
 private:
 Int_t fEvtNum;
 Int_t fRun;
 Int_t fDate;
// � list of methods
 ClassDef(EventHeader,1) //Event Header
};

The Track C
lass

The Track class descends from
 TObject since tracks are in a

TClonesArray (i.e. a R
O

O
T collection class) and contains a selection of

basic types and an array of vertices. It's TObject inheritance, enables
Track to be in a collection, and in Event is a TClonesArray of Tracks.

class Track : public TObject {
 private:
 Float_t fPx; //X component of the momentum
 Float_t fPy; //Y component of the momentum
 Float_t fPz; //Z component of the momentum
 Float_t fRandom; //A random track quantity
 Float_t fMass2; //The mass square of this particle
 Float_t fBx; //X intercept at the vertex
 Float_t fBy; //Y intercept at the vertex
 Float_t fMeanCharge; //Mean charge deposition of all
hits
 Float_t fXfirst; //X coordinate of the first point
 Float_t fXlast; //X coordinate of the last point
 Float_t fYfirst; //Y coordinate of the first point
 Float_t fYlast; //Y coordinate of the last point
 Float_t fZfirst; //Z coordinate of the first point
 Float_t fZlast; //Z coordinate of the last point
 Float_t fCharge; //Charge of this track
 Float_t fVertex[3]; //Track vertex position
 Int_t fNpoint; //Number of points for this track
 Short_t fValid; //Validity criterion
 // method definitions �
 ClassDef(Track,1) //A track segment
};

 Trees
D

ecem
ber 2001 - version 3.1d

243

W
riting the Tree

W
e create a sim

ple tree w
ith tw

o branches both holding Event objects. O
ne

is split and the other is not. W
e also create a pointer to an Event object

(event).

void tree4w()
{ // check to see if the event class is in the dictionary
 // if it is not load the definition in libEvent.so
 if (!TClassTable::GetDict("Event")) {
 gSystem->Load("$ROOTSYS/test/libEvent.so");
 }
 //create a Tree file tree4.root
 TFile f("tree4.root","RECREATE");
 // Create a ROOT Tree
 TTree t4("t4","A Tree with Events");

 // Create a pointer to an Event object
 Event *event = new Event();

 // Create two branches, split one.
 t4.Branch("event_branch", "Event", &event,16000,2);
 t4.Branch("event_not_split", "Event", &event,16000,0);
 // a local variable for the event type
 char etype[20];
 // Fill the tree
 for (Int_t ev = 0; ev <100; ev++) {
 Float_t sigmat, sigmas;
 gRandom->Rannor(sigmat,sigmas);
 Int_t ntrack = Int_t(600 + 600 *sigmat/120.);
 Float_t random = gRandom->Rndm(1);
 sprintf(etype,"type%d",ev%5);
 event->SetType(etype);
 event->SetHeader(ev, 200, 960312, random);
 event->SetNseg(Int_t(10*ntrack+20*sigmas));
 event->SetNvertex(Int_t(1+20*gRandom->Rndm()));
 event->SetFlag(UInt_t(random+0.5));
 event->SetTemperature(random+20.);

 for(UChar_t m = 0; m < 10; m++) {
 event->SetMeasure(m, Int_t(gRandom->Gaus(m,m+1)));
 }

 // fill the matrix
 for(UChar_t i0 = 0; i0 < 4; i0++) {
 for(UChar_t i1 = 0; i1 < 4; i1++) {
 event->SetMatrix(i0,i1,gRandom->Gaus(i0*i1,1));
 }
 }
//.. continued

244
D

ecem
ber 2001 - version 3.1d

Trees

 // Create and fill the Track objects
 for (Int_t t = 0; t < ntrack; t++) event->AddTrack(random);

 // Fill the tree
 t4.Fill();
 // Clear the event before reloading it
 event->Clear();
 }
 // Write the file header
 f.Write();
 // Print the tree contents
 t4.Print();
}

R
eading the Tree

First, w
e check if the shared library w

ith the class definitions is loaded. If not
w

e load it.
Then w

e read tw
o branches, one for the num

ber of tracks and one for the
entire event. W

e check the num
ber of tracks first, and if it m

eets our condition
w

e read the entire event.
W

e show
 the fist entry that m

eets the condition.

void tree4r()
{ // check to see if the event class is in the dictionary
 // if it is not load the definition in libEvent.so
 if (!TClassTable::GetDict("Event")) {
 gSystem->Load("$ROOTSYS/test/libEvent.so");
 }

 // read the tree generated with tree4w

 // note that we use "new" to create the TFile and
 // TTree objects, because we want to keep these
 // objects alive when we leave this function.
 TFile *f = new TFile("tree4.root");
 TTree *t4 = (TTree*)f->Get("t4");

 // create a pointer to an event object. This will be used
 // to read the branch values.
 Event *event = new Event();

 // get two branches and set the branch address
 TBranch *bntrack = t4->GetBranch("fNtrack");
 TBranch *branch = t4->GetBranch("event_split");
 branch->SetAddress(&event);

 Int_t nevent = t4->GetEntries();
 Int_t nselected = 0;
 Int_t nb = 0;
 //continued �

 Trees
D

ecem
ber 2001 - version 3.1d

245

 for (Int_t i=0;i<nevent;i++) {
 //read branch "fNtrack"only
 bntrack->GetEntry(i);

 //reject events with more than 587 tracks
 if (event->GetNtrack() > 587)continue;

 //read complete accepted event in memory
 nb += t4->GetEntry(i);
 nselected++;

 //print the first accepted event
 if (nselected == 1) t4->Show();

 //clear tracks array
 event->Clear();
 }

 if (gROOT->IsBatch()) return;
 new TBrowser();
 t4->StartViewer();
}

N
ow

, let's see w
hat the tree looks like in the tree view

er.

You can see the tw

o branches in the tree in the left panel: the
event_branch is split and hence expands w

hen clicked on. The other
branch event_not_split is not expandable and w

e can not brow
se the

data m
em

bers.

246
D

ecem
ber 2001 - version 3.1d

Trees

The TClonesArray of tracks fTracks is also split because w
e set the split

level to 2.

The output on the com
m

and line is the result of tree4->Show. It show
s the

first entry w
ith m

ore than 587 tracks:

======> EVENT:26
 event_split =
 fUniqueID = 0
 fBits = 50331648
 fType[20] = 116 121 112 101 49 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 fNtrack = 585
 fNseg = 5834
 fNvertex = 17
 fFlag = 0
 fTemperature = 20.044315
 fEvtHdr.fEvtNum = 26
 fEvtHdr.fRun = 200
 fEvtHdr.fDate = 960312
 fTracks = 585
 fTracks.fUniqueID = 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
�

Trees in Analysis
The m

ethods TTree::Draw, TTree::MakeClass, and
TTree::MakeSelector are available for data analysis using trees.
The TTree::Draw m

ethod is a pow
erful yet sim

ple w
ay to look and draw

 the
trees contents. It enables you to plot a variable (a leaf) w

ith just one line of
code. H

ow
ever, the D

raw
 m

ethod falls short once you w
ant to look at each

entry and design m
ore sophisticated acceptance criteria for your analysis.

For these cases, you can use TTree::MakeClass. It creates a class that
loops over the trees entries one by one. You can then expand it to do the
logic of your analysis.

The TTree::MakeSelector is the recom
m

ended m
ethod for R

O
O

T data
analysis. It is especially im

portant for large data set in a parallel processing
configuration w

here the analysis is distributed over several processors and
you can specify w

hich entries to send to each processors. W
ith MakeClass

the user has control over the event loop, w
ith MakeSelector the tree is in

control of the event loop.

Sim
ple Analysis using TTree::D

raw

W
e w

ill use the tree in staff.root w
hich w

as m
ade by the m

acro in
$ROOTSYS/tutorials/staff.C.
First, open the file and lists its contents.

root [] TFile f ("staff.root")
root [] f.ls()
TFile** staff.root
 TFile* staff.root
 KEY: TTree tree;1 staff data from ascii file

W
e can see the TTree "tree" in the file. W

e w
ill use it to experim

ent w
ith the

TTree::Draw m
ethod, so let�s create a pointer to it:

 Trees
D

ecem
ber 2001 - version 3.1d

247

root [] TTree *MyTree = tree
C

IN
T allow

s us to sim
ply get the object by using it. H

ere w
e define a pointer

to a TTree object and assign it the value of "tree", the TTree in the file.
C

IN
T looks for "tree" and returns it.

To show
 the different Draw options, w

e create a canvas w
ith four sub-pads.

W
e w

ill use one sub-pad for each Draw com
m

and.

root [] TCanvas *myCanvas = new TCanvas()
root [] myCanvas->Divide(2,2)

W
e activate the first pad w

ith the TCanvas::cd statem
ent:

root [] myCanvas->cd(1)

W
e then draw

 the variable cost:

root [] MyTree->Draw("cost")
As you can see this call to TTree::Draw has only one param

eter. It is a
string containing the leaf nam

e.

A histogram
 is autom

atically created as a result of a TTree::Draw. The
style of the histogram

 is inherited from
 the TTree attributes and the current

style (gStyle) is ignored. The TTree gets its attributes from
 the current

TStyle at the tim
e the it w

as created. You can call the m
ethod

TTree::UseCurrentStyle to change to the current style rather than the
TTree style (see gStyle, see the C

hapter G
raphics and G

raphic U
ser

Interfaces).

In this next segm
ent w

e activate the second pad and draw
 a scatter plot

variables:

root [] myCanvas->cd(2)
root [] MyTree->Draw("cost:age")

This signature still only has one param
eter, but it now

 has tw
o dim

ensions
separated by a colon (�x:y�). The item

 to be plotted can be an expression
not just a sim

ple variable. In general, this param
eter is a string that contains

up to three expressions, one for each dim
ension, separated by a colon

(�e1:e2:e3�). A list of exam
ples follow

s this introduction.

U
sing Selection w

ith TTree:D
raw

C

hange the active pad to 3, and add a selection to the list of param
eters of

the draw
 com

m
and.

root[] myCanvas->cd(3)
root[] MyTree->Draw("cost:age","nation == 3");

This w
ill draw

 the cost vs. age for the entries w
here the nation is equal to

3. You can use any C
++ operator, plus som

e functions defined in TFormula,
in the selection param

eter.

248
D

ecem
ber 2001 - version 3.1d

Trees

The value of the selection is used as a w
eight w

hen filling the histogram
. If

the expression includes only Boolean operations as in the exam
ple above,

the result is 0 or 1. If the result is 0, the histogram
 is not filled. In general, the

expression is:

Selection = "weight *(boolean expression)"

If the Boolean expression evaluates to true, the histogram
 is filled w

ith a
w

eight. If the w
eight is not explicitly specified it is assum

ed to be 1.

For exam
ple, this selection w

ill add 1 to the histogram
 if x is less than y and

the square root of z is less than 3.2.

 "x<y && sqrt(z)>3.2"

O
n the other hand, this selection w

ill add x+y to the histogram
 if the square

root of z is larger than 3.2..

 "(x+y)*(sqrt(z)>3.2)"

The Draw m
ethod has its ow

n parser, and it only looks in the current tree for
variables. This m

eans that any variable used in the selection m
ust be defined

in the tree. You cannot use an arbitrary global variable in the TTree::Draw
m

ethod.

U
sing TC

ut O
bjects in TTree::D

raw

The TTree::Draw m
ethod also accepts TCut objects. A TCut is a

specialized string object used for TTree selections. A TCut object has a
nam

e and a title. It does not have any data m
em

bers in addition to w
hat it

inherits from
 TNamed. It only adds a set of operators to do logical string

concatenation. For exam
ple, assum

e:

TCut cut1 = "x<1"
TCut cut2 = "y>2"

then

cut1 && cut2
//result is the string "(x<1)&&(y>2)"

O
perators =, +=, +, *, !, &&, || are overloaded, here are som

e exam
ples:

root[]TCut c1 = "x < 1"
root[]TCut c2 = "y < 0"
root[]TCut c3 = c1 && c2
root[]MyTree.Draw("x", c1)
root[]MyTree.Draw("x", c1 || "x>0")
root[]MyTree.Draw("x", c1 && c2)
root[]MyTree.Draw("x", "(x + y)" * (c1 && c2)

 Trees
D

ecem
ber 2001 - version 3.1d

249

Accessing the H
istogram

 in B
atch M

ode
The TTree::Draw m

ethod creates a histogram
 called htemp and puts it on

the active pad.

In a batch program
, the histogram

 htemp created by default, is reachable
from

 the current pad.

// draw the histogram
nt->Draw("x", "cuts");
// get the histogram from the current pad
TH1F htemp = (TH1F*) gPad->GetPrimitive("htemp");
// now we have full use of the histogram
htemp->GetEntries();

If you pipe the result of the TTree::Draw into a histogram
, the histogram

 is
also available in the current directory. You can do:

// Draw the histogram and fill hnew with it
nt->Draw("x>>hnew","cuts");
// get hnew from the current directory
TH1F *hnew = (TH1F*)gDirectory->Get("hnew");
// or get hnew from the current Pad
TH1F *hnew = (TH1F*)gPad->GetPrimitive("hnew");

U
sing D

raw
 O

ptions in TTree::D
raw

The next param

eter is the draw
 option for the histogram

:

root [] myCanvas->cd(4)
root [] MyTree->Draw("cost:age","nation == 3", "surf2�);

The draw
 options are the sam

e as for TH1::Draw, and they are listed in the
section: D

raw
 O

ptions in the chapter on H
istogram

s.

In addition to the draw
 options defined in TH

1, there are three m
ore.

The 'prof' and 'profs' that draw
 a profile histogram

 (TProfile) rather
than a regular 2D

 histogram
 (TH

2D
) from

 an expression w
ith tw

o variables. If
the expression has three variables, a
TProfile2D is generated.
The 'profs' generates a TProfile
w

ith error on the spread. The 'prof'
option generates a TProfile w

ith
error on the m

ean.

The "goff" option suppresses
generating the graphics.

You can com
bine the draw

 options in a
list separated by com

m
as.

After typing the lines above, you
should now

 have a canvas that looks
like this.

250
D

ecem
ber 2001 - version 3.1d

Trees

 Superim
posing tw

o H
istogram

s
W

hen superim
posing tw

o 2-D
 histogram

s inside a script w
ith TTree::Draw

and using the "same" option, you w
ill need to update the pad betw

een Draw
com

m
ands.

// superimpose two 2D scatter plots
{ // Create a 2D histogram and fill it with random numbers
 TH2 *h2 =
 new TH2D ("h2" ,"2D histo",100,0,70,100,0,20000);

 for (Int_t i = 0; i < 10000; i++)
 h2->Fill(gRandom->Gaus(40,10),gRandom->Gaus(10000,3000));
 // set the color to differentiate it visually
 h2->SetMarkerColor(kGreen);
 h2->Draw();

 // Open the example file and get the tree
 TFile f("staff.root");
 TTree *myTree = (TTree*)f.Get("tree");
 // the update is needed for the next draw command to
 // work properly
 gPad->Update();
 myTree->Draw("cost:age", "","same");
}

In this exam
ple, h2->Draw is only adding the object h2 to the pad's list of

prim
itives. It does not paint the object on the screen. H

ow
ever,

TTree::Draw w
hen called w

ith option "same" gets the current
pad coordinates to build an interm

ediate histogram
 w

ith the right lim
its.

Since nothing has been painted in the pad yet, the pad lim
its have not

been com
puted. C

alling pad->Update forces the painting of the pad and
allow

s TTree::Draw to com
pute the right lim

its for the interm
ediate

histogram
.

Setting the R
ange in TTree::D

raw

There are tw
o m

ore optional param
eters to the TTree::Draw m

ethod: one
is the num

ber of entries and the second one is the entry to start w
ith. For

exam
ple this com

m
and draw

s 1000 entries starting w
ith entry 100:

 myTree->Draw("cost:age", "","",1000,100);

TTree::D
raw

 Exam
ples

The exam
ples below

 use the Event.root file generated by the
$ROOTSYS/test/Event executable and the Event, Track, and
EventHeader class definitions are in $ROOTSYS/test/Event.h.
The com

m
ands have been tested on the split levels 0, 1, and 9. Each

com
m

and is num
bered and referenced by the explanations im

m
ediately

follow
ing the exam

ples.

 Trees
D

ecem
ber 2001 - version 3.1d

251

// Data members and methods
1. tree->Draw ("fNtrack");
2. tree->Draw ("event.GetNtrack()");
3. tree->Draw ("GetNtrack()");

4. tree->Draw ("fH.fXaxis.fXmax");
5. tree->Draw ("fH.fXaxis.GetXmax()");
6. tree->Draw ("fH.GetXaxis().fXmax");
7. tree->Draw ("GetHistogram().GetXaxis().GetXmax()");
 // expressions in the selection paramter
8. tree->Draw ("fTracks.fPx","fEvtHdr.fEvtNum%10 == 0");
9. tree->Draw ("fPx", "fEvtHdr.fEvtNum%10 == 0");
 // Two dimensional arrays
// fMatrix is defined as:
// Float_t fMatrix[4][4]; in Event class
10.

tree->Draw ("fMatrix");
11.

tree->Draw ("fMatrix[][]");
12.

tree->Draw ("fMatrix[2][2]");
13.

tree->Draw ("fMatrix[][0]");
14.

tree->Draw ("fMatrix[1][]");

// using two arrays
// Float_t fVertex[3]; in Track class
15.

tree->Draw ("fMatrix - fVertex");
16.

tree->Draw ("fMatrix[2][1] - fVertex[5][1]");
17.

tree->Draw ("fMatrix[][1] - fVertex[5][1]");
18.

tree->Draw ("fMatrix[2][] - fVertex[5][]");
19.

tree->Draw ("fMatrix[][2] - fVertex[][1]");
20.

tree->Draw ("fMatrix[][2] - fVertex[][]");
21.

tree->Draw ("fMatrix[][] - fVertex[][]");
 // variable length arrays
22.

tree->Draw ("fClosestDistance");
23.

tree->Draw ("fClosestDistance[fNvertex/2]");
 // mathematical expressions
24.

tree->Draw ("sqrt(fPx*fPx + fPy*fPy + fPz*fPz))");
 // strings
25.

tree->Draw ("fEvtHdr.fEvtNum","fType==\"type1\" ");
26.

tree->Draw ("fEvtHdr.fEvtNum","strstr(fType,\"1\" ");
 // Where fPoints is defined in the track class:
// Int_t fNpoint;
// Int_t *fPoints; [fNpoint]
27.

tree->Draw("fTracks.fPoints");
28.

tree->Draw("fTracks.fPoints
 - fTracks.fPoints[][fAvgPoints]");

29.
tree->Draw("fTracks.fPoints[2][]

 - fTracks.fPoints[][55]");
30.

tree->Draw("fTracks.fPoints[][]
 - fTracks.fVertex[][]");

//� continued

252
D

ecem
ber 2001 - version 3.1d

Trees

// Selections
31.

tree->Draw("fValid&0x1",
 "(fNvertex>10) && (fNseg<=6000)")

32.
tree->Draw("fPx","(fBx>.4) || (fBy<=-.4)");

33.
tree->Draw("fPx",

 "fBx*fBx*(fBx>.4) + fBy*fBy*(fBy<=-.4)");
34.

tree->Draw("fVertex","fVertex>10")
35.

tree->Draw("fPx[600]")
36.

tree->Draw("fPx[600]","fNtrack>600")

Explanations:
1. tree->Draw ("fNtrack");

Fills the histogram
 w

ith the num
ber of tracks for each entry. fNtrack is

a m
em

ber of event.
2. tree->Draw ("event.GetNtrack()");

Sam
e as case 1, but use the m

ethod of event to get the num
ber of

tracks. W
hen using a m

ethod, you can include param
eters for the m

ethod
as long as the param

eters are literals.
3. tree->Draw ("GetNtrack()");

Sam
e as case 2, the object of the m

ethod is not specified. The com
m

and
uses the first instance of the GetNtrack m

ethod found in the objects
stored in the tree. W

e recom
m

end using this shortcut only if the m
ethod

nam
e is unique.

4. tree->Draw ("fH.fXaxis.fXmax");
D

raw
 the data m

em
ber of a data m

em
ber. In the tree, each entry has a

histogram
. This com

m
and draw

s the m
axim

um
 value of the X-axis for

each histogram
.

5.tree->Draw ("fH.fXaxis.GetXmax()");
Sam

e as case 4, but use the m
ethod of a data m

em
ber.

6.tree->Draw ("fH.GetXaxis().fXmax");
Sam

e as case 4, a data m
em

ber of a data m
em

ber retrieved by a
m

ethod.
7. tree->Draw ("GetHistogram().GetXaxis().GetXmax()");

Sam
e as case 4, using only m

ethods.
8.tree->Draw ("fTracks.fPx","fEvtHdr.fEvtNum%10 == 0");

U
se data m

em
bers in the expression and in the selection param

eter to
plot fPx or all tracks in every 10th entry. Since fTracks is a
TClonesArray of Tracks, there w

ill be d values of fPx for each entry.
9. tree->Draw ("fPx","fEvtHdr.fEvtNum%10 == 0");

Sam
e as case 8, use the nam

e of the data m
em

ber directly.
10.tree->Draw ("fMatrix");

W
hen the index of the array is left out or w

hen em
pty brackets are used

[],all values of the array are selected.
D

raw
 all values of fMatrix for each entry in the tree. If fMatrix is

defined as: Float_t fMatrix[4][4], all 16 values are used for each
entry.

11. tree->Draw ("fMatrix[][]");

 Trees
D

ecem
ber 2001 - version 3.1d

253

The sam
e as case 10, all values of fMatrix are draw

n for each entry.
12. tree->Draw ("fMatrix[2][2]");

The single elem
ent at fMatrix[2][2] is draw

n for each entry.
13. tree->Draw ("fMatrix[][0]");

Four elem
ents of fMatrix are used: fMatrix[1][0],

fMatrix[2][0], fMatrix[3][0], fMatrix[4][0].
14. tree->Draw ("fMatrix[1][]");

Four elem
ents of fMatrix are used: fMatrix[1][0],

fMatrix[1][2], fMatrix[1][3], fMatrix[1][4].
15. tree->Draw ("fMatrix - fVertex");

W
ith tw

o arrays and unspecified elem
ent num

bers, the num
ber of

selected values is the m
inim

um
 of the first dim

ension tim
es the m

inim
um

of the second dim

ension. In this case fVertex is also a tw
o

dim
ensional array since it is a data m

em
ber of the tracks array. If

fVertex is defined in the track class as: Float_t *fVertex[3], it
has fNtracks x 3 elem

ents. fMatrix has 4 x 4 elem
ent. This case,

draw
s 4 (the lesser of fN

track and 4) tim
es 3 (the lesser of 4 and 3) ,

m
eaning 12 elem

ents per entry. The selected values for each entry are:

fMatrix[0][0] � fVertex[0][0]
fMatrix[0][1] � fVertex[0][1]
fMatrix[0][2] � fVertex[0][2]
fMatrix[1][0] � fVertex[1][0]
fMatrix[1][1] � fVertex[1][1]
fMatrix[1][2] � fVertex[1][2]
fMatrix[2][0] � fVertex[2][0]
fMatrix[2][1] � fVertex[2][1]
fMatrix[2][2] � fVertex[2][2]
fMatrix[3][0] � fVertex[3][0]
fMatrix[3][1] � fVertex[3][1]
fMatrix[3][2] � fVertex[3][2]

16. tree->Draw ("fMatrix[2][1] - fVertex[5][1]");
This com

m
and selects one value per entry.

17. tree->Draw ("fMatrix[][1] - fVertex[5][1]");
The first dim

ension of the array is taken by the fMatrix.
fMatrix[0][1] - fVertex[5][1]
fMatrix[1][1] - fVertex[5][1]
fMatrix[2][1] - fVertex[5][1]
fMatrix[3][1] - fVertex[5][1]

18. tree->Draw ("("fMatrix[2][] - fVertex[5][]");
The first dim

ension m
inim

um
 is 2, and the second dim

ension m
inim

um
 is

3 (from
 fVertex). Three values are selected from

 each entry:

fMatrix[2][0] - fVertex[5][0]
fMatrix[2][1] - fVertex[5][1]
fMatrix[2][2] - fVertex[5][2]

19. tree->Draw ("fMatrix[][2] - fVertex[][1]")
This is sim

ilar to case 18. Four values are selected from
 each entry:

fMatrix[0][2] - fVertex[0][1]
fMatrix[1][2] - fVertex[1][1]

254
D

ecem
ber 2001 - version 3.1d

Trees

fMatrix[2][2] - fVertex[2][1]
fMatrix[3][2] - fVertex[3][1]

20. tree->Draw ("fMatrix[][2] - fVertex[][]")
This is sim

ilar to case 19. Tw
elve values are selected (4x3)from

 each
entry: fMatrix[0][2] - fVertex[0][0]

fMatrix[0][2] - fVertex[0][1]
fMatrix[0][2] - fVertex[0][2]
fMatrix[1][2] - fVertex[1][0]
fMatrix[1][2] - fVertex[1][1]
fMatrix[1][2] - fVertex[1][2]
fMatrix[2][2] - fVertex[2][0]
fMatrix[2][2] - fVertex[2][1]
fMatrix[2][2] - fVertex[2][2]
fMatrix[3][2] - fVertex[3][0]
fMatrix[3][2] - fVertex[3][1]
fMatrix[3][2] - fVertex[3][2]

21. tree->Draw ("fMatrix[][] - fVertex[][]")
This is the sam

e as case 15. The first dim
ension m

inim
um

 is 4 (from

fMatrix), and the second dim
ension m

inim
um

 is 3 (from
 fVertex).

Tw
elve values are selected from

 each entry.
22. tree->Draw ("fClosestDistance")

This event data m
em

ber fClosestDistance is a variable length array:
Float_t *fClosestDistance; //[fNvertex].
This com

m
and selects all elem

ents, but the num
ber per entry depends

on the num
ber of vertices of that entry.

23. tree->Draw ("fClosestDistance[fNvertex/2]")
W

ith this com
m

and the elem
ent at fNvertex/2 of the

fClosestDistance array is selected. O
nly one per entry is selected.

24. tree->Draw ("sqrt(fPx*fPx + fPy*fPy + fPz*fPz)")
This com

m
and show

s the use of a m
athem

atical expression. It draw
s the

square root of the sum
 of the product.

25. tree->Draw ("fEvtHdr.fEvtNum","fType==\"type1\" ")
You can com

pare strings, using the sym
bols == and !=, in the first tw

o
param

eters of the Draw com
m

and (TTreeFormula). In this case, the
event num

ber for 'type1' events is plotted.
26. tree->Draw("fEvtHdr.fEvtNum","strstr(fType,\"1\") ")

To com
pare strings, you can also use strstr. In this case, events

having a '1' in fType are selected.
27. tree->Draw("fTracks.fPoints")

If fPoints is a data m
em

ber of the Track class declared as:
 Int_t fNpoint;
 Int_t *fPoints; [fNpoint]
The size of the array fPoints varies w

ith each track of each event. This
com

m
and draw

s all the value in the fPoints arrays.
28. tree->Draw("fTracks.fPoints
 - fTracks.fPoints[][fAvgPoints]");

When fAvgPoints is a data m
em

ber of the Event class, this exam
ple

selects:

 Trees
D

ecem
ber 2001 - version 3.1d

255

fTracks[0].fPoints[0] - fTracks[0].fPoint[fAvgPoints]
fTracks[0].fPoints[1] - fTracks[0].fPoint[fAvgPoints]
fTracks[0].fPoints[2] - fTracks[0].fPoint[fAvgPoints]
fTracks[0].fPoints[3] - fTracks[0].fPoint[fAvgPoints]
fTracks[0].fPoints[4] - fTracks[0].fPoint[fAvgPoints]
� fTracks[0].fPoints[max0] -
fTracks[0].fPoint[fAvgPoints]
 fTracks[1].fPoints[0] - fTracks[1].fPoint[fAvgPoints]
fTracks[1].fPoints[1] - fTracks[1].fPoint[fAvgPoints]
fTracks[1].fPoints[2] - fTracks[1].fPoint[fAvgPoints]
fTracks[1].fPoints[3] - fTracks[1].fPoint[fAvgPoints]
fTracks[1].fPoints[4] - fTracks[1].fPoint[fAvgPoints]
� fTracks[1].fPoints[max1] -
fTracks[1].fPoint[fAvgPoints]
� fTracks[fNtrack-1].fPoints[0]
 - fTracks[fNtrack-1].fPoint[fAvgPoints]
fTracks[fNtrack-1].fPoints[1]
 - fTracks[fNtrack-1].fPoint[fAvgPoints]
fTracks[fNtrack-1].fPoints[2]
 - fTracks[fNtrack-1].fPoint[fAvgPoints]
fTracks[fNtrack-1].fPoints[3]
 - fTracks[fNtrack-1].fPoint[fAvgPoints]
fTracks[fNtrack-1].fPoints[4]
 - fTracks[fNtrack-1].fPoint[fAvgPoints]
� fTracks[fNtrack-1].fPoints[maxn]
 - fTracks[fNtrack-1].fPoint[fAvgPoints]
 Where max0, max1, � max n, is the size of the fPoints
array for the respective track.

29. tree->Draw("fTracks.fPoints[2][] �
 fTracks.fPoints[][55]")

For each event, this expression is selected:
 fTracks[2].fPoints[0] - fTracks[0].fPoints[55]
 fTracks[2].fPoints[1] - fTracks[1].fPoints[55]
 fTracks[2].fPoints[2] - fTracks[2].fPoints[55]
 fTracks[2].fPoints[3] - fTracks[3].fPoints[55]

 fTracks[2].fPoints[max] - fTracks[max].fPoints[55]
w

here m
ax is the m

inim
um

 of fNtrack and fTracks[2].fNpoint.
30. tree->Draw("("fTracks.fPoints[][] -
 fTracks.fVertex[][]")

For each event and each track, this expression is selected. It is the
difference betw

een fPoints and of fVertex. The num
ber of elem

ents
used for each track is the m

inim
um

 of fNpoint and 3 (the size of the
fVertex array).

fTracks[0].fPoints[0] - fTracks[0].fVertex[0]
fTracks[0].fPoints[1] - fTracks[0].fVertex[1]
fTracks[0].fPoints[2] - fTracks[0].fVertex[2]
// with fTracks[1].fNpoint==7
 fTracks[1].fPoints[0] - fTracks[1].fVertex[0]
fTracks[1].fPoints[1] - fTracks[1].fVertex[1]

256
D

ecem
ber 2001 - version 3.1d

Trees

fTracks[1].fPoints[2] - fTracks[1].fVertex[2]
// with fTracks[1].fNpoint==5
fTracks[2].fPoints[0] - fTracks[1].fVertex[0]
fTracks[2].fPoints[1] - fTracks[1].fVertex[1]
// with fTracks[2].fNpoint==2
 fTracks[3].fPoints[0] - fTracks[3].fVertex[0]
// with fTracks[3].fNpoint==1
 fTracks[4].fPoints[0] - fTracks[4].fVertex[0]
fTracks[4].fPoints[1] - fTracks[4].fVertex[1]
fTracks[4].fPoints[2] - fTracks[4].fVertex[2]
// with fTracks[4].fNpoint==3

31. tree->Draw("fValid&0x1",
 "(fNvertex>10) && (fNseg<=6000)")

You can use bit patterns (&,|,<<) or Boolean operation.

32. tree->Draw("fPx","(fBx>.4) || (fBy<=-.4)");
33. tree->Draw("fPx",
 "fBx*fBx*(fBx>.4) + fBy*fBy*(fBy<=-.4)");

The selection argum
ent is used as a w

eight. The expression returns a
m

ultiplier and in case of a Boolean the m
ultiplier is either 0 (for false) or

1 (for true). The first com
m

and draw
s fPx for the range betw

een 0.4 and
�0.4, the second com

m
and draw

s fPx for the sam
e range, but adds a

w
eight using the result of the second expression.

34. tree->Draw("fVertex","fVertex>10")
W

hen using arrays in the selection and the expression, the selection is
applied to each elem

ent of the array.
if (fVertex[0]>10) fVertex[0]
if (fVertex[1]>10) fVertex[1]
if (fVertex[2]>10) fVertex[2]

35. tree->Draw("fPx[600]")
36. tree->Draw("fPx[600]","fNtrack > 600")

W
hen using a specific elem

ent for a variable length array the entries w
ith

less elem
ents are ignored. Thus these tw

o com
m

ands are equivalent.

 Trees
D

ecem
ber 2001 - version 3.1d

257

 C
reating an Event List

The TTree::Draw m
ethod can also be used to build a list of the entries.

W
hen the first argum

ent is preceded by ">>" R
O

O
T know

s that this
com

m
and is not intended to draw

 anything, but to save the entries in a list
w

ith the nam
e given by the first argum

ent. The resulting list is a
TEventList, and is added to the objects in the current directory.
For exam

ple, to create a TEventList of all entries w
ith m

ore than 600
tracks:

root [] TFile *f = new TFile("Event.root")
root [] T->Draw(">> myList", " fNtrack > 600")

This list contains the entry num
ber of all entries w

ith m
ore than 600 tracks.

To see the entry num
bers use the Print("all") com

m
and.

root [] myList->Print("all")

W
hen using the ">>" w

hatever w
as in the TEventList is overw

ritten. The
TEventList can be grow

n by using the ">>+" syntax.
For exam

ple to add the entries, w
ith exactly 600 tracks:

root [] T->Draw(">>+ myList", " fNtrack == 600")

If the D
raw

 com
m

and generates duplicate entries, they are not added to the
list.

root [] T->Draw(">>+ myList", " fNtrack > 610")

This com
m

and does not add any new
 entries to the list because all entries

w
ith m

ore than 610 tracks have already been found by the previous
com

m
and for entries w

ith m
ore than 600 tracks.

U
sing an Event List

The TEventList can be used to lim
it the TTree to the events in the list.

The SetEventList m
ethod tells the tree to use the event list and hence

lim
its all subsequent TTree m

ethods to the entries in the list. In this exam
ple,

w
e create a list w

ith all entries w
ith m

ore than 600 tracks and then set it so
the Tree w

ill use this list. To reset the TTree to use all events use
SetEventList(0).
1) Let�s look at an exam

ple. First, open the file and draw
 the fNtrack.

root [] TFile *f = new TFile("Event.root")
root [] T->Draw("fNtrack ")

2) N
ow

, put the entries w
ith over 600 tracks into a TEventList called

myList. W
e get the list from

 the current directory and assign it to a variable
list.

258
D

ecem
ber 2001 - version 3.1d

Trees

root [] T->Draw(">>myList", " fNtrack >600")
root [] TEventList *list = (TEventList*)gDirectory->Get("myList")

3) Instruct the tree T to use the new
 list and draw

 it again. N
ote that this is

exactly the sam
e D

raw
 com

m
and. The list lim

its the entries.

root [] T->SetEventList(list)
root [] T->Draw("fNtrack ")

 You should now
 see a canvas that looks like this one.

Filling a H
istogram

The TTree::Draw m

ethod can also be used to fill a specific histogram
. The

syntax is:

root [] TFile *f = new TFile("Event.root")
root [] T->Draw("fNtrack >> myHisto")
root [] myHisto->Print()
TH1.Print Name= myHisto, Entries= 100, Total sum= 100

As w
e can see, this created a TH1, called myHisto. If you w

ant to append
m

ore entries to the histogram
, you can use this syntax:

root [] T->Draw("fNtrack >>+ myHisto")

If you do not create a histogram
 ahead of tim

e, R
O

O
T w

ill create one at the
tim

e of the D
raw

 com
m

and (as is the case above). If you w
ould like to draw

the variable into a specific histogram

 w
here you, for exam

ple, set the range
and bin num

ber, you can define the histogram
 ahead of tim

e and use it in the
D

raw
 com

m
and. The histogram

 has to be in the sam
e directory as the tree.

root[] TH1 *h1 = new TH1("h1","h1",50, 0., 150.);
root[] T -> Draw("fNtrack>> h1");

W
hen you project a TTree into a histogram

, the histogram
 inherits the

TTree attributes and not the current style attributes. This allow
s you to

project tw
o Trees w

ith different attributes into the sam
e picture. You can call

 Trees
D

ecem
ber 2001 - version 3.1d

259

the m
ethod TTree::UseCurrentStyle to change the histogram

 to use the
current style (gStyle, see the C

hapter G
raphics and G

raphic U
ser

Interfaces).

Projecting a H
istogram

If you w

ould like to fill a histogram
, but not draw

 it you can use the
TTree::Project() m

ethod.

root [] T->Project("quietHisto","fNtrack")

M
aking a Profile H

istogram

In case of a tw
o dim

ensional expression, you can generate a TProfile
histogram

 instead of a tw
o dim

ensional histogram
 by specifying the 'prof'

or 'profs' option. The prof option is autom
atically selected w

hen the
output is redirected into a TProfile. For exam

ple y:x>>pf w
here pf is an

existing TProfile histogram
.

Tree Inform
ation

O
nce w

e have draw
n a tree, w

e can get inform
ation about the tree. These

are the m
ethods used to get inform

ation from
 a draw

n tree:

��
GetSelectedRows: R

eturns the num
ber of entries accepted by the

selection expression. In case w
here no selection w

as specified, it
returns the num

ber of entries processed.
��

GetV1: R
eturns a pointer to the float array of the first variable.

��
GetV2: R

eturns a pointer to the float array of second variable
��

GetV3: R
eturns a pointer to the float array of third variable.

��
GetW: R

eturns a pointer to the float array of W
eights w

here the w
eight

equals the result of the selection expression.

To read the draw
n values of fNtrack into an array, and loop through the

entries follow
 the lines below

. First, open the file and draw
 the fNtrack

variable:

root [] TFile *f = new TFile("Event.root")
root [] T->Draw("fNtrack")

Then declare a pointer to a float and use the GetV1 m
ethod to retrieve the

first dim
ension of the tree. In this exam

ple w
e only drew

 one dim
ension

(fNtrack) if w
e had draw

n tw
o, w

e could use GetV2 to get the second one.

root [] Float_t *a
root [] a = T->GetV1()

Loop through the first 10 entries and print the values of fNtrack:

root [] for (int i = 0; i < 10; i++) cout<<a[i]<< " "
root [] cout << endl // need an endl to see the values
594 597 606 595 604 610 604 602 603 596

By default, TTree::Draw creates these arrays w
ith fEstimate w

ords
w

here fEstimate can be set via TTree::SetEstimate. If you have m
ore

entries than fEstimate only the first fEstimate selected entries w
ill be

stored in the arrays. The arrays are used as buffers. W
hen fEstimate

260
D

ecem
ber 2001 - version 3.1d

Trees

entries have been processed, R
O

O
T scans the buffers to com

pute the
m

inim
um

 and m
axim

um
 of each coordinate and creates the corresponding

histogram
s.

 You can use these lines to read all entries into these arrays:

 root [] Int_t nestimate = (Int_t)T->GetEntries();
 root [] T->SetEstimate(nestimate);

O
bviously, this w

ill not w
ork if the num

ber of entries is very large.
This technique is useful in several cases, for exam

ple if you w
ant to draw

 a
graph connecting all the x,y (or z) points. N

ote that you m
ay have a tree

(or chain) w
ith 1 billion entries, but only a few

 m
ay survive the cuts and w

ill fit
w

ithout problem
s in these arrays.

U
sing TTree::M

akeC
lass

The TTree::Draw m
ethod is convenient and easy to use, how

ever it falls
short if you need to do som

e program
m

ing w
ith the variable.

For exam
ple, for plotting the m

asses of all oppositely changed pairs of tracks,
you w

ould need to w
rite a program

 that loops over all events, finds all pairs of
tracks, and calculates the required quantities. W

e have show
n how

 to retrieve
the data arrays from

 the branches of the tree in the previous section, and you
could just w

rite that program
 from

 scratch. Since this is a very com
m

on task,
R

O
O

T provides a utility that generates a skeleton class designed to loop over
the entries of the tree. This is the TTree::MakeClass m

ethod

W
e w

ill now
 go through the steps of using MakeClass w

ith a sim
plified

exam
ple. The m

ethods used here obviously w
ork for m

uch m
ore com

plex
event loop calculations.

These are our assum
ptions:

W
e w

ould like to do selective plotting and loop through each entry of the tree
and tracks. W

e chose a sim
ple exam

ple: w
e w

ant to plot fPx of the first 100
tracks of each entry.

W
e have a R

O
O

T tree w
ith a branch for each data m

em
ber in the "Event"

object. To build this file and tree follow
 the instructions on how

 to build the
exam

ples in $ROOTSYS/test.
Execute Event and instruct it to split the object w

ith this com
m

and (from
 the

U
nix com

m
and line).

> $ROOTSYS/test/Event 400 1 2 1

This creates an Event.root file w
ith 400 events, com

pressed, split, and
filled. See $ROOTSYS/test/MainEvent.Cxx for m

ore info.

The person w
ho designed the tree m

akes a shared library available to you,
w

hich defines the classes needed. In this case, the classes are Event,
EventHeader, and Track and they are defined in the shared library
libEvent.so. The designer also gives you the Event.h file to see the
definition of the classes. You can locate Event.h in $ROOTSYS/test, and if
you have not yet built libEvent.so, please see the instructions of how

 to
build it. If you have already built it, you can now

 use it again.

 Trees
D

ecem
ber 2001 - version 3.1d

261

C
reating a C

lass w
ith M

akeC
lass

First, w
e load the shared library and open Event.root.

root [] .L libEvent.so
root [] TFile *f = new TFile ("Event.root");
root [] f->ls();
TFile** Event.root TTree benchmark ROOT file
 TFile* Event.root TTree benchmark ROOT file
 KEY: TH1F htime;1 Real-Time to write versus time
 KEY: TTree T;1 An example of a ROOT tree

W
e can see there is a tree �T�, and just to verify that w

e are w
orking w

ith the
correct one, w

e print the tree, w
hich w

ill show
 us the header and branches.

root [] T->Print();

From
 the output of print w

e can see that the tree has one branch for each
data m

em
ber of Event, Track, and EventHeader.

N
ow

 w
e can use TTree::MakeClass on our tree �T�. MakeClass takes

one param
eter, a string containing the nam

e of the class to be m
ade.

In the com
m

and below
, the nam

e of our class w
ill be �MyClass�.

root [] T->MakeClass("MyClass")
Files: MyClass.h and MyClass.C generated from Tree: T

C
IN

T inform
s us that it has created tw

o files. MyClass.h, w
hich contains the

class definition and MyClass.C, w
hich contains the MyClass::Loop

m
ethod. MyClass has m

ore m
ethods than just Loop. The other m

ethods
are: a constructor, a destructor, GetEntry, LoadTree, Notify, and
Show. The im

plem
entations of these m

ethods are in the .h file. This division
of m

ethods w
as done intentionally. The .C

 file is kept as short as possible,
and contains only code that is intended for you to custom

ize. The .h file
contains all the other m

ethods.

To start w
ith, it helps to understand both files, so lets start w

ith MyClass.h
and the class definition:

262
D

ecem
ber 2001 - version 3.1d

Trees

M
yC

lass.h

class MyClass {
 public :
 //pointer to the analyzed TTree or TChain
 TTree *fChain;
 //current Tree number in a TChain
 Int_t fCurrent;
//Declaration of leaves types
//Declaration of leaves types
 UInt_t fUniqueID;
 UInt_t fBits;
 Char_t fType[20];
 Int_t fNtrack;
 Int_t fNseg;
 Int_t fNvertex;
 UInt_t fFlag;
 Float_t fTemperature;
 Int_t fEvtHdr_fEvtNum;
� //List of branches
 TBranch *b_fUniqueID;
 TBranch *b_fBits;
 TBranch *b_fType;
 TBranch *b_fNtrack;
 TBranch *b_fNseg;
 TBranch *b_fNvertex;
 TBranch *b_fFlag;
 TBranch *b_fTemperature;
 TBranch *b_fEvtHdr_fEvtNum;
� MyClass(TTree *tree=0);
 ~MyClass();
 Int_t Cut(Int_t entry);
 Int_t GetEntry(Int_t entry);
 Int_t LoadTree(Int_t entry);
 void Init(TTree *tree);
 void Loop();
 Bool_t Notify();
 void Show(Int_t entry = -1);
};

W
e can see data m

em
bers in the generated class. The first data m

em
ber is

fChain. O
nce this class is instantiated, fChain w

ill point to the original tree
or chain this class w

as m
ade from

. In our case, this is �T� in �Event.root�. If
the class is instantiated w

ith a tree as a param
eter to the constructor,

fChain w
ill point to the tree nam

ed in the param
eter.

N
ext is fCurrent, w

hich is also a pointer to the current tree/chain. Its role is
only relevant w

hen w
e have m

ultiple trees chained together in a TChain.
The class definition show

s us that this tree has one branch and one leaf per
data m

em
ber.

The m
ethods of MyClass are:

��
MyClass(TTree *tree=0): This constructor has an optional tree for
a param

eter. If you pass a tree, MyClass w
ill use it rather than the tree

from
 w

hich it w
as created.

 Trees
D

ecem
ber 2001 - version 3.1d

263

��
void Init(TTree *tree): Init is called by the constructor to
initialize the tree for reading. It associates each branch w

ith the
corresponding leaf data m

em
ber.

��
~MyClass():This is the destructor, nothing special.

��
Int_t GetEntry(Int_t entry): This loads the class w

ith the entry
specified. O

nce you have executed GetEntry, the leaf data m
em

bers
in MyClass are set to the values of the entry. For exam

ple,
GetEntry(12) loads the 13

th event into the event data m
em

ber of
MyClass (note that the first entry is 0).
GetEntry returns the num

ber of bytes read from
 the file. In case the

sam
e entry is read tw

ice, R
O

O
T does not have to do any I/O

. In this
case GetEntry returns 1. It does not return 0, because m

any people
assum

e a return of 0 m
eans an error has occurred w

hile reading.
��

Int_t LoadTree(Int_t entry) and void Notify():
These tw

o m
ethods are related to chains. LoadTree w

ill load the tree
containing the specified entry from

 a chain of trees. Notify is called by
LoadTree to adjust the branch addresses.

��
void Loop(): This is the skeleton m

ethod that loops through each
entry of the tree. This is interesting to us, because w

e w
ill need to

custom
ize it for our analysis.

M
yC

lass.C

MyClass::Loop consists of a for-loop calling GetEntry for each entry. In
the tem

plate, the num
bers of bytes are added up, but it does nothing else. If

w
e w

ere to execute it now
, there w

ould be no output.

void MyClass::Loop()
{ if (fChain == 0) return;
 Int_t nentries = Int_t(fChain->GetEntries());

 Int_t nbytes = 0, nb = 0;
 for (Int_t jentry=0; jentry<nentries;jentry++) {
 Int_t ientry = LoadTree(jentry);
 // in case of a TChain, ientry is the entry number
 // in the current file
 nb = fChain->GetEntry(jentry); nbytes += nb;
 // if (Cut(ientry) < 0) continue;
 }
}

At the beginning of the file are instructions about reading selected branches.
They are not reprinted here, but please read them

 from
 your ow

n file

M
odifying M

yC
lass::Loop

Lets continue w
ith the goal of going through the first 100 tracks of each entry

and plot Px. To do this w
e change the Loop m

ethod.
 �
 if (fChain == 0) return;
 Int_t nentries = Int_t(fChain->GetEntries());
 TH1F *myHisto = new TH1F("myHisto","fPx", 100, -5,5);
 TH1F *smallHisto = new TH1F("small","fPx", 100, -5,5);
�

In the for-loop, w
e need to add another for-loop to go over all the tracks.

In the outer for-loop, w
e get the entry and the num

ber of tracks.
In the inner for-loop, w

e fill the large histogram
 (myHisto) w

ith all tracks and

264
D

ecem
ber 2001 - version 3.1d

Trees

the sm
all histogram

 (smallHisto) w
ith the track if it is in the first 100.

� for (Int_t jentry=0; jentry<nentries;jentry++) {
 GetEntry(jentry);
 for (Int_t j = 0; j < 100; j++){

myHisto->Fill(fTracks_fPx[j]);
 if (j < 100){
 smallHisto->Fill(fTracks_fPx[j]);
 }
 }
 }
�

O
utside of the for-loop, w

e draw
 both histogram

s on the sam
e canvas.

� myHisto->Draw();
smallHisto->Draw("Same");
�

Save these changes to MyClass.C and start a fresh root session. W
e w

ill
now

 load MyClass and experim
ent w

ith its m
ethods.

Loading M
yC

lass
The first step is to load the library and the class file. Then w

e can instantiate
a MyClass object.

root [] .L libEvent.so
root [] .L MyClass.C
root [] MyClass m

N
ow

 w
e can get a specific entry and populate the event leaf. In the code

snipped below
, w

e get entry 0, and print the num
ber of tracks (594). Then w

e
get entry 1 and print the num

ber of tracks (597).
 root [] m.GetEntry(0)
(int)57503
root [] m.fNtrack()
(Int_t)594
root [] m.GetEntry(1)
(int)48045
root [] m.fNtrack()
(Int_t)597

N
ow

 w
e can call the Loop m

ethod, w
hich w

ill
build and display the tw

o histogram
s.

 root [] m.Loop()
You should now

 see a canvas that looks like this.

To conclude the discussion on MakeClass let�s lists the steps that got us
here.

��
C

all TTree::MakeClass, w
hich autom

atically creates a class to loop
over the tree.

��
M

odify the MyClass::Loop() m
ethod in MyClass.C to fit your task.

��
Load and instantiate MyClass, and run MyClass::Loop().

 Trees
D

ecem
ber 2001 - version 3.1d

265

U
sing TTree::M

akeSelector
W

ith a TTree w
e can m

ake a selector and use it to process a lim
ited set of

entries. This is especially im
portant in a parallel processing configuration

w
here the analysis is distributed over several processors and w

e can specify
w

hich entries to send to each processors. The TTree::Process m
ethod is

used to specify the selector and the entries.

Before w
e can use TTree::Process w

e need to m
ake a selector. W

e can
call the TTree::MakeSelector m

ethod. It creates tw
o files sim

ilar to
TTree::MakeClass. In the resulting files is a class that is a descendent of
TSelector and im

plem
ents the follow

ing m
ethods:

��
TSelector::Begin: This function is called every tim

e a loop over the
tree starts. This is a convenient place to create your histogram

s.
��

TSelector::Notify(): This function is called at the first entry of a
new

 tree in a chain.
��

TSelector::ProcessCut: This function is called at the beginning of
each entry to return a flag true if the entry m

ust be analyzed.
��

TSelector::ProcessFill: This function is called in the entry loop
for all entries accepted by Select.

��
TSelector::Terminate: This function is called at the end of a loop
on a TTree. This is a convenient place to draw

 and fit your histogram
s.

The TSelector, unlike the resulting class from
 MakeClass, separates the

processing into a ProcessCut and ProcessFill, so that w
e can lim

it
reading the branches to the ones w

e need.

To create a selector call:

root[] T->MakeSelector("MySelector");
W

here T is the TTree and MySelector is the nam
e of created class and

the nam
e of the .h and .C

 files.

The resulting TSelector is the argum
ent to TTree::Process. The

argum
ent can be the file nam

e or a pointer to the selector object.

root[] T->Process("MySelector.C",1000,100);
This call w

ill interpret the class defined in MySelector.C and process 1000
entries beginning w

ith entry 100. The file nam
e can be appended w

ith a "+"
or a "++" to use ACLiC.

root[] T->Process("MySelector.C++",1000,100);
W

hen appending a "++", the class w
ill be com

piled and dynam
ically loaded.

root[] T->Process("MySelector.C+",1000,100);

W
hen appending a "+", the class w

ill also be com
piled and dynam

ically
loaded. W

hen it is called again, it recom
piles only if the m

acro
(MySelector.C) has changed since it w

as com
piled last. If not it loads the

existing library.

TTree::Process is aw
are of PR

O
O

F, R
O

O
T's parallel processing facility. If

PR
O

O
F is setup, it divides the processing am

ongst the slave C
PU

s.

266
D

ecem
ber 2001 - version 3.1d

Trees

Perform
ance B

enchm
arks

The program
 $ROOTSYS/test/bench.cxx com

pares the I/O
 perform

ance
of STL vectors to the R

O
O

T native TClonesArrays collection class. It
creates trees w

ith and w
ithout com

pression for the follow
ing cases:

vector<THit>, vector<THit*>, TClonesArray(TObjHit) not split
TClonesArray(TObjHit) split.

The graphs show
 the tw

o colum
ns on the right w

hich represent the split and
non-split TClonesArray, are significantly low

er than the vectors. The m
ost

significant difference is w
hen reading a file w

ithout com
pression.

The file size w
ith com

pression, w
rite tim

es w
ith and w

ithout com
pression and

the read tim
es w

ith and w
ithout com

pression all favor the TClonesArray.

 Trees
D

ecem
ber 2001 - version 3.1d

267

Im
pact of C

om
pression on I/O

This benchm

ark illustrates the pros and cons of the com
pression option. W

e
recom

m
end using com

pression w
hen the tim

e spent in I/O
 is sm

all com
pared

to the total processing tim
e. In this case, if the I/O

 operation is increased by a
factor of 5 it is still a sm

all percentage of the total tim
e and it m

ay very w
ell

save a factor of 10 on disk space. O
n the other hand if the tim

e spend on I/O

is large, com
pression m

ay slow
 dow

n the program
's perform

ance.

The standard test program
 $ROOTSYS/test/Event w

as used in various
configurations w

ith 400 events. The data file contains a TTree. The program

w
as invoked w

ith:

 Event 400 comp split

��
com

p = 0 m
eans: no com

pression at all.
��

com
p = 1 m

eans: com
press everything if split = 0.

��
com

p = 1 m
eans: com

press only the tree branches w
ith

 integers if split = 1.
��

com
p = 2 m

eans: com
press everything if split=1.

��

split = 0 : the full event is serialized into one single buffer.
��

split = 1 : the event is split into branches. O
ne branch for each data

m
em

ber of the Event class. The list of tracks (a TClonesArray) has
the data m

em
bers of the Track class also split into individual buffers.

These tests w
ere run on Pentium

 III C
PU

 w
ith 650 M

hz.

Event
Param

eters
File Size

Total Tim
e to

w
rite

(M
B/sec)

Effective
Tim

e to w
rite

(M
B/sec)

Total tim
e

to read All
(M

B/sec)

Total tim
e to

read Sam
ple

(M
B/sec)

C
om

p = 0

Split = 1

19.75 M
B

6.84 s.

(2.8 M
B/s)

3.56 s.

(5.4 M
B/s)

0.79 s.

(24.2 M
B/s)

0.79 s.

(24.2 M
B/s)

C
om

p = 1

Split = 1

17.73 M
B

6.44 s.

(3.0 M
B/s)

4.02 s.

(4.8 M
B/s)

0.90 s.

(21.3 M
B/s)

0.90 s.

(21.3 M
B/s)

C
om

p = 2

Split = 1

13.78 M
B

11.34 s.

(1.7 M
B/s)

9.51 s.

(2.0 M
B/s)

2.17 s.

(8.8 M
B/s)

2.17 s.

(8.8 M
B/s)

The Total Tim
e is the real tim

e in seconds to run the program
.

Effective tim
e is the real tim

e m
inus the tim

e spent in non I/O
 operations

(essentially the random
 num

ber generator).

The program
 Event generates in average 600 tracks per event. Each track

has 17 data m
em

bers.

The read benchm
ark runs in the interactive version of R

O
O

T. The Total tim
e

to read All is the real tim
e reported by the execution of the script

&ROOTSYS/test/eventa. W
e did not correct this tim

e for the overhead
com

ing from
 the interpreter itself.

The Total tim
e to read Sam

ple is the execution tim
e of the script

$ROOTSYS/test/eventb. This script loops on all events. For each event,
the branch containing the num

ber of tracks is read. In case the num
ber of

tracks is less than 585, the full event is read in m
em

ory. This test is obviously
not possible in non-split m

ode. In non-split m
ode, the full event m

ust be read
in m

em
ory.

268
D

ecem
ber 2001 - version 3.1d

Trees

The tim
es reported in the table correspond to com

plete I/O
 operations

necessary to deal w
ith m

achine independent binary files. O
n Linux, this

also includes byte-sw
apping operations. The R

O
O

T file allow
s for direct

access to any event in the file and also direct access to any part of an event
w

hen split=1.

N
ote also that the uncom

pressed file generated w
ith split=0 is 48.7 M

bytes
and only 47.17 M

bytes for the option split=1. The difference in size is due to
the object identification m

echanism
 overhead w

hen the event is w
ritten to a

single buffer. This overhead does not exist in split m
ode because the branch

buffers are optim
ized for hom

ogeneous data types.

You can run the test program
s on your architecture. The program

 Event w
ill

report the w
rite perform

ance. You can m
easure the read perform

ance by
executing the scripts eventa and eventb. The perform

ance depends not
only of the processor type, but also of the disk devices (local, N

FS, AFS,
etc.).

C
hains

A TChain object is a list of R
O

O
T files containing the sam

e tree. As an
exam

ple, assum
e w

e have three files called file1.root, file2.root,
file3.root. Each file contains one tree called "T". W

e can create a chain
w

ith the follow
ing statem

ents:

 TChain chain("T"); // name of the tree is the argument
 chain.Add("file1.root");
 chain.Add("file2.root");
 chain.Add("file3.root");

The nam
e of the TChain w

ill be the sam
e as the nam

e of the tree, in this
case it w

ill be "T". N
ote that tw

o objects can have the sam
e nam

e as long
as they are not histogram

s in the sam
e directory, because there, the

histogram
 nam

es are used to build a hash table.

The class TChain is derived from
 the class TTree. For exam

ple, to generate
a histogram

 corresponding to the attribute "x" in tree "T" by processing
sequentially the three files of this chain, w

e can use the TChain::Draw
m

ethod.

chain.Draw("x");

The follow
ing statem

ents illustrate how
 to set the address of the object to be

read and how
 to loop on all events of all files of the chain.

 Trees
D

ecem
ber 2001 - version 3.1d

269

{ TChain chain("T");
 // create the chain with tree "T"

 chain.Add("file1.root"); // add the files
 chain.Add("file2.root");
 chain.Add("file3.root");
 TH1F *hnseg = new TH1F("hnseg",
 "Number of segments for selected tracks",5000,0,5000);
 // create an object before setting the branch address
 Event *event = new Event();
 // Specify the address where to read the event object
 chain.SetBranchAddress("event", &event);
 // Start main loop on all events
 // In case you want to read only a few branches, use
 // TChain::SetBranchStatus to activate a branch.
 Int_t nevent = chain.GetEntries();
 for (Int_t i=0;i<nevent;i++) {
 // read complete accepted event in memory
 chain.GetEvent(i);
 // Fill histogram with number of segments
 hnseg->Fill(event->GetNseg());
 }
 // Draw the histogram
 hnseg->Draw();
}

 TC
hain::AddFriend

A TChain has a list of friends sim
ilar to a tree (see TTree::AddFriend).

You can add a friend to a chain w
ith the TChain::AddFriend method,

and you can retrieve the list of friends with
TChain::GetListOfFriends.
This exam

ple has four chains each has 20 R
O

O
T trees from

 20 R
O

O
T files.

TChain ch("t"); // a chain with 20 trees from 20 files
TChain ch1("t1");
TChain ch2("t2");
TChain ch3("t3");

N
ow

 w
e can add the friends to the first chain.

ch.AddFriend("t1")
ch.AddFriend("t2")
ch.AddFriend("t3")

The param
eter is the nam

e of friend chain (the nam
e of a chain is alw

ays the
nam

e of the tree from
 w

hich it w
as created).

The original chain has access to all variables in its friends. W
e can use the

TChain::Draw m
ethod as if the values in the friends w

ere in the original
chain.

270
D

ecem
ber 2001 - version 3.1d

Trees

To specify the chain to use in the Draw m
ethod, use the syntax:

<chainname>.<branchname>.<varname>

If the variable nam
e is enough to uniquely identify the variable, you can leave

out the chain and/or branch nam
e.

For exam
ple, this generates a 3-d scatter plot of variable "var" in the

TChain ch versus variable v1 in TChain t1 versus variable v2 in
TChain t2.

ch.Draw("var:t1.v1:t2.v2");

W
hen a TChain::Draw is executed, an autom

atic call to
TTree::AddFriend connects the trees in the chain. W

hen a chain is
deleted, its friend elem

ents are also deleted.

The num

ber of entries in the friend m
ust be equal or greater to the num

ber of
entries of the original chain. If the friend has few

er entries a w
arning is given

and the resulting histogram
 w

ill have m
issing entries.

For additional inform
ation see TTree::AddFriends. A full exam

ple of a
tree and friends is in Exam

ple #3 ($ROOTSYS/tutorials/tree3.c) in the
Tree section above.

 Adding a C
lass

D
ecem

ber 2001 - version 3.1d
271

13
A

dding a C
lass

The R
ole of TO

bject
The light-w

eight TObject class provides the default behavior and protocol
for the objects in the R

O
O

T system
. Specifically, it is the prim

ary interface to
classes providing object I/O

, error handling, inspection, introspection, and
draw

ing. The interface to these service is via abstract classes.

Introspection, R
eflection and R

un Tim
e Type

Identification
Introspection, w

hich is also referred to as reflection, or run tim
e type

identification (R
TTI) is the ability of a class to reflect upon itself or to "look

inside itself. R
O

O
T im

plem
ents reflection w

ith the TClass class. It
provides all the inform

ation about a class, a full description of data m
em

bers
and m

ethods, including the com
m

ent field and the m
ethod param

eter types.
A class w

ith the C
lassD

ef m
acro, has the ability to obtain a TClass w

ith the
IsA m

ethod.

 TClass *cl = obj
�
IsA();

w
hich returns a TClass. In addition an object can directly get the class nam

e
and the base classes w

ith:

const char* name = obj
�
ClassName();

w
hich returns a character string containing the class nam

e.

If the class is a descendent of TObject, you can check if an object inherits
from

 a specific class, you can use the InheritsFrom m
ethod. This m

ethod
returns kTrue if the object inherits from

 the specified class nam
e or TClass.

Bool_t b = obj

�
InheritsFrom("TLine");

Bool_t b = obj
�
InheritsFrom(TLine::Class());

R
O

O
T and CINT rely on reflection and the class dictionary to identify the type

of a variable at run tim
e.

W
ith TObject inheritance com

e som
e m

ethods that use Introspection to help
you see the data in the object or class. For instance:

272
D

ecem
ber 2001 - version 3.1d

Adding a C
lass

obj
�
Dump(); // lists all data members and

 // their current valsue
obj

�
Inspect(); // opens a window to browser

 // the data members at all levels
obj

�
DrawClass(); // Draws the class inheritance tree

For an exam
ple of obj->Inspect see "Inspecting R

O
O

T O
bjects" in the

C
IN

T chapter.

C
ollections

To store an object in a R
O

O
T collection, it m

ust be a descendent of
TObject. This is convenient if you w

ant to store objects of different classes
in the sam

e collection and execute the m
ethod of the sam

e nam
e on all

m
em

bers of the collection. For exam
ple the list of graphics prim

itives are in a
R

O
O

T collection called TList. W
hen the canvas is draw

n the Paint
m

ethod is executed on the entire collection. Each m
em

ber m
ay be a different

class, and if the Paint m
ethod is not im

plem
ented, TObject::Paint w

ill
be executed.

Input/O
utput

The TObject::Write m
ethod is the interface to the R

O
O

T I/O
 system

. It
stream

s the object into a buffer using the Stream
er m

ethod. It support cycle
num

bers and autom
atic schem

a evolution (see the chapter on I/O
).

Paint/D
raw

These tw

o graphics m
ethods are defaults, their im

plem
entation in TObject

does not use the graphics subsystem
. The TObject::Draw m

ethod is
sim

ply a call to AppendPad. The Paint m
ethod is em

pty. The default is
provided so that one can call Paint in a collection.

G
etD

raw
O

ption
This m

ethod returns the draw
 option that w

as used w
hen the object w

as
draw

n on the canvas. This is especially relevant w
ith histogram

s and graphs.

C
lone/D

raw
C

lone
Tw

o useful m
ethods are Clone and DrawClone. The Clone m

ethod takes a
snapshot of the object w

ith the Stream
er and creates a new

 object. The
DrawClone m

ethod does the sam
e thing and in addition draw

s the clone.

B
row

se
This m

ethod is called if the object is brow
se-able and is to be displayed in the

object brow
ser. For exam

ple the TTree im
plem

entation of Browse, calls the
Brow

se m
ethod for each branch. The TBranch::Browse m

ethod displays
the nam

e of each leaf. For the object's Browse m
ethod to be called, the

IsFolder() m
ethod m

ust be overridden to return true. This does not m
ean

it has to be a folder, it just m
eans that it is brow

se-able.

 Adding a C
lass

D
ecem

ber 2001 - version 3.1d
273

SavePrim
itive

This m
ethod is called by a canvas on its list of prim

itives, w
hen the canvas is

saved as a script. The purpose of SavePrimitve is to save a prim
itive as a

C
++ statem

ent(s). M
ost R

O
O

T classes im
plem

ent the SavePrimitive
m

ethod. It is recom
m

ended that the SavePrimitive is im
plem

ented in user
defined classes if it is to be draw

n on a canvas. Such that the com
m

and
TCanvas::SaveAs(Canvas.C) w

ill preserve the user-class object in the
resulting script.

G
etO

bjectInfo
This m

ethod is called w
hen displaying the event status in a canvas. To show

the event status w

indow
, select the Options m

enu and the EventStatus
item

. This m
ethod returns a string of inform

ation about the object at position
(x, y). Every tim

e the cursor m
oves, the object under the cursor executes the

GetObjectInfo m
ethod. The string is then show

n in the status bar.

There is a default im
plem

entation in TObject, but it is typically overridden for
classes that can report peculiarities for different cursor positions (for exam

ple
the bin contents in a TH

1).

IsFolder
By default an object inheriting from

 TObject is not brow
s-able, because

TObject::IsFolder() returns kFALSE. To m
ake a class brow

se-able, the
IsFolder m

ethod needs to be overridden to return kTRUE.
In general, this m

ethod returns kTRUE if the object contains brow
se-able

objects (like containers or lists of other objects).

B
it M

asks and U
nique ID

A TObject descendent inherits tw

o data m
em

bers: fBits and fUniqueID.
fBits: This 32-bit data m

em
ber is to be used w

ith a bit m
ask to get

inform
ation about the object. Bit 0 �7 are reserved by TObject. The

kMustClean, kCanDelete are used in TO
bject, these can be set by any

object and should not be reused.

These are the bits used in TObject:

enum EObjBits {
 kCanDelete = BIT(0), // if object in a list can be deleted
 kMustCleanup = BIT(3), // if object destructor must call
 // RecursiveRemove()
 kCannotPick = BIT(6), // if object in a pad cannot be picked
 kInvalidObject = BIT(13) // if object ctor succeeded but
 // object should not be used
};

The rem

aining 24 bits can be used by other classes. M
ake sure there is no

overlap in any given hierarchy. For exam
ple TC

lass uses bit 12 and 13
kClassSaved and kIgnoreTObjectStreamer respectively.
The above bit 13 is set w

hen an object could not be read from
 a R

O
O

T file. It
w

ill check this bit and skip to the next object on the file.

The TObject constructor initializes the fBits to zero depending if the
object is created on the stack or allocated on the heap. W

hen the object is

274
D

ecem
ber 2001 - version 3.1d

Adding a C
lass

created on the stack, the kCanDelete bit is set to false to protect from

deleting objects on the stack. O
f the status w

ord the high 8 bits are reserved
for system

 usage and the low
 24 bits are user settable.

fUniqueID: This data m
em

ber can be used to give an object a unique
identification num

ber. It is initialized to zero by the TO
bject constructor. This

data m
em

ber is not used by R
O

O
T.

 These tw
o data m

em
bers are stream

ed out w
hen w

riting an object to disk. If
you do not use them

 you can save som
e space and tim

e by specifying:

 MyClass::Class()->IgnoreTObjectStreamer()

This sets a bit in the TClass object.
If the file is com

pressed, the savings are m
inim

al since m
ost values are zero,

how
ever, it saves som

e space w
hen the file is not com

pressed.

A call to IgnoreObjectStreamer also prevents the creation of tw
o

additional branches w
hen splitting the object. If left alone, tw

o branches
called fBits and fUniqueID w

ill appear.

M
otivation

If you w
ant to integrate and use your classes w

ith R
O

O
T, to enjoy features

like, extensive R
TTI (R

un Tim
e Type Inform

ation) and R
O

O
T object I/O

 and
inspection, you have to add the follow

ing line to your class header files:

ClassDef (ClassName,ClassVersionID) //The class title

For exam
ple in TLine.h w

e have:

ClassDef (TLine,1) //A line segment

The ClassVersionID is used by the R
O

O
T I/O

 system
. It is w

ritten on the
output stream

 and during reading you can check this version ID
 and take

appropriate action depending on the value of the ID
 (see the section on

Stream
ers in the C

hapter Input/O
utput). Every tim

e you change the data
m

em
bers of a class, you should increase its ClassVersionID by one. The

ClassVersionID should be >=1. Set ClassVersionID=0 in case you
don't need object I/O

.

Sim
ilarly, in your im

plem
entation file you m

ust add the statem
ent:

ClassImp(ClassName)

For exam
ple in TLine.cxx:

ClassImp(TLine)

N
ote that you M

U
ST provide a default constructor for your classes, i.e. a

constructor w
ith zero param

eters or w
ith one or m

ore param
eters all w

ith
default values in case you w

ant to use object I/O
. If not you w

ill get a com
pile

tim
e error.

The ClassDef and ClassImp m
acros are necessary to link your classes to

the dictionary generated by C
IN

T.

 Adding a C
lass

D
ecem

ber 2001 - version 3.1d
275

The ClassDef and ClassImp m
acros are defined in the file Rtypes.h.

This file is referenced by all R
O

O
T include files, so you w

ill autom
atically get

them
 if you use a R

O
O

T include file.

The D
efault C

onstructor
R

O
O

T object I/O
 requires every class to have a default constructor. This

default constructor is called w
henever an object is being read from

 a R
O

O
T

database. Be sure that you don't allocate any space for em
bedded pointer

objects in the default constructor. This space w
ill be lost (m

em
ory leak) w

hile
reading in the object. For exam

ple:

 class T49Event : public TObject {
private:
 Int_t fId;
 TCollection *fTracks;
 ...
 ...
public:
 // Error space for TList pointer will be lost
 T49Event() { fId = 0; fTrack = new TList; }
 // Correct default initialization of pointer
 T49Event() { fId = 0; fTrack = 0; }
 ...
 ...
};

The m
em

ory w
ill be lost because during reading of the object the pointer w

ill
be set to the object it w

as pointing to at the tim
e the object w

as w
ritten.

C
reate the fTrack list w

hen you need it, e.g. w
hen you start filling the list or

in a not-default constructor.

...
if (!fTrack) fTrack = new TList;
...

276
D

ecem
ber 2001 - version 3.1d

Adding a C
lass

rootcint: The C
IN

T D
ictionary G

enerator
In the follow

ing exam
ple w

e w
alk through the steps necessary to generate a

dictionary and I/O
 and inspect m

em
ber functions.

Let start w
ith a TEvent class, w

hich contains a collection of TTracks:

 #ifndef __TEvent__
#define __TEvent__
 #include "TObject.h"
 class TCollection;
class TTrack;
 class TEvent : public TObject {
 private:
 Int_t fId; // event sequential id
 Float_t fTotalMom; // total momentum
 TCollection *fTracks; // collection of tracks
 public:
 TEvent() { fId = 0; fTracks = 0; }
 TEvent(Int_t id);
 ~TEvent();
 void AddTrack(TTrack *t);
 Int_t GetId() const { return fId; }
 Int_t GetNoTracks() const;
 void Print(Option_t *opt="");
 Float_t TotalMomentum();
 ClassDef (TEvent,1) //Simple event class
};

 Adding a C
lass

D
ecem

ber 2001 - version 3.1d
277

And the TTrack header:

 #ifndef __TTrack__
#define __TTrack__
 #include "TObject.h"
 class TEvent;
 class TTrack : public TObject {
 private:
 Int_t fId; //track sequential id
 TEvent *fEvent; //event to which track belongs
 Float_t fPx; //x part of track momentum
 Float_t fPy; //y part of track momentum
 Float_t fPz; //z part of track momentum
 public:
 TTrack() { fId = 0; fEvent = 0; fPx = fPy = fPz = 0; }
 TTrack(Int_t id, Event *ev, Float_t px,Float_t py,Float_t pz);
 Float_t Momentum() const;
 TEvent *GetEvent() const { return fEvent; }
 void Print(Option_t *opt="");
 ClassDef (TTrack,1) //Simple track class
};
 #endif

The things to notice in these header files are:

��
The usage of the ClassDef m

acro
��

The default constructors of the TEvent and TTrack classes
��

C
om

m
ents to describe the data m

em
bers and the com

m
ent after the

ClassDef m
acro to describe the class

These classes are intended for you to create an event object w
ith a certain id,

and then add tracks to it. The track objects have a pointer to their event. This
show

s that the I/O
 system

 correctly handles circular references.

278
D

ecem
ber 2001 - version 3.1d

Adding a C
lass

N
ext, the im

plem
entation of these tw

o classes. Event.cxx:

#include <iostream.h>
 #include "TOrdCollection.h"
#include "TEvent.h"
#include "TTrack.h"
 ClassImp(TEvent)
 ...
...

and Track.cxx:

 #include <iostream.h>
 #include "TMath.h"
#include "Track.h"
#include "Event.h"
 ClassImp(TTrack)
...

N
ow

 using rootcint w
e can generate the dictionary file.

M
ake sure you use a unique filenam

e, because rootcint appends it to the
nam

e of static function (G__cpp_reset_tabableeventdict() and
G__set_cpp_environmenteventdict ()) .

rootcint eventdict.cxx -c TEvent.h TTrack.h

Looking in the file eventdict.C w
e can see, besides the m

any m
em

ber
function calling stubs (used internally by the interpreter), the Streamer()
and ShowMembers() m

ethods for the tw
o classes. Streamer(

) is used to
stream

 an object to/from
 a TBuffer and ShowMembers() is used by the

Dump() and Inspect() m
ethods of TObject.

 Adding a C
lass

D
ecem

ber 2001 - version 3.1d
279

H
ere is the TEvent::Streamer m

ethod:

void TEvent::Streamer(TBuffer &R__b)
{ // Stream an object of class TEvent.
 if (R__b.IsReading()) {
 Version_t R__v = R__b.ReadVersion();
 TObject::Streamer(R__b);
 R__b >> fId;
 R__b >> fTotalMom;
 R__b >> fTracks;
 } else {
 R__b.WriteVersion(TEvent::IsA());
 TObject::Streamer(R__b);
 R__b << fId;
 R__b << fTotalMom;
 R__b << fTracks;
 }
}

The TBuffer class overloads the o
p
e
r
a
t
o
r
<
<
(
) and operator>>() for

all basic types and for pointers to objects. These operators w
rite and read

from
 the buffer and take care of any needed byte sw

apping to m
ake the

buffer m
achine independent. D

uring w
riting the TBuffer keeps track of the

objects that have been w
ritten and m

ultiple references to the sam
e object are

replaced by an index. In addition, the object's class inform
ation is stored.

TEvent and TTracks need m
anual intervention. C

ut and paste the
generated Streamer() from

 the eventdict.C into the class' source file
and m

odify as needed (e.g. add counter for array of basic types) and disable
the generation of the Streamer() w

hen using the LinkDef.h file for next
execution of rootcint.
In case you don't w

ant to read or w
rite this class (no I/O

) you can tell rootcint
to generate a dum

m
y Streamer() by changing this line in the source file:

ClassDef (TEvent,0)

If you w
ant to prevent the generation of Streamer(), see the chapter

"Adding a C
lass w

ith a Shared Library" below
.

280
D

ecem
ber 2001 - version 3.1d

Adding a C
lass

Adding a C
lass w

ith a Shared Library
Step 1:
D

efine your ow
n class in SClass.h and im

plem
ent it in SClass.cxx. You

m
ust provide a default constructor for your class.

#include <iostream.h>
#include "TObject.h"
class SClass : public TObject {
private:
 Float_t fX; //x position in centimeters
 Float_t fY; //y position in centimeters
 Int_t fTempValue; //! temporary state value
public:
 SClass() { fX = fY = -1; }
 void Print() const;
 void SetX(float x) { fX = x; }
 void SetY(float y) { fY = y; }
 ClassDef (SClass, 1)
};

Step 2:
Add a call to the ClassDef m

acro to at the end of the class definition (i.e. in
the SClass.h file). ClassDef(SClass,1).
Add a call to the ClassImp m

acro in the im
plem

entation file
(SClass .cxx). ClassImp(SClass)
SClass.cxx:

#include "SClass.h"
ClassImp (SClass);
void SClass::Print() const {
 cout << "fX = " << fX << ", fY = " << fY << endl;
}

You can add a class w
ithout using the ClassDef and ClassImp m

acros,
how

ever you w
ill be lim

ited. Specifically the object I/O
 features of R

O
O

T w
ill

not be available to you for these classes (see the chapter "C
IN

T the C
++

Interpreter").

The ShowMembers() and Streamer() m
ethod, as w

ell as the >>
operator overloads, are im

plem
ented only if you use ClassDef and

ClassImp.
See http://root.cern.ch/root/htm

l/R
types.h for the definition of ClassDef and

ClassImp.
To exclude a data m

em
ber from

 the Stream
er, add a ! as the first character in

the com
m

ents of the field:

 Int_t fTempValue; //! temporary state value

 Adding a C
lass

D
ecem

ber 2001 - version 3.1d
281

 The LinkD
ef.h File

Step 3:
The LinkDef.h file tells rootcint for w

hich classes to generate the
m

ethod interface stubs.

#ifdef __CINT__
#pragma link off all globals;
#pragma link off all classes;
#pragma link off all functions;
#pragma link C++ class SClass;
#endif Three options can trail the class nam

e:

��
 - : tells rootcint not to generate the Streamer() m

ethod for this
class. This is necessary for those classes that need a custom

ized
Streamer() m

ethod.

#pragma link C++ class SClass-; // no streamer

��
! : tells rootcint not to generate the operator>>(TBuffer &b,
MyClass *&obj) m

ethod for this class. This is necessary to be able to
w

rite pointers to objects of classes not inheriting from
 TObject.

#pragma link C++ class SClass!; // no >> operator
or
#pragma link C++ class SClass-!; // no Streamer no >>
operator ��

+ : in R
O

O
T version 1 and 2 tells rootcint to generate a Streamer()

w
ith extra byte count inform

ation. This adds an integer to each object in
the output buffer, but it allow

s for pow
erful error correction in case a

Streamer() m
ethod is out of sync w

ith data in the file. The + option is
m

utual exclusive w
ith both the - and ! options.

IM
PO

R
TAN

T N
O

TE: In R
O

O
T Version 3, a "+" after the class nam

e tells
rootcint to use the new

 I/O
 system

. The byte count check is alw
ays

added.

#pragma link C++ class SClass+; // add byte count

For inform
ation on Streamers see the section on Stream

ers in the
Input/O

utput chapter.

To get help on rootcint type: rootcint -? on the U
N

IX com
m

and line.

The O
rder M

atters
W

hen using tem
plated classes, the order of the pragm

a statem
ents m

atters.
For exam

ple, here is a tem
plated class Tmpl and a norm

al class Norm w
hich

holds a specialized instance of a Tmpl:

282
D

ecem
ber 2001 - version 3.1d

Adding a C
lass

class Norm {
 private:
 Tmpl<int>* fIntTmpl;
 public:
 �
};

Then in Linkdef.h the pragm
a statem

ents m
ust be ordered by listing all

specializations before any classes w
hich need them

:

// Correct Linkdef.h ordering
� #pragma link C++ class Tmpl<int>;
#pragma link C++ class Norm;
�

And not vice versa:

// Bad Linkdef.h ordering
� #pragma link C++ class Norm;
#pragma link C++ class Tmpl<int>;
�

 In this later case, rootcint generates Norm::Streamer() w
hich m

akes
reference to Tmpl<int>::Streamer(). Then rootcint gets to process
Tmpl<int> and generates a specialized Tmpl<int>::Streamer()
function.
 The problem

 is, w
hen the com

piler finds the first
Tmpl<int>::Streamer(), it w

ill instantiate it. But, later in the file
it finds the specialized version that rootcint generated. This causes
the error.
 H

ow
ever, if the Linkdef.h order is reversed then rootcint can generate

the specialized Tmpl<int>::Streamer() before it is needed (and thus
never instantiated by the com

piler).

 Step 4: C
om

pile the class using the M
akefile

In the M
akefile call rootcint to m

ake the dictionary for the class. C
all it

SClassDict.cxx. The rootcint utility generates the Streamer(), TBuffer
&operator>>() and ShowMembers() m

ethods for R
O

O
T classes.

For m
ore inform

ation on rootcint follow
 this link:

http://root.cern.ch/root/R
ootC

intM
an.htm

l

Also, see the $ROOTSYS/test directory Makefile, Event.cxx, and
Event.h for an exam

ple.

 Adding a C
lass

D
ecem

ber 2001 - version 3.1d
283

gmake �f Makefile

Load the shared library:

 root [] .L SClass.so
 root [] SClass *sc = new SClass()
 root [] TFile *f = new TFile("Afile.root", "UPDATE");
 root [] sc->Write();

Adding a C
lass w

ith AC
LiC

Step 1. D

efine your class

#include "TObject.h"
// define the ABC class and make it inherit
// from TObject so that we can write ABC to a ROOT file
class ABC : public TObject {
 public:
 Float_t a,b,c,p;
 ABC():a(0),b(0),c(0),p(0){};

 // Define the class for the cint dictionary
 ClassDef (ABC,1)
};
 // Call the ClassImp macro to give the ABC class RTTI
// and full I/O capabilities.

 #if !defined(__CINT__)
 ClassImp(ABC);
 #endif

Step 2: Load the ABC
 class in the script.

// Check if ABC is already loaded
if (!TClassTable::GetDict("ABC")) {

gROOT->Macro("ABCClass.C++");
} // Use the Class
ABC *v = new ABC;
v->p = (sqrt((v->a * v->a)+ (v->b * v->b)+(v->c * v->c)));

 C
ollection C

lasses
D

ecem
ber 2001 - version 3.1d

285

14
C

ollection C
lasses

C
ollections are a key feature of the R

O
O

T system
. M

any, if not m
ost, of the

applications you w
rite w

ill use collections. If you have used param
eterized

C
++ collections or polym

orphic collections before, som
e of this m

aterial w
ill

be review
. H

ow
ever, m

uch of this chapter covers aspects of collections
specific to the R

O
O

T system
. W

hen you have read this chapter, you w
ill

know

��
H

ow
 to create instances of collections

��
The difference betw

een lists, arrays, hash tables, m
aps, etc.

��
H

ow
 to add and rem

ove elem
ents of a collection

��
H

ow
 to search a collection for a specific elem

ent
��

H
ow

 to access and m
odify collection elem

ents
��

H
ow

 to iterate over a collection to access collection elem
ents

��
H

ow
 to m

anage m
em

ory for collections and collection elem
ents

��
H

ow
 collection elem

ents are tested for equality (IsEqual(
))

��
H

ow
 collection elem

ents are com
pared (Compare()) in case of sorted

collections
��

H
ow

 collection elem
ents are hashed (Hash()) in hash tables

U
nderstanding C

ollections
A collection is a group of related objects. You w

ill find it easier to m
anage a

large num
ber of item

s as a collection. For exam
ple, a diagram

 editor m
ight

m
anage a collection of points and lines. A set of w

idgets for a graphical user
interface can be placed in a collection. A geom

etrical m
odel can be described

by collections of shapes, m
aterials and rotation m

atrices. C
ollections can

them
selves be placed in collections. C

ollections act as flexible alternatives to
traditional data structures of com

puters science such as arrays, lists and
trees.

G
eneral C

haracteristics
The R

O
O

T collections are polym
orphic containers that hold pointers to

TObjects, so:

��
They can only hold objects that inherit from

 TObject
��

They return pointers to TObjects, that have to be cast back to the
correct subclass

C
ollections are dynam

ic, they can grow
 in size as required.

286
D

ecem
ber 2001 - version 3.1d

C
ollection C

lasses

C
ollections them

selves are descendants of TObject so can them
selves be

held in collections. It is possible to nest one type of collection inside another
to any level to produce structures of arbitrary com

plexity.

C
ollections don�t ow

n the objects they hold for the very good reason that the
sam

e object could be a m
em

ber of m
ore than one collection. O

bject
ow

nership is im
portant w

hen it com
es to deleting objects; if nobody ow

ns the
object it could end up as w

asted m
em

ory (i.e. a m
em

ory leak) w
hen no

longer needed. If a collection is deleted, its objects are not. The user can
force a collection to delete its objects, but that is the user�s choice.

D
eterm

ining the C
lass of C

ontained O
bjects

M
ost containers m

ay hold heterogeneous collections of objects and then it is
left to the user to correctly cast the TObject pointer to the right class.
C

asting to the w
rong class w

ill give w
rong results and m

ay w
ell crash the

program
! So the user has to be very careful. O

ften a container only contains
one class of objects, but if it really contains a m

ixture, it is possible to ask
each object about its class using the InheritsFrom() m

ethod.

For exam
ple if myObject is a TObject pointer:

if (myObject->InheritsFrom("TParticle") {
 printf("myObject is a TParticle\n");
}

As the nam
e suggests, this test w

orks even if the object is a subclass of
TParticle. The m

em
ber function IsA() can be used instead of

InheritsFrom() to m
ake the test exact. The InheritsFrom() and

IsA() m
ethods use the extensive R

un Tim
e Type Inform

ation (R
TTI)

available via the R
O

O
T m

eta classes.

Types of C
ollections

The R
O

O
T system

 im
plem

ents the follow
ing basic types of collections:

unordered collections, ordered collections and sorted collections. This picture
show

s the inheritance hierarchy for the prim
ary collection classes. All prim

ary
collection classes derive from

 the abstract base class TCollection.

TCollection

TSeqCollection

TList
TO

bjArray
TO

rdCollection

TSortedList

TM
ap

THashTable

THashList
TClonesArray

TBtree

 C
ollection C

lasses
D

ecem
ber 2001 - version 3.1d

287

O
rdered C

ollections (Sequences)
Sequences are collections that are externally ordered because they m

aintain
internal elem

ents according to the order in w
hich they w

ere added. The
follow

ing sequences are available:

��
TList

��
THashList

��
TOrdCollection

��
TObjArray

��
TClonesArray

The TOrdCollection, TObjArray as w
ell as the TClonesArray can be

sorted using their Sort() m
em

ber function (if the stored item
s are sort able).

O
rdered collections all derive from

 the abstract base class
TSeqCollection.

Sorted C
ollesction

Sorted collections are ordered by an internal (autom
atic) sorting m

echanism
.

The follow
ing sorted collections are available:

��
TSortedList

��
TBtree

The stored item
s m

ust be sort able.

U
nordered C

ollections
U

nordered collections don't m
aintain the order in w

hich the elem
ents w

ere
added, i.e. w

hen you iterate over an unordered collection, you are not likely
to retrieve elem

ents in the sam
e order they w

ere added to the collection. The
follow

ing unordered collections are available:

��
THashTable

��
TMap

Iterators: Processing a C
ollection

The concept of processing all the m
em

bers of a collection is generic, i.e.
independent of any specific representation of a collection. To process each
object in a collection one needs som

e type of cursor that is initialized and
then steps over each m

em
ber of the collection in turn. C

ollection objects
could provide this service but there is a snag: as there is only one collection
object per collection there w

ould only be one cursor. Instead, to perm
it the

use of as m
any cursors as required, they are m

ade separate classes called
iterators. For each collection class there is an associated iterator class that
know

s how
 to sequentially retrieve each m

em
ber in turn. The relationship

betw
een a collection and its iterator is very close and m

ay require that the
iterator has full access to the collection (i.e. it is a friend class). In general
iterators w

ill be used via the TIter w
rapper class.

For exam
ple:

��
TList

TListIter

��
TMap

TMapIter

288
D

ecem
ber 2001 - version 3.1d

C
ollection C

lasses

Foundation C
lasses

All collections are based on the fundam
ental classes: TCollection and

TIterator. They are so generic that it is not possible to create objects from

them
; they are only used as base classes for other classes (i.e. they are

abstract base classes).

TC
ollection

The TCollection class provides the basic protocol (i.e. the m
inim

um
 set of

m
em

ber functions) that all collection classes have to im
plem

ent. These
include:

��Add()
Adds another object to the collection.

��GetSize()
R

eturns the num
ber of objects in the collection.

��Clear()
C

lears out the collection, but does not delete the
rem

oved objects.
��Delete()

C
lears out the collection and deletes the rem

oved
objects. This should only be used if the collection ow

ns
its objects (w

hich is not norm
ally the case).

��FindObject()
Find an object given either its nam

e or address.
��MakeIterator() R

eturns an iterator associated w
ith the collection.

��Remove()
R

em
oves an object from

 the collection.

C
om

ing back to the issue of object ow
nership. The code exam

ple below

show
s a class containing three lists, w

here the fTracks list is the ow
ning

collection and the other tw
o lists are used to store a sub-set of the track

objects. In the destructor of the class the Delete() m
ethod is called for the

ow
ning collection to delete correctly all its track objects.

To delete the objects in the container, do 'fTrack->Delete()'. To delete
the container itself do 'delete fTracks'.

class TEvent : public TObject {
private:
 TList *fTracks; //list of all tracks
 TList *fVertex1; //subset of tracks part of vertex1
 TList *fVertex2; //subset of tracks part of vertex2
 ...
};
 TEvent::~TEvent()
{ fTracks->Delete(); delete fTracks;
 delete fVertex1; delete fVertex2;
}

TIterator
The TIterator class defines the m

inim
um

 set of m
em

ber functions that all
iterators m

ust support. These include:

��Next()
return the next m

em
ber of the collection or 0 if no m

ore
m

em
bers.

��Reset() reset the iterator so that Next() returns the first object.

 C
ollection C

lasses
D

ecem
ber 2001 - version 3.1d

289

A C
ollectable C

lass
By default, all objects of TObject derived classes can be stored in R

O
O

T
containers. H

ow
ever, the TObject class provides som

e m
em

ber functions
that allow

 you to tune the behavior of objects in containers. For exam
ple, by

default tw
o objects are considered equal if their pointers point to the sam

e
address. This m

ight be too strict for som
e classes w

here equality is already
achieved if som

e or all of the data m
em

bers are equal. By overriding the
follow

ing TObject m
em

ber functions, you can change the behavior of
objects in collections:

��
IsEqual()

is used by the FindObject() collection m
ethod. By

default, IsEqual() com
pares the tw

o object pointers.
��

Compare()
returns �1, 0 or 1 depending if the object is sm

aller,
equal or larger than the other object. By default, a
TObject has not a valid Compare() m

ethod.
��

IsSortable()
returns true if the class is sort able (i.e. if it has a valid
Compare() m

ethod). By default, a TObject is not
sort able.

��
Hash()

returns a hash value. It needs to be im
plem

ented if an
object has to be stored in a collection using a hashing
technique, like THashTable, THashList and TMap.
By default, Hash(

) returns the address of the object. It
is essential to choose a good hash function.

The exam
ple below

 show
s how

 to use and override these m
em

ber functions.

// TObjNum is a simple container for an integer.
class TObjNum : public TObject {
private:
 int num;
 public:
 TObjNum(int i = 0) : num(i) { }
 ~TObjNum() { }
 void SetNum(int i) { num = i; }
 int GetNum() const { return num; }
 void Print(Option_t *){ printf("num = %d\n", num); }
 Bool_t IsEqual(TObject *obj)
 { return num == ((TObjNum*)obj)->num; }
 Bool_t IsSortable() const { return kTRUE; }
 Int_t Compare(TObject *obj)
 { if (num < ((TObjNum*)obj)->num)
 return -1;
 else if (num > ((TObjNum*)obj)->num)
 return 1;
 else
 return 0; }
 ULong_t Hash() { return num; }
};

290
D

ecem
ber 2001 - version 3.1d

C
ollection C

lasses

The TIter G
eneric Iterator

As stated above, the TIterator class is abstract; it is not possible to create
TIterator objects. H

ow
ever, it should be possible to w

rite generic code to
process all m

em
bers of a collection so there is a need for a generic iterator

object. A TIter object acts as generic iterator. It provides the sam
e Next()

and Reset() m
ethods as TIterator although it has no idea how

 to
support them

! It w
orks as follow

s:

��
To create a TIter object its constructor m

ust be passed an object that
inherits from

 TCollection. The TIter constructor calls the
MakeIterator() m

ethod of this collection to get the appropriate
iterator object that inherits from

 TIterator.
��

The Next() and Reset() m
ethods of TIter sim

ply call the Next()
and Reset() m

ethods of the iterator object.

So TIter sim
ply acts as a w

rapper for an object of a concrete class
inheriting from

 TIterator.
To see this w

orking in practice, consider the TObjArray collection. Its
associated iterator is TObjArrayIter. Suppose myarray is a pointer to a
TObjArray, i.e.
TObjArray *myarray;
W

hich contains MyClass objects. To create a TIter object called myiter:
TIter myiter(myarray);

As show
n in the diagram

, this results in several m
ethods being called:

(1) The TIter constructor is passed a TObjArray
(2) TIter asks em

bedded TCollection to m
ake an iterator

(3) TCollection asks TObjArray to m
ake an iterator

(4) TObjArray returns a TObjArrayIter.

TO
bjArray

TIter
TC

ollection

m
yarray

m
yiter

TO
bjArrayIter

(1) TIter myiter(myarray)

(3) MakeIterator

(2) MakeIterator

(4)

 C
ollection C

lasses
D

ecem
ber 2001 - version 3.1d

291

N
ow

 define a pointer for MyClass objects and set it to each m
em

ber of the
TObjArray:

MyClass *myobject;
while ((myobject = (MyClass *) myiter.Next())) {
 // process myobject
}

The heart of this is the myiter.Next() expression w
hich does the

follow
ing:

(1) The Next() m
ethod of the TIter object myiter is called

(2) The TIter forw
ards the call to the TIterator em

bedded in the
TObjArrayIter

(3) TIterator forw
ards the call to the TObjArrayIter

(4) TObjArrayIter finds the next MyClass object and returns it
(5) TIter passes the MyClass object back to the caller
Som

etim
es the TIter object is called next, and then instead of w

riting:

next.Next()
W

hich is legal, but looks rather odd, iteration is w
ritten as:

next()
This w

orks because the function operator() is defined for the TIter class
to be equivalent to the Next() m

ethod.

TO
bjA

rrayIter

TIter

TIterator

m
yiter

M
yC

lass

(1) Next()

(3) Next()

(4)(2) Next()

M
yC

lass
(5)

292
D

ecem
ber 2001 - version 3.1d

C
ollection C

lasses

The TList C
ollection

A TList is a doubly linked list. Before being inserted into the list the object
pointer is w

rapped in a TObjLink object that contains, besides the object
pointer also a previous and next pointer.

O
bjects are typically added using:

��
Add()

��
AddFirst(), AddLast()

��
AddBefore(), AddAfter()

M
ain features of TList: very low

 cost of adding/rem
oving elem

ents
anyw

here in the list.

O
verhead per elem

ent: 1 TObjLink, i.e. tw
o 4 (or 8) byte pointers + pointer

to vtable = 12 (or 24) bytes.

The diagram
 below

 show
s the internal data structure of a TList:

class TList : public TSeqC
ollection

{private:
 TO

bjLink *fLast;
 TO

bjLink *fFirst;
 . . .
 . . .
};class TO

bjLink {
friend class TList;
private:
 TO

bjLink *fPrev;
 TO

bjLink *fN
ext;

 TO
bject *fO

bject;
 . . .
 . . .
};

fP
rev

fN
ext

fO
bject

obj

TO
bjLink

fP
rev

fN
ext

fO
bject

obj

TO
bjLink

fP
rev

fN
ext

fO
bject

obj

TO
bjLink

 C
ollection C

lasses
D

ecem
ber 2001 - version 3.1d

293

Iterating over a TList
There are basically four w

ays to iterate over a TList:
(1) U

sing the ForEach script:
 GetListOfPrimitives()->ForEach(TObject,Draw)();

(2) U
sing the TList iterator TListIter (via the w

rapper class TIter):

 TIter next(GetListOfTracks());
 while ((TTrack *obj = (TTrack *)next()))
 obj->Draw();

 (3) U
sing the TObjLink list entries (that w

rap the
TObject

*):

 TObjLink *lnk = GetListOfPrimitives()->FirstLink();
 while (lnk) {
 lnk->GetObject()->Draw();
 lnk = lnk->Next();
 }

 (4) U
sing the TList's After() and Before() m

em
ber functions:

 TFree *idcur = this;
 while (idcur) {
 ...
 ...
 idcur = (TFree*)GetListOfFree()->After(idcur);
 }

M
ethod 1 uses internally m

ethod 2.

M
ethod 2 w

orks for all collection classes. TIter overloads operator().
M

ethods 3 and 4 are specific for TList.
M

ethods 2, 3 and 4 can also easily iterate backw
ards using either a

backw
ard TIter (using argum

ent kIterBackward) or by using
LastLink() and lnk->Prev() or by using the Before() m

ethod.

294
D

ecem
ber 2001 - version 3.1d

C
ollection C

lasses

The TO
bjArray C

ollection
A TObjArray is a collection w

hich supports traditional array sem
antics via

the overloading of operator[]. O
bjects can be directly accessed via an

index. The array expands autom
atically w

hen objects are added.

At creation tim
e one specifies the default array size (default = 16) and low

er
bound (default = 0). R

esizing involves a re-allocation and a copy of the old
array to the new

. This can be costly if done too often. If possible, set initial
size close to expected final size. Index validity is alw

ays checked (if you are
100%

 sure and m
axim

um
 perform

ance is needed you can use
UnCheckedAt() instead of At() or operator[]).
If the stored objects are sort able the array can be sorted using S

o
r
t
(
).

O
nce sorted, efficient searching is possible via the BinarySearch

(
)

m
ethod.

Iterating can be done using a TIter iterator or via a sim
ple for loop:

 for (int i = 0; i <= fArr.GetLast(); i++)
 if ((track = (TTrack*)fArr[i])) // or fArr.At(i)
 track->Draw();

M
ain features of T

O
b
j
A
r
r
a
y: sim

ple, w
ell know

n array sem
antics.

O
verhead per elem

ent: none, except possible over sizing of fCont.
The diagram

 below
 show

s the internal data structure of a TObjArray:

class TO
bjArray : public TSeqC

ollection {
private:
 TO

bject **fC
ont;

 . . .
 . . .
};

000

obj
obj

obj
obj

 C
ollection C

lasses
D

ecem
ber 2001 - version 3.1d

295

TC
lonesArray � An Array of Identical O

bjects
A TClonesArray is an array of identical (clone) objects. The m

em
ory for the

objects stored in the array is allocated only once in the lifetim
e of the clones

array. All objects m
ust be of the sam

e class and the object m
ust have a fixed

size (i.e. they m
ay not allocate other objects). For the rest this class has the

sam
e properties as a TObjArray.

The class is specially designed for repetitive data analysis tasks, w
here in a

loop m
any tim

es the sam
e objects are created and deleted.

The diagram
 below

 show
s the internal data structure of a TClonesArray:

The Idea B
ehind TC

lonesArray
To reduce the very large num

ber of new
 and delete calls in large loops like

this (O
(100000) x O

(10000) tim
es new

/delete):

TObjArray a(10000);
while (TEvent *ev = (TEvent *)next()) { // O(100000)
 for (int i = 0; i < ev->Ntracks; i++) { // O(10000)
 a[i] = new TTrack(x,y,z,...);
 ...
 ...
 }
 ...
 a.Delete();
}

class TC
lonesArray : public TO

bjArray {
private:
 TO

bjArray *fK
eep;

 TC
lass *fC

lass;
 . . .
 . . .
};

fC
ont

space for identical
objects of type fC

lass

296
D

ecem
ber 2001 - version 3.1d

C
ollection C

lasses

You better use a TClonesArray w
hich reduces the num

ber of new
/delete

calls to only O
(10000):

TClonesArray a("TTrack", 10000);
while (TEvent *ev = (TEvent *)next()) { // O(100000)
 for (int i = 0; i < ev->Ntracks; i++) { // O(10000)
 new(a[i]) TTrack(x,y,z,...);
 ...
 ...
 }
 ...
 a.Delete();
}

C
onsidering that a pair of new

/delete calls on average cost about 70 �s,
O

(10
9) new

/deletes w
ill save about 19 hours.

For the other collections see the class reference guide on the w
eb and the

test program
 $ROOTSYS/test/tcollex.cxx.

Tem
plate C

ontainers and STL
Som

e people dislike polym
orphic containers because they are not truly �type

safe�. In the end, the com
piler leaves it the user to ensure that the types are

correct. This only leaves the other alternative: creating a new
 class each tim

e
a new

 (container organization) / (contained object) com
bination is needed. To

say the least this could be very tedious. M
ost people faced w

ith this choice
w

ould, for each type of container:
1.

D
efine the class leaving a dum

m
y nam

e for the contained object
type.

2.
W

hen a particular container w
as needed, copy the code and then do

a global search and replace for the contained class.

C
++ has a built in tem

plate schem
e that effectively does just this. For

exam
ple:

template<class T>
 class ArrayContainer {
private:
 T *member[10];
...
};

This is an array container w
ith a 10-elem

ent array of pointers to T, it could
hold up to 10 T objects. This array is flaw

ed because it is static and hard-
coded, it should be dynam

ic. H
ow

ever, the im
portant point is that the

tem
plate statem

ent indicates that T is a tem
plate, or param

eterized class. If
w

e need an ArrayContainer for Track objects, it can be created by:
ArrayContainer<Track> MyTrackArrayContainer;
C

++ takes the param
eter list, and substitutes Track for T throughout the

definition of the class ArrayContainer, then com
piles the code so

generated, effectively doing the sam
e w

e could do by hand, but w
ith a lot less

effort. This produces code that is type safe, but does have different
draw

backs:

��
Tem

plates m
ake code harder to read.

 C
ollection C

lasses
D

ecem
ber 2001 - version 3.1d

297

��
At the tim

e of w
riting this docum

entation, som
e com

pilers can be
very slow

 w
hen dealing w

ith tem
plates.

��
It does not solve the problem

 w
hen a container has to hold a

heterogeneous set of objects.

��
The system

 can end up generating a great deal of code; each
container/object com

bination has its ow
n code, a phenom

enon that is
som

etim
es referred to as code bloat.

The Standard Tem
plate Library (STL) is part on AN

SI C
++, and includes a

set of tem
plate containers.

 Physics Vectors
D

ecem
ber 2001 - version 3.1d

299

15
Physics Vectors

The physics vector classes describe vectors in three and four dim
ensions

and their rotation algorithm
s. The classes w

ere ported to root from
 C

LH
EP

see:
http://w

w
w

info.cern.ch/asd/lhc++/clhep/m
anual/U

serG
uide/Vector/vector.htm

l

The Physics Vector C
lasses

There are four classes in this package. They are:

TVector3: A general tree-vector. A TVector3 m
ay be expressed in

C
artesian, polar, or cylindrical coordinates. M

ethods include dot and
cross products, unit vectors and m

agnitudes, angles betw
een vectors,

and rotations and boosts. There are also functions of particular use to
H

EP, like pseudo-rapidity, projections, and transverse part of a
TVector3, and kinetic m

ethods on 4-vectors such as Invariant Mass
of pairs or containers of particles.
TLorenzVector: a general four-vector class, w

hich can be used either
for the description of position and tim

e (x, y, z, t) or m
om

entum
 and

energy (px, py, pz, E).
TRotation: a class describing a rotation of a TVector3 object.
TLorenzRotation: a class to describe the Lorentz transform

ations
including Lorentz boosts and rotations.

There is also a TVector2, it is a basic im
plem

entation of a vector in tw
o

dim
ensions and not part of the C

LH
EP translation.

300
D

ecem
ber 2001 - version 3.1d

Physics Vectors

TVector3

TVector3 is a general three vector class,
w

hich can be used for description of different
vectors in 3D

. C
om

ponents of three vector:

x ,y ,z - basic com
ponents

� = azim
uth angle

� = polar angle
m

agnitude = m
ag = sqrt(x

2 + y
2 + z

2)
transverse com

ponent = perp = sqrt(x
2 + y

2)

U
sing the TVector3 class you should

rem
em

ber that it contains only com
m

on
features of three vectors and lacks m

ethods
specific for som

e particular vector values.
For exam

ple, it has no translate function
because translation has no m

eaning for
vectors.

D
eclaration / Access to the com

ponents
TVector3 has been im

plem
ented as a vector of three Double_t variables,

representing the C
artesian coordinates. By default the values are initialized to

zero, how
ever you can change them

 in the constructor:

 TVector3 v1; // v1 = (0,0,0)
 TVector3 v2(1); // v2 = (1,0,0)
 TVector3 v3(1,2,3); // v3 = (1,2,3)
 TVector3 v4(v2); // v4 = v2

It is also possible (but not recom
m

ended) to initialize a TVector3 w
ith a

Double_t or Float_t C array.
You can get the com

ponents by nam
e or by index:

 xx = v1.X(); or xx = v1(0);
 yy = v1.Y(); yy = v1(1);
 zz = v1.Z(); zz = v1(2);

 Physics Vectors
D

ecem
ber 2001 - version 3.1d

301

The m
ethods SetX(), SetY(), SetZ() and SetXYZ() allow

s you to set
the com

ponents:

 v1.SetX(1.); v1.SetY(2.); v1.SetZ(3.);
 v1.SetXYZ(1.,2.,3.);

O
ther C

oordinates
To get inform

ation on the TVector3 in spherical (rho, phi, theta) or
cylindrical (z, r, theta) coordinates, the follow

ing m
ethods can be used.

Double_t m = v.Mag();
// get magnitude (=rho=Sqrt(x*x+y*y+z*z)))
Double_t m2 = v.Mag2(); // get magnitude squared
Double_t t = v.Theta(); // get polar angle
Double_t ct = v.CosTheta();// get cos of theta
Double_t p = v.Phi(); // get azimuth angle
Double_t pp = v.Perp(); // get transverse component
Double_t pp2= v.Perp2(); // get transverse squared

It is also possible to get the transverse com
ponent w

ith respect to another
vector:

Double_t ppv1 = v.Perp(v1);
Double_t pp2v1 = v.Perp2(v1);

The pseudo-rapidity (eta = -ln (tan (phi/2))) can be get by Eta()
or PseudoRapidity():

Double_t eta = v.PseudoRapidity();

These setters change one of the non-C
artesian coordinates:

 v.SetTheta(.5); // keeping rho and phi
 v.SetPhi(.8); // keeping rho and theta
 v.SetMag(10.); // keeping theta and phi
 v.SetPerp(3.); // keeping z and phi

Arithm
etic / C

om
parison

The TVector3 class has operators to add, subtract, scale and com
pare

vectors:
 v3 = -v1;
 v1 = v2+v3;
 v1 += v3;
 v1 = v1 - v3
 v1 -= v3;
 v1 *= 10;
 v1 = 5*v2;
 if(v1 == v2) {...}
 if(v1 != v2) {...}

302
D

ecem
ber 2001 - version 3.1d

Physics Vectors

R
elated Vectors

 v2 = v1.Unit(); // get unit vector parallel to v1
 v2 = v1.Orthogonal(); // get vector orthogonal to v1

Scalar and Vector Products

 s = v1.Dot(v2); // scalar product
 s = v1 * v2; // scalar product
 v = v1.Cross(v2); // vector product

 Angle betw
een Tw

o Vectors

 Double_t a = v1.Angle(v2);

R
otation around Axes

 v.RotateX(.5);
 v.RotateY(TMath::Pi());
 v.RotateZ(angle);

R
otation around a Vector

 v1.Rotate(TMath::Pi()/4, v2); // rotation around v2

R
otation by TR

otation
TVector3 objects can be rotated by TRotation objects using the
Transform() m

ethod, the operator *=, or the operator * of the
TRotation class. See the later section on TRotation.

 TRotation m;
 ...
 v1.transform(m);
 v1 = m*v1;
 v1 *= m; // v1 = m*v1

Transform
ation from

 R
otated Fram

e
This code transform

s v1 from
 the rotated fram

e (z' parallel to direction, x' in
the theta plane and y' in the xy plane as w

ell as perpendicular to the theta
plane) to the (x, y, z) fram

e.

TVector3 direction = v.Unit()
v1.RotateUz(direction);
// direction must be TVector3 of unit length

 Physics Vectors
D

ecem
ber 2001 - version 3.1d

303

 TR
otation The TRotation class describes a rotation of TVector3 object. It is a 3 * 3

m
atrix of Double_t:

| xx xy xz |
| yx yy yz |
| zx zy zz |
It describes a so-called active rotation, i.e. a rotation of objects inside a static
system

 of coordinates. In case you w
ant to rotate the fram

e and w
ant to know

the coordinates of objects in the rotated system

, you should apply the inverse
rotation to the objects. If you w

ant to transform
 coordinates from

 the rotated
fram

e to the original fram
e you have to apply the direct transform

ation.

A rotation around a specified axis m
eans counterclockw

ise rotation around
the positive direction of the axis.

D
eclaration, Access, C

om
parisons

 TRotation r; // r initialized as identity
 TRotation m(r); // m = r

There is no direct w
ay to set the m

atrix elem
ents - to ensure that a

TRotation alw
ays describes a real rotation. But you can get the values by

w
ith the m

ethods XX()..ZZ() or the (,) operator:

Double_t xx = r.XX(); // the same as xx=r(0,0)
 xx = r(0,0);
if (r==m) {...} // test for equality
if (r!=m) {..} // test for inequality
if (r.IsIdentity()) {...} // test for identity

R
otation Around Axes

The follow
ing m

atrices describe counter-clockw
ise rotations around the

coordinate axes and are im
plem

ented in: RotateX(), RotateY() and
RotateZ():
 | 1 0 0 |
Rx(a) = | 1 cos(a) -sin(a) |
 | 0 sin(a) cos(a) |
 | cos(a) 0 sin(a) |
Ry(a) = | 0 1 0 |
 | -sin(a) 0 cos(a) |
 | cos(a) -sin(a) 0 |
Rz(a) = | cos(a) -sin(a) 0 |
 | 0 0 1 |

304
D

ecem
ber 2001 - version 3.1d

Physics Vectors

r.RotateX(TMath::Pi()); // rotation around the x-axis

R
otation around Arbitrary Axis

The Rotate() m
ethod allow

s you to rotate around an arbitrary vector (not
necessary a unit one) and returns the result.

r.Rotate(TMath::Pi()/3,TVector3(3,4,5));

It is possible to find a unit vector and an angle, w
hich describe the sam

e
rotation as the current one:

Double_t angle;
TVector3 axis;
r.GetAngleAxis(angle,axis);

R
otation of Local Axes

The RotateAxes()method adds a rotation of local axes to the current
rotation and returns the result:

 TVector3 newX(0,1,0);
 TVector3 newY(0,0,1);
 TVector3 newZ(1,0,0);
 a.RotateAxes(newX,newX,newZ);

 M
ethods ThetaX(), ThetaY(), ThetaZ(), PhiX(),

PhiY(),PhiZ() return azim
uth and polar angles of the rotated axes:

 Double_t tx,ty,tz,px,py,pz;
 tx= a.ThetaX();
 ...
 pz= a.PhiZ();

Inverse R
otation

 TRotation a,b;
 ...
 b = a.Inverse(); // b is inverse of a, a is unchanged
 b = a.Invert(); // invert a and set b = a

 C
om

pound R
otations

The operator * has been im
plem

ented in a w
ay that follow

s the
m

athem
atical notation of a product of the tw

o m
atrices w

hich describe the
tw

o consecutive rotations. Therefore the second rotation should be placed
first:

 Physics Vectors
D

ecem
ber 2001 - version 3.1d

305

 r = r2 * r1;

 R
otation of TVector3

The TRotation class provides an operator * w
hich allow

s to express a
rotation of a TVector3 analog to the m

athem
atical notation

x'		xx xy xz		x
y'	=	yx yy yz		y
z'		zx zy zz		z

TRotation r;
TVector3 v(1,1,1);
v = r * v;

You can also use the Transform() m
ethod or the operator *= of the

TVector3 class:

 TVector3 v;
 TRotation r;
 v.Transform(r);

306
D

ecem
ber 2001 - version 3.1d

Physics Vectors

TLorentzVector
TLorentzVector is a general four-vector class, w

hich can be used either
for the description of position and tim

e (x, y, z, t) or m
om

entum
 and

energy (px, py, pz, E).

D
eclaration

TLorentzVector has been im
plem

ented as a set a TVector3 and a
Double_t variable. By default all com

ponents are initialized by zero.

 TLorentzVector v1; // initialized by (0., 0., 0.,
0.)
 TLorentzVector v2(1., 1., 1., 1.);
 TLorentzVector v3(v1);
 TLorentzVector v4(TVector3(1., 2., 3.),4.);

For backw
ard com

patibility there are tw
o constructors from

 a Double_t and
Float_t C

 array.

Access to C
om

ponents
There are tw

o sets of access functions to the com
ponents of a

LorentzVector: X(), Y(), Z(), T() and Px(), Py(), Pz() and
E(). Both sets return the sam

e values but the first set is m
ore relevant for

use w
here TLorentzVector describes a com

bination of position and tim
e

and the second set is m
ore relevant w

here TLorentzVector describes
m

om
entum

 and energy:

 Double_t xx =v.X();
 ...
 Double_t tt = v.T();
 Double_t px = v.Px();
 ...
 Double_t ee = v.E();

The com
ponents of TLorentzVector can also accessed by index:

 xx = v(0); or xx = v[0];
 yy = v(1); yy = v[1];
 zz = v(2); zz = v[2];
 tt = v(3); tt = v[3];

You can use the Vect() m
ethod to get the vector com

ponent of
TLorentzVector:

 TVector3 p = v.Vect();

 Physics Vectors
D

ecem
ber 2001 - version 3.1d

307

For setting com
ponents there are tw

o m
ethods: SetX(),..,

SetPx(),..:

 v.SetX(1.); or v.SetPx(1.);

 v.SetT(1.); v.SetE(1.);

To set m
ore the one com

ponent by one call you can use the SetVect()
function for the TVector3 part or SetXYZT(), SetPxPyPzE(). For
convenience there is also a SetXYZM():

 v.SetVect(TVector3(1,2,3));
 v.SetXYZT(x,y,z,t);
 v.SetPxPyPzE(px,py,pz,e);
 v.SetXYZM(x,y,z,m);
 // v=(x,y,z,e=Sqrt(x*x+y*y+z*z+m*m))

 Vector C
om

ponents in non-C
artesian C

oordinates
There are a couple of m

ethods to get and set the TVector3 part of the
param

eters in spherical coordinate system
s:

 Double_t m, theta, cost, phi, pp, pp2, ppv2, pp2v2;
 m = v.Rho();
 t = v.Theta();
 cost = v.CosTheta();
 phi = v.Phi();
 v.SetRho(10.);
 v.SetTheta(TMath::Pi()*.3);
 v.SetPhi(TMath::Pi());

or get inform
ation about the r-coordinate in cylindrical system

s:

 Double_t pp, pp2, ppv2, pp2v2;
 pp = v.Perp(); // get transvers component
 pp2 = v.Perp2(); // get transverse component squared
 ppv2 = v.Perp(v1); // get transvers component with
 // respect to another vector
 pp2v2 = v.Perp(v1);

for convenience there are tw
o m

ore set functions
SetPtEtaPhiE(pt,eta,phi,e); and
SetPtEtaPhiM(pt,eta,phi,m);

308
D

ecem
ber 2001 - version 3.1d

Physics Vectors

Arithm
etic and C

om
parison O

perators
The TLorentzVector class provides operators to add, subtract or com

pare
four-vectors:

 v3 = -v1;
 v1 = v2+v3;
 v1+= v3;
 v1 = v2 + v3;
 v1-= v3;
 if (v1 == v2) {...}
 if(v1 != v3) {...}

M
agnitude/Invariant m

ass, beta, gam
m

a, scalar
product
The scalar product of tw

o four-vectors is calculated w
ith the (-,-,-,+) m

etric:

 s = v1*v2 = t1*t2-x1*x2-y1*y2-z1*z2
The m

agnitude squared mag2 of a four-vector is therefore:

 mag2 = v*v = t*t-x*x-y*y-z*z
If mag2 is negative mag = -Sqrt(-mag*mag).
The m

ethods are:

 Double_t s, s2;
 s = v1.Dot(v2); // scalar product
 s = v1*v2; // scalar product
 s2 = v.Mag2(); or s2 = v.M2();
 s = v.Mag(); s = v.M();

Since in case of m
om

entum
 and energy the m

agnitude has the m
eaning of

invariant m
ass TLorentzVector provides the m

ore m
eaningful aliases

M2() and M();
The m

ethods Beta() and Gamma() returns beta and gamma =
1/Sqrt(1-beta*beta).

Lorentz B
oost

A boost in a general direction can be param
eterized w

ith three param
eters

w
hich can be taken as the com

ponents of a three vector b = (bx,by,bz).
W

ith
x = (x,y,z) and gamma = 1/Sqrt(1-beta*beta), an arbitrary
active Lorentz boost transform

ation (from
 the rod fram

e to the original fram
e)

can be w
ritten as:

x = x' + (gamma-1)/(beta*beta)*(b*x') * b + gamma * t'* b
t = gamma (t'+ b*x).

 Physics Vectors
D

ecem
ber 2001 - version 3.1d

309

The Boost()method perform
s a boost transform

ation from
 the rod fram

e to
the original fram

e. BoostVector() returns a TVector3 of the spatial
com

ponents divided by the tim
e com

ponent:

 TVector3 b;
 v.Boost(bx,by,bz);
 v.Boost(b);
 b = v.BoostVector(); // b=(x/t,y/t,z/t)

R
otations

There are four sets of functions to rotate the TVector3 com
ponent of a

TLorentzVector:

R
otation around A

xes
 v.RotateX(TMath::Pi()/2.);
 v.RotateY(.5);
 v.RotateZ(.99);

R
otation around an A

rbitrary A
xis

 v.Rotate(TMath::Pi()/4., v1); // rotation around v1

Transform
ation from

 R
otated Fram

e
v.RotateUz(direction); // direction must be a unit TVector3

by TR
otation (see TR

otation)
 TRotation r;
 v.Transform(r); or v *= r; // v = r*v

M
iscellaneous

A
ngle B

etw
een Tw

o Vectors
 Double_t a = v1.Angle(v2); // get angle between v1 and v2

Light-cone C
om

ponents
M

ethods Plus() and Minus() return the positive and negative light-cone
com

ponents:

 Double_t pcone = v.Plus();
 Double_t mcone = v.Minus();

310
D

ecem
ber 2001 - version 3.1d

Physics Vectors

Transform
ation by TLorentzR

otation
A general Lorentz transform

ation see class TLorentzRotation can be
used by the Transform() m

ethod, the *=, or * operator of the
TLorentzRotation class:

 TLorentzRotation l;
 v.Transform(l);
 v = l*v; or v *= l; // v = l*v

TLorentzR
otation

The TLorentzRotation class describes Lorentz transform
ations including

Lorentz boosts and rotations (see TRotation)
 | xx xy xz xt |
 | |
 | yx yy yz yt |
 lambda = | |
 | zx zy zz zt |
 | |
 | tx ty tz tt |

D
eclaration

By default it is initialized to the identity m
atrix, but it m

ay also be initialized by
an other TLorentzRotation, by a pure TRotation or by a boost:

 TLorentzRotation l; // l is initialized as identity
 TLorentzRotation m(l); // m = l
 TRotation r;
 TLorentzRotation lr(r);
 TLorentzRotation lb1(bx,by,bz);
 TVector3 b;
 TLorentzRotation lb2(b);

The M
atrix for a Lorentz boosts is:

 | 1+gamma'*bx*bx gamma'*bx*by gamma'*bx*bz gamma*bx |
 | gamma'*bx*bz 1+gamma'*by*by gamma'*by*by gamma*by |
 | gamma'*bz*bx gamma'*bz*by 1+gamma'*bz*bz gamma*bz |
 | gamma*bx gamma*by gamma*bz gamma |

w
ith the boost vector b=(bx,by,bz) and gamma=1/Sqrt(1-

beta*beta) and gamma'=(gamma-1)/beta*beta.

 Physics Vectors
D

ecem
ber 2001 - version 3.1d

311

Access to the m
atrix C

om
ponents/C

om
parisons

Access to the m
atrix com

ponents is possible w
ith the m

ethods XX(), XY()
.. TT(), and w

ith the operator (int,int):

 Double_t xx;
 TLorentzRotation l;
 xx = l.XX(); // gets the xx component
 xx = l(0,0); // gets the xx component
 if (l==m) {...} // test for equality
 if (l !=m) {...} // test for inequality
 if (l.IsIdentity()) {...} // test for identity

Transform
ations of a Lorentz R

otation

C
om

pound transform
ations

There are four possibilities to find the product of tw
o TLorentzRotation

transform
ations:

 TLorentzRotation a,b,c;
 c = b*a; // product
 c = a.MatrixMultiplication(b); // a is unchanged
 a *= b; // a=a*b
 c = a.Transform(b) // a=b*a then c=a

Lorentz boosts

 Double_t bx, by, bz;
 TVector3 v(bx,by,bz);
 TLorentzRotation l;
 l.Boost(v);
 l.Boost(bx,by,bz);

R
otations

 TVector3 axis;
 l.RotateX(TMath::Pi()); // rotation around x-axis
 l.Rotate(.5,axis); // rotation around specified
vector Inverse transform

ation
The m

atrix for the inverse transform
ation of a TLorentzRotation is as

follow
s:

 | xx yx zx -tx |
 | |
 | xy yy zy -ty |
 | |
 | xz yz zz -tz |
 | |
 |-xt -yt -zt tt |
 To return the inverse transform

ation keeping the current one unchanged, use
the m

ethod Inverse(). Invert() inverts the current

312
D

ecem
ber 2001 - version 3.1d

Physics Vectors

TLorentzRotation:

 l1 = l2.Inverse(); // l1 is inverse of l2, l2 unchanged
 l1 = l2.Invert(); // invert l2, then l1=l2

Transform
ation of a TLorentzVector

To apply TLorentzRotation to TLorentzVector you can use either the
VectorMultiplication() m

ethod or the * operator. You can also use
the Transform() function and the *= operator of the TLorentzVector
class.

 TLorentzVector v;
 TLorentzVector l;
 ...
 v=l.VectorMultiplication(v);
 v = l * v;
 v.Transform(l);
 v *= l; // v = l*v

Physics Vector Exam
ple

To see an exam
ple of using physics vectors you can look at the test file. It is

in $ROOTSYS/test/TestVectors.cxx. The vector classes are not loaded
by default, and to run it, you w

ill need to load libPhysics.so first:

root [] .L $ROOTSYS/lib/libPhysics.so
root [] .x TestVectors.cxx

To load the physics vector library in a R
O

O
T application use:

 gSystem->Load("libPhysics");

The exam
ple $ROOTSYS/test/TestVectors.cxx does not return m

uch,
especially if all w

ent w
ell, but w

hen you look at the code you w
ill find

exam
ples for m

any calls.

 The Tutorials and Tests
D

ecem
ber 2001 - version 3.1d

313

 16
The Tutorials and Tests

This chapter is a guide to the exam
ples that com

e w
ith the installation of

R
O

O
T. They are located in tw

o directories: $ROOTSYS/tutorials and
$ROOTSYS/test.

$R
O

O
TSYS/tutorials

The tutorials directory contains m
any exam

ple scripts. For the exam
ples to

w
ork you m

ust have w
rite perm

ission and you w
ill need to execute

hsimple.C first. If you do not have w
rite perm

ission in the
$R

O
O

TSYS/tutorials directory, copy the entire directory to your area.

The script hsimple.C displays a histogram
 as it is being filled, and creates a

R
O

O
T file used by the other exam

ples. To execute it type:

> cd $ROOTSYS/tutorials
> root

 * *
 * W E L C O M E to R O O T *
 * *
 * Version 2.25/02 21 August 2000 *
 * *
 * You are welcome to visit our Web site *
 * http://root.cern.ch *
 * *

 CINT/ROOT C/C++ Interpreter version 5.14.47, Aug 12 2000
Type ? for help. Commands must be C++ statements.
Enclose multiple statements between { }.
 Welcome to the ROOT tutorials
 Type ".x demos.C" to get a toolbar from which to execute
the demos
 Type ".x demoshelp.C" to see the help window
 root [] .x hsimple.C
hsimple: Real Time =5.42 seconds Cpu Time = 3.92 seconds

314
D

ecem
ber 2001 - version 3.1d

The Tutorials and Tests

N
ow

 execute demos.C, w
hich brings up the button bar show

n on the left.
You can click on any button to execute an other exam

ple. To see the source,
open the corresponding source file (for exam

ple fit1.C). O
nce you are

done, and w
ant to quit the R

O
O

T session, you can do so by typing .q.

root [] .x demos.C
� root [] .q

$R
O

O
TSYS/test

The test directory contains a set of exam
ples that represent all areas of the

fram
ew

ork. W
hen a new

 release is cut, the exam
ples in this directory are

com
piled and run to test the new

 release's backw
ard com

patibility.

W
e see these source files:

-
hsimple.cxx - Sim

ple test program
 that creates and saves som

e
histogram

s
-

MainEvent.cxx - Sim
ple test program

 that creates a R
O

O
T Tree

object and fills it w
ith som

e sim
ple structures but also w

ith com
plete

histogram
s. This program

 uses the files Event.cxx, EventCint.cxx
and Event.h. An exam

ple of a procedure to link this program
 is in

bind_Event. N
ote that the Makefile invokes the rootcint utility to

generate the C
IN

T interface EventCint.cxx.
-

Event.cxx - Im
plem

entation for classes Event and Track
-

minexam.cxx - Sim
ple test program

 to test data fitting.
-

tcollex.cxx - Exam
ple usage of the R

O
O

T collection classes.
-

tcollbm.cxx - Benchm
arks of R

O
O

T collection classes
-

tstring.cxx - Exam
ple usage of the R

O
O

T string class.
-

vmatrix.cxx - Verification program
 for the TMatrix class.

-
vvector.cxx - Verification program

 for the TVector class.
-

vlazy.cxx - Verification program
 for lazy m

atrices. .
-

hworld.cxx - Sm
all program

 show
ing basic graphics. .

-
guitest.cxx - Exam

ple usage of the R
O

O
T G

U
I classes.

-
Hello.cxx - D

ancing text exam
ple

-
Aclock.cxx - Analog clock (a la X11 xclock)

-
Tetris.cxx - The fam

ous Tetris gam
e (using R

O
O

T basic graphics) .
-

stress.cxx - Im
portant R

O
O

T stress testing program
.

The $ROOTSYS/test directory is a gold m
ine of root-w

isdom
 nuggets, and

w
e encourage you to explore and exploit it. These instructions w

ill com
pile

all program
s in $ROOTSYS/test:

1.
If you do not have w

rite perm
ission in the $ROOTSYS/test directory,

copy the entire $ROOTSYS/test directory to your area.

 The Tutorials and Tests
D

ecem
ber 2001 - version 3.1d

315

2.
The Makefile is a useful exam

ple of how
 R

O
O

T applications are linked
and built. Edit the Makefile to specify your architecture by changing the
ARCH variable, for exam

ple, on an SG
I m

achine type:

AR
C

H
 = sgikcc 3.

N
ow

 com
pile all program

s:

% gmake
This w

ill build several applications and shared libraries. W
e are especially

interested in Event, stress, and guitest.

Event � An Exam
ple of a R

O
O

T Application .
Event is created by com

piling MainEvent.cxx, and Event.cxx. It
creates a R

O
O

T file w
ith a tree and tw

o histogram
s.

W
hen running Event w

e have four optional argum
ents w

ith defaults:

Argum
ent

D
efault

1
N

um
ber of Events (1 ... n)

400
2

C
om

pression level:
0: no com

pression at all.
1: If the split level is set to zero, everything is

com
pressed according to the gzip level 1. If

split level is set to 1, leaves that are not
floating point num

bers are com
pressed

using the gzip level 1.
2: If the split level is set to zero, everything is

com
pressed according to the gzip level 2. If

split level is set to 1, all non floating point
leaves are com

pressed according to the
gzip level 2 and the floating point leaves are
com

pressed according to the gzip level 1
(gzip level �1).

Floating point num
bers are com

pressed differently
because the gain w

hen com
pressing them

 is about
20 - 30%

. For other data types it is generally better
and around 100%

.

1

3
Split or not Split

0: only one single branch is created and the
com

plete event is serialized in one single
buffer

1: a branch per variable is created.

1 (Split)

4
Fill

0: read the file
1: w

rite the file, but don't fill the histogram
s

2: don't w
rite, don�t fill the histogram

s
10: fill the histogram

s, don't w
rite the file

11: fill the histogram
s, w

rite the file
20: read the file sequentially
25: read the file at random

1 (W
rite, no

fill)

Effect of C
om

pression on File Size and W
rite Tim

es
You m

ay have noticed that a R
O

O
T file has up to nine com

pression level, but
here only levels 0, 1, and 2 are described. C

om
pression levels above 2 are

316
D

ecem
ber 2001 - version 3.1d

The Tutorials and Tests

not com
petitive. They take up to m

uch w
rite tim

e com
pared to the gain in file

space.

Below
 are three runs of Event on a Pentium

 III 650 M
hz and the resulting file

size and w
rite and read tim

es.

N
o C

om
pression:

> Event 400 0 1 1
400 events and 19153182 bytes processed.
RealTime=6.840000 seconds, CpuTime=3.560000 seconds
compression level=0, split=1, arg4=1
You write 2.800173 Mbytes/Realtime seconds
You write 5.380107 Mbytes/Cputime seconds
 > ls -l Event.root
� 19752171 Feb 23 18:26 Event.root
 > Event 400 0 1 20
400 events and 19153182 bytes processed.
RealTime=0.790000 seconds, CpuTime=0.790000 seconds
You read 24.244533 Mbytes/Realtime seconds
You read 24.244533 Mbytes/Cputime seconds

W
e see the file size w

ithout com
pression is 19.75 M

B, the w
rite tim

e is 6.84
seconds and the read tim

e is 0.79 seconds.

C
om

pression = 1: event is com
pressed:

> Event 400 1 1 1
400 events and 19153182 bytes processed.
RealTime=6.440000 seconds, CpuTime=4.020000 seconds
compression level=1, split=1, arg4=1
You write 2.974096 Mbytes/Realtime seconds
You write 4.764473 Mbytes/Cputime seconds
 > ls -l Event.root
� 17728188 Feb 23 18:28 Event.root
 > Event 400 1 1 20
400 events and 19153182 bytes processed.
RealTime=0.900000 seconds, CpuTime=0.900000 seconds
You read 21.281312 Mbytes/Realtime seconds
You read 21.281312 Mbytes/Cputime seconds

W
e see the file size 17.73, the w

rite tim
e w

as 6.44 seconds and the read
tim

e w
as 0.9 seconds.

 The Tutorials and Tests
D

ecem
ber 2001 - version 3.1d

317

C
om

pression = 2: Floating point num
bers are com

pressed w
ith level 1:

> Event 400 2 1 1
400 events and 19153182 bytes processed.
RealTime=11.340000 seconds, CpuTime=9.510000 seconds
compression level=2, split=1, arg4=1
You write 1.688993 Mbytes/Realtime seconds
You write 2.014004 Mbytes/Cputime seconds
 > ls -l Event.root
� 13783799 Feb 23 18:29 Event.root
 > Event 400 2 1 20
400 events and 19153182 bytes processed.
RealTime=2.170000 seconds, CpuTime=2.170000 seconds
You read 8.826351 Mbytes/Realtime seconds
You read 8.826351 Mbytes/Cputime seconds

The file size is 13.78 M
B, the w

rite tim
e is 11.34 seconds and the read tim

e is
2.17 seconds.

This table sum
m

arizes the findings on the im
pact of com

pressions:
 C

om
pression

File Size
W

rite Tim
es

R
ead Tim

es

0
19.75 M

B
6.84 sec.

0.79 sec.

1
17.73 M

B
6.44 sec.

0.90 sec.

2
13.78 M

B
11.34 sec.

2.17 sec.

Setting the Split Level
Split Level = 0: N

ow
 w

e execute Event w
ith the split param

eter set to 0:
 > Event 400 1 0 1
> root
root [] TFile f("Event.root")
root [] TBrowser T
W

e notice that only one branch is visible (event). The
individual data m

em
bers of the Event object are no longer

visible in the brow
ser. They are contained in the event object

on the event branch, because w
e specified no splitting.

Split Level = 1:

Setting the split level to 1 w
ill create a branch for each data

m
em

ber in the Event object. W
e can see this by brow

sing
the resulting files.

First w
e execute Event and set the split level to 1 and start

the brow
ser to exam

ine the split tree:

> Event 400 1 1 1
> root
root [] TFile f("Event.root")
root [] TBrowser browser

318
D

ecem
ber 2001 - version 3.1d

The Tutorials and Tests

stress - Test and B
enchm

ark
The executable stress is created by com

piling stress.cxx. It com
pletes

sixteen tests covering the follow
ing capabilities of the R

O
O

T fram
ew

ork.

1.
Functions, R

andom
 N

um
bers, H

istogram
 Fits

2.
Size & com

pression factor of a R
O

O
T file

3.
Purge, R

euse of gaps in TFile
4.

2D
 H

istogram
s, Functions, 2D

 Fits
5.

G
raphics & PostScript

6.
Subdirectories in a R

O
O

T file
7.

TNtuple, Selections, TCut, TCutG, TEventList
8.

Split and C
om

pression m
odes for Trees

9.
Analyze Event.root file of stress 8

10. C
reate 10 files starting from

 Event.root
11. Test chains of Trees using the 10 files
12. C

om
pare histogram

s of test 9 and 11
13. M

erging files of a chain
14. C

heck correct rebuilt of Event.root in test 13
15. D

ivert Tree branches to separate files
16. C

IN
T test (3 nested loops) w

ith LHCb trigger

The program
 stress takes one argum

ent, the num
ber of events to

process. The default is 1000 events. Be aw
are that executing stress w

ith
1000 events w

ill create several files consum
ing about 100 M

B of disk space ;

 The Tutorials and Tests
D

ecem
ber 2001 - version 3.1d

319

running stress w
ith 30 events w

ill consum
e about 20 M

B. The disk space is
released once stress is done.
There are tw

o w
ays to run stress:

From
 the system

 prom
pt or from

 the R
O

O
T prom

pt using the interpreter.
Start R

O
O

T w
ith the batch m

ode option (-b) to suppress the graphic output.

> cd $ROOTSYS/test
> stress // default 1000 events
> stress 30 // test with 30 events

> root -b
root [] .x stress.cxx // default 1000 events
root [] .x stress.cxx (30) // test with 30 events

The output of stress includes a pass/fail conclusion for each test, the total
num

ber of bytes read and w
ritten, and the elapsed real and C

PU
 tim

e. It also
calculates a perform

ance index for your m
achine relative to a reference

m
achine a D

ELL Inspiron 7500 (Pentium
 III 600 M

H
z) w

ith 256 M
B of

m
em

ory and 18 G
Bytes ID

E disk in R
O

O
TM

AR
KS. H

igher R
O

O
TM

AR
KS

m
eans better perform

ance. The reference m
achine has 200 R

O
O

TM
AR

KS,
so the sam

ple run below
 w

ith 53.7 R
O

O
TM

AR
KS is about four tim

es slow
er

than the reference m
achine.

H
ere is a sam

ple run:

% root �b
root [] .x stress.cxx (30)
 Test 1 : Functions, Random Numbers, Histogram Fits............. OK
Test 2 : Check size & compression factor of a Root file........ OK
Test 3 : Purge, Reuse of gaps in TFile......................... OK
Test 4 : Test of 2-d histograms, functions, 2-d fits........... OK
Test 5 : Test graphics & PostScriptOK
Test 6 : Test subdirectories in a Root file.................... OK
Test 7 : TNtuple, selections, TCut, TCutG, TEventList.......... OK
Test 8 : Trees split and compression modes..................... OK
Test 9 : Analyze Event.root file of stress 8................... OK
Test 10 : Create 10 files starting from Event.root.............. OK
Test 11 : Test chains of Trees using the 10 files............... OK
Test 12 : Compare histograms of test 9 and 11................... OK
Test 13 : Test merging files of a chain......................... OK
Test 14 : Check correct rebuilt of Event.root in test 13........ OK
Test 15 : Divert Tree branches to separate files................ OK
Test 16 : CINT test (3 nested loops) with LHCb trigger.......... OK
**
* IRIX64 fnpat1 6.5 01221553 IP27
**
stress : Total I/O = 75.3 Mbytes, I = 59.2, O = 16.1
stress : Compr I/O = 75.7 Mbytes, I = 60.0, O = 15.7
stress : Real Time = 307.61 seconds Cpu Time = 292.82 seconds
**
* ROOTMARKS = 53.7 * Root2.25/00 20000710/1022

320
D

ecem
ber 2001 - version 3.1d

The Tutorials and Tests

guitest � A G
raphical U

ser Interface
The guitest exam

ple, created by com
piling guitest.cxx, tests and

illustrates the use of the native G
U

I w
idgets such as cascading m

enus, dialog
boxes, sliders and tab panels. It is a very useful exam

ple to study w
hen

designing a G
U

I. Below
 are som

e exam
ples of the output of guitest, to run

it type guitest at the system
 prom

pt in the $ROOTSYS/test directory.
W

e have included an entire chapter on this subject w
here w

e explore
guitest in detail and use it to explain how

 to build our ow
n R

O
O

T
application w

ith a G
U

I (see C
hapter W

riting a G
raphical U

ser Interface).

 Exam
ple Analysis

D
ecem

ber 2001 - version 3.1d
321

17
Exam

ple A
nalysis

This chapter is an exam
ple of a typical physics analysis. Large data files are

chained together and analyzed using the TSelector class.

Explanation
This script uses four large data sets from

 the H
1 collaboration at D

ESY
H

am
burg. O

ne can access these data sets (277 M
bytes) from

 the R
O

O
T w

eb
site at: ftp://root.cern.ch/root/h1analysis/

The physics plots generated by this exam
ple cannot be produced using

sm
aller data sets.

There are several w
ays to analyze data stored in a R

O
O

T Tree

��
U

sing TTree::Draw:
This is very convenient and efficient for sm

all tasks. A TTree::Draw
call produces one histogram

 at the tim
e. The histogram

 is autom
atically

generated. The selection expression m
ay be specified in the com

m
and

line.
��

U
sing the TTreeViewer:

This is a graphical interface to TTree::Draw w
ith the sam

e
functionality.

��
U

sing the code generated by TTree::MakeClass:
In this case, the user creates an instance of the analysis class. H

e has
the control over the event loop and he can generate an unlim

ited
num

ber of histogram
s.

��
U

sing the code generated by TTree::MakeSelector:
Like for the code generated by TTree::MakeClass, the user can do
com

plex analysis. H
ow

ever, he cannot control the event loop. The event
loop is controlled by TTree::Process called by the user. This solution
is illustrated by the code below

. The advantage of this m
ethod is that it

can be run in a parallel environm
ent using PR

O
O

F (the Parallel R
oot

Facility).

A chain of four files (originally converted from
 PAW

 ntuples) is used to
illustrate the various w

ays to loop on R
O

O
T data sets. Each contains a

R
O

O
T Tree nam

ed "h42". The class definition in h1analysis.h has been
generated autom

atically by the R
O

O
T utility TTree::MakeSelector using

one of the files w
ith the follow

ing statem
ent:

322
D

ecem
ber 2001 - version 3.1d

Exam
ple Analysis

 h42->MakeSelector("h1analysis");

This produces tw
o files: h1analysis.h and h1analysis.C. A skeleton of

h1analysis.C file is m
ade for you to custom

ize. The h1analysis class is
derived from

 the R
O

O
T class TSelector. The follow

ing m
em

bers functions
of h1analyhsis (i.e. TSelector) are called by the TTree::Process
m

ethod.

��
Begin: This function is called every tim

e a loop over the tree starts. This
is a convenient place to create your histogram

s.
��

Notify(): This function is called at the first entry of a new
 tree in a

chain.
��

ProcessCut: This function is called at the beginning of each entry to
return a flag true if the entry m

ust be analyzed.
��

ProcessFill: This function is called in the entry loop for all entries
accepted by Select.

��
Terminate: This function is called at the end of a loop on a TTree.
This is a convenient place to draw

 and fit your histogram
s.

To use this program
, try the follow

ing session.

First, turn the tim
er on to show

 the real and C
PU

 tim
e per com

m
and.

root[] gROOT->Time();

Step A: create a TChain w
ith the four H

1 data files. The chain can be
created by executed this short script h1chain.C below

. $H1 is a system

sym
bol pointing to the H

1 data directory.

{ TChain chain("h42");
 chain.Add("$H1/dstarmb.root");

//21330730 bytes, 21920 events
 chain.Add("$H1/dstarp1a.root");

//71464503 bytes, 73243 events
 chain.Add("$H1/dstarp1b.root");

//83827959 bytes, 85597 events
 chain.Add("$H1/dstarp2.root");

//100675234 bytes, 103053 events
}

R
un the above script from

 the com
m

and line:

root[] .x h1chain.C

Step B : N
ow

 w
e have a directory containing the four data files. Since a

TChain is a descendent of TTree w
e can call TChain::Process to loop

on all events in the chain. The param
eter to the TChain::Process m

ethod
is the nam

e of the file containing the created TSelector class
(h1analysis.C).

root[] chain.Process("h1analysis.C")

Step C
: Sam

e as step A, but in addition fill the event list w
ith selected entries.

The event list is saved to a file "elist.root" by the

 Exam
ple Analysis

D
ecem

ber 2001 - version 3.1d
323

TSelector::Terminate m
ethod. To see the list of selected events, you

can do elist->Print("all"). The selection function has selected 7525
events out of the 283813 events in the chain of files. (2.65 per cent)

root[] chain.Process("h1analysis.C","fillList")
Step D

: Process only entries in the event list. The event list is read from
 the

file in elist.root generated by step C
.

root[] chain.Process("h1analysis.C","useList")

Step E: The above steps have been executed w
ith the interpreter. You can

repeat the steps 2, 3, and 4 using AC
LiC

 by replacing "h1analysis.C" by
"h1analysis.C+" or "h1analysis.C++".
Step F: If you w

ant to see the differences betw
een the interpreter speed and

AC
LiC

 speed start a new
 session, create the chain as in step 1, then execute

 root[] chain.Process("h1analysis.C+","useList")

The com

m
ands executed w

ith the four different m
ethods B, C

, D
 and E

produce tw
o canvases show

n below
:

324
D

ecem
ber 2001 - version 3.1d

Exam
ple Analysis

Script
This is the h1analsysis.C file that w

as generated by
TTree::MakeSelector and then m

odified to perform
 the analysis.

#include "h1analysis.h"
#include "TH2.h"
#include "TF1.h"
#include "TStyle.h"
#include "TCanvas.h"
#include "TLine.h"
#include "TEventList.h"
 const Double_t dxbin = (0.17-0.13)/40; // Bin-width
const Double_t sigma = 0.0012;
TEventList *elist = 0;
Bool_t useList, fillList;
TH1F *hdmd;
TH2F *h2;
 //___
Double_t fdm5(Double_t *xx, Double_t *par)
{ Double_t x = xx[0];
 if (x <= 0.13957) return 0;
 Double_t xp3 = (x-par[3])*(x-par[3]);
 Double_t res =

dxbin*(par[0]*TMath::Power(x-0.13957, par[1])
 + par[2] / 2.5066 / par[4]*TMath::Exp(

xp3/2/par[4]/par[4]));
 return res;
} //___
Double_t fdm2(Double_t *xx, Double_t *par)
{ Double_t x = xx[0];
 if (x <= 0.13957) return 0;
 Double_t xp3 = (x-0.1454)*(x-0.1454);
 Double_t res = dxbin*(par[0]*TMath::Power(x-0.13957, 0.25)
 + par[1] / 2.5066/sigma*TMath::Exp(
 xp3/2/sigma/sigma));
 return res;
} //___
void h1analysis::Begin(TTree *tree)
{ // function called before starting the event loop
// -it performs some cleanup
// -it creates histograms
// -it sets some initialization for the event list

 //initialize the Tree branch addresses
 Init(tree);
 //print the option specified in the Process function.
 TString option = GetOption();
 printf("Starting h1analysis with process option:

 Exam
ple Analysis

D
ecem

ber 2001 - version 3.1d
325

%sn",option.Data());

 //Some cleanup in case this function had
 //already been executed.
 //Delete any previously generated histograms or
 //functions
 gDirectory->Delete("hdmd");
 gDirectory->Delete("h2*");
 delete gROOT->GetFunction("f5");
 delete gROOT->GetFunction("f2");

 //create histograms
 hdmd = new TH1F("hdmd","dm_d",40,0.13,0.17);
 h2 = new TH2F

("h2","ptD0 vs dm_d",30,0.135,0.165,30,-3,6);

 //process cases with event list
 fillList = kFALSE;
 useList = kFALSE;
 fChain->SetEventList(0);
 delete gDirectory->GetList()->FindObject("elist");
 // case when one creates/fills the event list
 if (option.Contains("fillList")) {
 fillList = kTRUE;
 elist = new TEventList

("elist","selection from Cut",5000);

 }
 // case when one uses the event list generated
 // in a previous call
 if (option.Contains("useList")) {
 useList = kTRUE;
 TFile f("elist.root");
 elist = (TEventList*)f.Get("elist");
 if (elist) elist->SetDirectory(0);

//otherwise the file destructor will delete elist
 fChain->SetEventList(elist);
 }
} //___
Bool_t h1analysis::ProcessCut(Int_t entry)
{ // Selection function to select D* and D0.

 //in case one event list is given in input,
 //the selection has already been done.
 if (useList) return kTRUE;
 // Read only the necessary branches to select entries.
 // return as soon as a bad entry is detected
 b_md0_d->GetEntry(entry);
 if (TMath::Abs(md0_d-1.8646) >= 0.04) return kFALSE;
 b_ptds_d->GetEntry(entry);
 if (ptds_d <= 2.5) return kFALSE;
 b_etads_d->GetEntry(entry);
 if (TMath::Abs(etads_d) >= 1.5) return kFALSE;
 b_ik->GetEntry(entry); ik--;
 //original ik used f77 convention starting at 1
 b_ipi->GetEntry(entry); ipi--;

326
D

ecem
ber 2001 - version 3.1d

Exam
ple Analysis

 b_ntracks->GetEntry(entry);
 b_nhitrp->GetEntry(entry);
 if (nhitrp[ik]*nhitrp[ipi] <= 1) return kFALSE;
 b_rend->GetEntry(entry);
 b_rstart->GetEntry(entry);
 if (rend[ik] -rstart[ik] <= 22) return kFALSE;
 if (rend[ipi]-rstart[ipi] <= 22) return kFALSE;
 b_nlhk->GetEntry(entry);
 if (nlhk[ik] <= 0.1) return kFALSE;
 b_nlhpi->GetEntry(entry);
 if (nlhpi[ipi] <= 0.1) return kFALSE;
 b_ipis->GetEntry(entry);
 ipis--;
 if (nlhpi[ipis] <= 0.1) return kFALSE;
 b_njets->GetEntry(entry);
 if (njets < 1) return kFALSE;

 // if option fillList, fill the event list
 if (fillList) elist->Enter

(fChain->GetChainEntryNumber(entry));
 return kTRUE;
} //___
void h1analysis::ProcessFill(Int_t entry)
{ // Function called for selected entries only
 // read branches not processed in ProcessCut
 b_dm_d->GetEntry(entry);
 //read branch holding dm_d
 b_rpd0_t->GetEntry(entry);
 //read branch holding rpd0_t
 b_ptd0_d->GetEntry(entry);
 //read branch holding ptd0_d
 //fill some histograms
 hdmd->Fill(dm_d);
 h2->Fill(dm_d,rpd0_t/0.029979*1.8646/ptd0_d);
} //___
void h1analysis::Terminate()
{ // Function called at the end of the event loop

 //create the canvas for the h1analysis fit
 gStyle->SetOptFit();
 TCanvas *c1 = new TCanvas

("c1","h1analysis analysis",10,10,800,600);
 c1->SetBottomMargin(0.15);
 hdmd->GetXaxis()->SetTitle

("m_{K#pi#pi} - m_{K#pi}[GeV/c^{2}]");
 hdmd->GetXaxis()->SetTitleOffset(1.4);
 //fit histogram hdmd with function f5 using

 Exam
ple Analysis

D
ecem

ber 2001 - version 3.1d
327

 //the loglikelihood option
 TF1 *f5 = new TF1("f5",fdm5,0.139,0.17,5);
 f5->SetParameters(1000000, .25, 2000, .1454, .001);
 hdmd->Fit("f5","lr");

 //create the canvas for tau d0
 gStyle->SetOptFit(0);
 gStyle->SetOptStat(1100);
 TCanvas *c2 = new TCanvas("c2","tauD0",100,100,800,600);
 c2->SetGrid();
 c2->SetBottomMargin(0.15);
 // Project slices of 2-d histogram h2 along X ,
 // then fit each slice with function f2 and make a
 // histogram for each fit parameter.
 // Note that the generated histograms are added
 // to the list of objects in the current directory.
 TF1 *f2 = new TF1("f2",fdm2,0.139,0.17,2);
 f2->SetParameters(10000, 10);
 h2->FitSlicesX(f2,0,0,1,"qln");
 TH1D *h2_1 = (TH1D*)gDirectory->Get("h2_1");
 h2_1->GetXaxis()->SetTitle("#tau[ps]");
 h2_1->SetMarkerStyle(21);
 h2_1->Draw();
 c2->Update();
 TLine *line = new TLine(0,0,0,c2->GetUymax());
 line->Draw();

 // save the event list to a Root file if one was
 // produced
 if (fillList) {
 TFile efile("elist.root","recreate");
 elist->Write();
 }
}

 N
etw

orking
D

ecem
ber 2001 - version 3.1d

329

18
N

etw
orking

In this chapter, you w
ill learn how

 to send data over the netw
ork using the R

O
O

T socket
classes.

Setting up a C
onnection

O
n the server side, w

e create a TServerSocket to w
ait for a connection

request over the netw
ork. If the request is accepted, it returns a full-duplex

socket. O
nce the connection is accepted, w

e can com
m

unicate to the client
that w

e are ready to go by sending the string "go", and w
e can close the

server socket.

{ // server
 TServerSocket *ss = new TServerSocket(9090, kTRUE);
 TSocket *socket = ss->Accept();
 socket->Send("go");
 ss->Close();
}

 O
n the client side, w

e create a socket and ask the socket to receive input.

{ // client
 TSocket *socket = new TSocket("localhost", 9090);
 Char str[32];
 Socket->Recv(str,32);
}

330
D

ecem
ber 2001 - version 3.1d

N
etw

orking

Sending O
bjects over the N

etw
ork

W
e have just established a connection and you just saw

 how
 to send and

receive a string w
ith the exam

ple "go". N
ow

 let�s send a histogram
.

To send an object (in our case on the client side) it has to derive from

TObject because it uses the Streamers to fill a buffer that is then sent
over the connection. O

n the receiving side, the Streamers are used to read
the object from

 the m
essage sent via the socket. For netw

ork
com

m
unication, w

e have a specialized TBuffer, a descendant of TBuffer
called TMessage. In the follow

ing exam
ple, w

e create a TMessage w
ith the

intention to store an object, hence the constant kMESS_OBJECT in the
constructor. W

e create and fill the histogram
 and w

rite it into the m
essage.

Then w
e call TSocket::Send to send the m

essage w
ith the histogram

.

� // create an object to be sent
TH1F *hpx = new TH1F("hpx","px distribution",100,-4,4);
hpx->FillRandom("gaus",1000);
// create a TMessage to send the object
TMessage message(kMESS_OBJECT);
// write the histogram into the message buffer
message.WriteObject(hpx);
// send the message
socket->Send(message);
�

O
n the receiving end (in our case the server side), w

e w
rite a w

hile loop to
w

ait and receive a m
essage w

ith a histogram
. O

nce w
e have a m

essage, w
e

call TMessage::ReadObject, w
hich returns a pointer to TObject. W

e
have to cast it to a TH1 pointer, and now

 w
e have a histogram

. At the end of
the loop, the m

essage is deleted, and another one is created at the
beginning.

� while (1) {
 TMessage *message;
 socket->Recv(message);
 TH1 *h = (TH1*)message->ReadObject(message->GetClass());
 delete message;
} �

 N
etw

orking
D

ecem
ber 2001 - version 3.1d

331

C
losing the C

onnection
O

nce w
e are done sending objects, w

e close the connection by closing the
sockets at both ends.

 �
 Socket->Close();
}

This diagram
 sum

m
arizes the steps w

e just covered:

 {TServerSocket *ss =
 new TServerSocket(9090, kTRUE);

TSocket *socket = ss->Accept();

socket->Send("go");
ss->Close();

while (1) {
 TMessage *message;
 socket->Recv(message);
 TH1 *h =
 (TH1*)mess->ReadObject
 (mess->GetClass());
 delete mess;
}socket->Close();
}

{ TSocket *socket =
 new TSocket("localhost", 9090);

 Char str[32];
 Socket->Recv(str,32);

 TH1F *hpx = new TH1F("hpx","px",100,-4,4);
 hpx->FillRandom("gaus",1000);
 // create a TMessage to send an object
 TMessage message(kMESS_OBJECT);
 // write the histogram into the message
 message.WriteObject(hpx);
 // send the message
 socket->Send(message)

 socket->Close();
}

connect

O
K

send

Server
C

lient

332
D

ecem
ber 2001 - version 3.1d

N
etw

orking

A Server w
ith M

ultiple Sockets
C

hances are that your server has to be able to receive data from
 m

ultiple
clients. The class w

e need for this is TMonitor. It lets you add sockets and
the TMonitor::Select m

ethod returns the socket w
ith data w

aiting.
Sockets can be added, rem

oved, or enabled and disabled.

H
ere is an exam

ple of a server that has a TMonitor to m
anage m

ultiple
sockets:

{ TServerSocket *ss = new TServerSocket (9090, kTRUE);
 // Accept a connection and return a full-duplex
 // communication socket.
 TSocket *s0 = ss->Accept();
 TSocket *s1 = ss->Accept();
 // tell the clients to start
 s0->Send("go 0");
 s1->Send("go 1");
 // Close the server socket (unless we will use it
 // later to wait for another connection).
 ss->Close();
 TMonitor *mon = new TMonitor;
 mon->Add(s0);
 mon->Add(s1);
 while (1) {
 TMessage *mess;
 TSocket *s;
 s = mon->Select();
 s->Recv(mess);
� }

The full code for the exam
ple above is in

$ROOTSYS/tutorials/hserver.cxx and
$ROOTSYS/tutorials/hclient.cxx.

 W
riting a G

raphical U
ser Interface

D
ecem

ber 2001 - version 3.1d
333

19
W

riting a G
raphical

U
ser Interface

The R
O

O
T G

U
I classes support an extensive and rich set of w

idgets. The
w

idgets classes depend only on the X11 and Xpm libraries, elim
inating the

need for any other G
U

I engine such as M
otif or Q

T, and they have the
W

indow
s look and feel. They are based on H

ector Peraza's Xclass'95 w
idget

library.

Although pow
erful and quite feature rich, w

e are m
issing extensive

docum
entation. This w

ill com
e eventually but for the tim

e being you w
ill have

to "program
 by exam

ple". W
e start w

ith a short tutorial follow
ed by few

 non-
trivial exam

ples that w
ill show

 how
 to use the different w

idget classes.

The N
ew

 R
O

O
T G

U
I C

lasses
Features of the new

 G
U

I classes in a nutshell:

��
O

riginally based on Xclass'95 w
idget library (under a Lesser G

N
U

 Public
License) o

A rich and com
plete set of w

idgets
o

U
ses only X11 and Xpm

 (no M
otif, Xaw

, Xt, etc.)
o

Sm
all (12000 lines of C

++)
o

W
in'95 look and feel

��
All X11 calls abstracted using in the "abstract" R

O
O

T TG
XW

 class
��

R
ew

ritten to use internally the R
O

O
T container classes

��
C

om
pletely scriptable via the C

++ interpreter (fast prototyping)
��

Full class docum
entation is generated autom

atically (as for all R
O

O
T

classes)

XC
lass'95 H

ere are som
e highlights of the XC

lass'95. H
ector Peraza is the original

author of the XC
lass'95 class library.

The Xclass'95 com
es w

ith a com
plete set of w

idgets. These include:

��
Sim

ple w
idgets, as labels and icons

��
Push buttons, either w

ith text or pix m
aps

��
C

heck buttons
��

R
adio buttons

��
M

enu bars and popup m
enus

334
D

ecem
ber 2001 - version 3.1d

W
riting a G

raphical U
ser Interface

��
Scroll bars

��
Scrollable canvas

��
List boxes

��
C

om
bo boxes

��
G

roup fram
es

��
Text entry w

idgets
��

Tab w
idgets

��
G

eneral-purpose com
posite w

idgets, for building toolbars and status
bars

��
D

ialog classes and top-level w
indow

 classes

The w
idgets are show

n in fram
es:

fram
e, com

posite fram
e, m

ain fram
e, transient fram

e, group fram
e

And arranged by layout m
anagers:

horizontal layout, vertical layout, row
 layout, list layout, tile layout, m

atrix
layout, ...

U
sing a com

bination of layout hints:
left, center x, right, top, center y, bottom

, expand x, expand y and fixed
offsets

Event handling by m
essaging (as opposed to callbacks): in response to

actions w
idgets send m

essages (SendMessage()) to associated fram
es

(ProcessMessage())

R
O

O
T Integration

R
eplace all calls to X11 by calls to the R

O
O

T abstract graphics base class
TGXW. C

urrently, im
plem

entations of TGXW exist X11 (TGX11) and W
in32

(TGWin32). Thanks to this single graphics interface, porting R
O

O
T to a new

platform

 (BeO
S, R

hapsody, etc.) requires only the im
plem

entation of TGXW
(and TSystem).

Abstract G
raphics B

ase C
lass TG

XW

TG
XW

TG
X11

TG
W

in32
TG

C
lient

rootdisp
rootdisp

U
nix

W
indow

s

U
nix/W

indow
s

 W
riting a G

raphical U
ser Interface

D
ecem

ber 2001 - version 3.1d
335

C
oncrete im

plem
entations of TGXW are TGX11, for X W

indow
s, TGWin32 for

W
in95/N

T. The TGXClient im
plem

entation provides a netw
ork interface

allow
ing for rem

ote display via the rootdisp servers.

N
O

TE: the R
O

O
T G

U
I classes are for the tim

e being only supported on
U

nix/X11 system
s. W

ork on a W
in32 port is in progress and com

ing shortly

Further changes:

��
C

hanged internals to use R
O

O
T container classes, notably hash tables

for fast lookup of fram
e and picture objects

��
Added TObject inheritance to the few

 base classes to get access to the
extended R

O
O

T R
TTI (type inform

ation and object inspection) and
docum

entation system

��
C

onversion to the R
O

O
T nam

ing conventions to provide a
hom

ogeneous and consistent environm
ent for the user

336
D

ecem
ber 2001 - version 3.1d

W
riting a G

raphical U
ser Interface

 A Sim
ple Exam

ple
The code that uses the G

U
I classes is w

ritten in bold font.

#include <TROOT.h>
#include <TApplication.h>
#include <TGClient.h>
extern void InitGui();
VoidFuncPtr_t initfuncs[] = { InitGui, 0 };
TROOT root("GUI", "GUI test environement", initfuncs);
int main(int argc, char **argv)
{
 TApplication theApp("App", &argc, argv);
 MyMainFrame mainWin(gClient->GetRoot(), 200, 220);
 theApp.Run();
 return 0;
}

MyMainFrame

#include <TGClient.h>
#include <TGButton.h>
class MyMainFrame : public TGMainFrame {
private:
 TGTextButton *fButton1, *fButton2;
 TGPictureButton *fPicBut;
 TGCheckButton *fChkBut;
 TGRadioButton *fRBut1, *fRBut2;
 TGLayoutHints *fLayout;
public:
 MyMainFrame(const TGWindow *p, UInt_t w, UInt_t h);
 ~MyMainFrame();
 Bool_t ProcessMessage(Long_t msg, Long_t parm1, Long_t
parm2);
};

 W
riting a G

raphical U
ser Interface

D
ecem

ber 2001 - version 3.1d
337

Laying out the Fram
e

MyMainFrame::MyMainFrame(const TGWindow *p, UInt_t w,
UInt_t h): TGMainFrame(p, w, h)
{ // Create a main frame with a number of different buttons.
 fButton1 = new TGTextButton(this, "&Version", 1);
 fButton1->SetCommand("printf
 (\"This is ROOT version %s\\n\",
 gROOT->GetVersion());");
 fButton2 = new TGTextButton(this, "&Exit", 2);
 fButton2->SetCommand(".q");
 fPicBut = new TGPictureButton(

this, gClient->GetPicture("world.xpm"), 3);

 fPicBut->SetCommand("printf(\"hello world!\\n\");");
 fChkBut = new TGCheckButton(this, "Check Button", 4);
 fRBut1 = new TGRadioButton(this, "Radio Button 1", 5);
 fRBut2 = new TGRadioButton(this, "Radio Button 2", 6);
 fLayout = new TGLayoutHints

(kLHintsCenterX | kLHintsCenterY);
 AddFrame(fButton1, fLayout);
 AddFrame(fPicBut, fLayout);
 AddFrame(fButton2, fLayout);
 AddFrame(fChkBut, fLayout);
 AddFrame(fRBut1, fLayout);
 AddFrame(fRBut2, fLayout);
 MapSubwindows();
 Layout();
 SetWindowName("Button Example");
 SetIconName("Button Example");
 MapWindow();
}

338
D

ecem
ber 2001 - version 3.1d

W
riting a G

raphical U
ser Interface

Adding Actions

Bool_t MyMainFrame::ProcessMessage(Long_t msg, Long_t
parm1, Long_t)
{ // Process events generated by the buttons in the frame.
 switch (GET_MSG(msg)) {
 case kC_COMMAND:
 switch (GET_SUBMSG(msg)) {
 case kCM_BUTTON:
 printf("text button id %ld pressed\n", parm1);

 break;
 case kCM_CHECKBUTTON:
 printf("check button id %ld pressed\n", parm1);

 break;
 case kCM_RADIOBUTTON:

 if (parm1 == 5)

 fRBut2->SetState(kButtonUp);

 if (parm1 == 6)

 fRBut1->SetState(kButtonUp);

 printf("radio button id %ld pressed\n", parm1);

 break;
 default:

 break;
 }

 default:
 break;
 }
 return kTRUE;
}

The R
esult

 The W
idgets in D

etail
In this section w

e look at an exam
ple of using the w

idgets. The com
plete

source code is in $ROOTSYS/test/guitest.C. Build the test directory w
ith

the appropriate m
akefile, and you w

ill be able to run guitest. H
ere w

e present
snippets of the code and the graphical output.

 W
riting a G

raphical U
ser Interface

D
ecem

ber 2001 - version 3.1d
339

First the m
ain program

, w
hich reveals that the functionality is in

TestMainFrame.

TROOT root("GUI", "GUI test environement");
 int main(int argc, char **argv)
{ TApplication theApp("App", &argc, argv);
 if (gROOT->IsBatch()) {
 fprintf(stderr,

 "%s: cannot run in batch mode\n", argv[0]);
 return 1;
 }
 TestMainFrame mainWindow(gClient->GetRoot(), 400, 220);
 theApp.Run();
 return 0;
}

TestMainFrame has tw
o subfram

es (TGCompositFrame), a canvas, a text
entry field, a button, a m

enu bar, several popup m
enus, and layout hints. It

has a public constructor, destructor and a ProcessMessage m
ethod to carry

out the actions.

class TestMainFrame : public TGMainFrame {
 private:
 TGCompositeFrame *fStatusFrame;
 TGCanvas *fCanvasWindow;
 TGCompositeFrame *fContainer;
 TGTextEntry *fTestText;
 TGButton *fTestButton;
 TGMenuBar *fMenuBar;
 TGPopupMenu *fMenuFile, *fMenuTest, *fMenuHelp;
 TGPopupMenu *fCascadeMenu,
 *fCascade1Menu, *fCascade2Menu;
 TGLayoutHints *fMenuBarLayout, *fMenuBarItemLayout,

 *fMenuBarHelpLayout;
 public:
 TestMainFrame(const TGWindow *p, UInt_t w, UInt_t h);
 virtual ~TestMainFrame();
 virtual void CloseWindow();
 virtual Bool_t ProcessMessage(Long_t msg, Long_t parm1,
Long_t);
};

Exam
ple: W

idgets and the Interpreter
The script $ROOTSYS/tutorials/dialogs.C show

s how
 the w

idgets can
be used from

 the interpreter.

340
D

ecem
ber 2001 - version 3.1d

W
riting a G

raphical U
ser Interface

R
Q

uant Exam
ple

This is an exam
ple of extensive use of the R

O
O

T G
U

I classes. I include only
a picture here, for the curious the full docum

entation or R
Q

uant can be found
at: http://svedaq.tsl.uu.se/~anton/rquant.htm

http://svedaq.tsl.uu.se/~anton/rquant_technical_analysis_slide.htm

http://svedaq.tsl.uu
.se/~anton/rquant_technical_analysis_slide.htm

http://svedaq.tsl.uu.se/~anton/rquant_technical_analysis_slide.htm

R
eferences

http://hom
e.cern.ch/~chytrace/xclasstut.htm

l
A basic introduction and m

ini tutorial on the Xclass by H
ector Peraza's

ac.be/htm
l-test/xclass.htm

l
The original Xclass'95 w

idget library docum
entation and source by H

ector
Peraza's.

http://svedaq.tsl.uu.se/~anton/rquant.htm

An Exam
ple of an elaborate R

O
O

T G
U

I application.

 Autom
atic H

TM
L D

ocum
entation

D
ecem

ber 2001 - version 3.1d
341

20
A

utom
atic H

TM
L

D
ocum

entation

The class descriptions on the R
O

O
T w

ebsite have been generated
autom

atically by R
O

O
T itself w

ith the THtml class. W
ith it, you can

autom
atically generate (and update) a reference guide for your R

O
O

T
classes. Please read the THtml class description and the paragraph on
C

oding C
onventions.

The follow
ing illustrates how

 to generate an htm
l class description using the

MakeClass m
ethod. In this exam

ple class nam
e is TBRIK.

 root[] THtml html; // instanciate a THtml object
 root[] html->MakeClass("TBRIK")

H
ow

 to generate htm
l code for all classes, including an index.

 root[] html->MakeAll();

This exam
ple show

s how
 to convert a script to htm

l, including the generation
of a "gif" file produced by the script. First execute the script.

root[] .x htmlex.C
Invoke the TSystem class to execute a shell script. H

ere w
e call the "xpick"

program
 to capture the graphics w

indow
 into a gif file.

root[] gSystem->Exec("xpick html/gif/shapes.gif")

C
onvert this script into htm

l.

root[] html->Convert("htmlex.C","Auto HTML document generation")

For m
ore details see the docum

entation of the class THtml.

 PR
O

O
F: Parallel Processing

D
ecem

ber 2001 - version 3.1d
343

21
PR

O
O

F: Parallel
Processing

Building on the experience gained from
 the im

plem
entation and operation of

the PIAF system
 w

e have developed the parallel R
O

O
T facility, PR

O
O

F. The
m

ain problem
s w

ith PIAF w
ere because its proper parallel operation

depended on a cluster of hom
ogenous equally perform

ing and equally loaded
m

achines. D
ue to PIAF's sim

plistic portioning of a job in N
 equal parts, w

here
N

 is the num
ber of processors, the overall perform

ance w
as governed by the

slow
est node. The running of a PIAF cluster w

as an expensive operation
since it required a cluster dedicated solely to PIAF. The cluster could not be
used for other types of jobs w

ithout destroying the PIAF perform
ance.

In the im
plem

entation of PR
O

O
F, w

e m
ade the slave servers the active

com
ponents that ask the m

aster server for new
 w

ork w
henever they are

ready. In the schem
e the parallel processing perform

ance is a function of the
duration of each sm

all job, packet, and the netw
orking bandw

idth and
latency. Since the bandw

idth and latency of a netw
orked cluster are fixed the

m
ain tunable param

eter in this schem
e is the packet size. If the packet size is

too sm
all the parallelism

 w
ill be destroyed by the com

m
unication overhead

caused by the m
any packets sent over the netw

ork betw
een the m

aster and
the slave servers. If the packet size is too large, the effect of the difference in
perform

ance of each node is not evened out sufficiently.

Another very im
portant factor is the location of the data. In m

ost cases, w
e

w
ant to analyze a large num

ber of data files, w
hich are distributed over the

different nodes of the cluster. To group these files together w
e use a chain. A

chain provides a single logical view
 of the m

any physical files. To optim
ize

perform
ance by preventing huge am

ounts of data being transferred over the
netw

ork via N
FS or any other m

eans w
hen analyzing a chain, w

e m
ake sure

that each slave server is assigned a packet, w
hich is local to the node. O

nly
w

hen a slave has processed all its local data w
ill it get packets assigned that

cause rem
ote access. A packet is a sim

ple data structure of tw
o num

bers:
begin event and num

ber of events. The m
aster server generates a packet

w
hen asked for by a slave server, taking into account t the tim

e it took to
process the previous packet and w

hich files in the chain are local to the lave
server. The m

aster keeps a list of all generated packets per slave, so in case
a slave dies during processing, all its packets can be reprocessed by the left
over slaves.

 Threads
D

ecem
ber 2001 - version 3.1d

345

22
Threads

A thread is an independent flow
 of control that operates w

ithin the sam
e

address space as other independent flow
s of controls w

ithin a process. In
m

ost U
N

IX system
s, thread and process characteristics are grouped into a

single entity called a process. Som
etim

es, threads are called "lightw
eight

processes''.

N
ote: This introduction is adapted from

 the AIX 4.3 Program
m

er's M
anual.

Threads and Processes
In traditional single-threaded process system

s, a process has a set of
properties. In m

ulti-threaded system
s, these properties are divided betw

een
processes and threads.

Process Properties
A process in a m

ulti-threaded system
 is the changeable entity. It m

ust be
considered as an execution fram

e. It has all traditional process attributes,
such as:

��
Process ID

, process group ID
, user ID

, and group ID

��
Environm

ent
��

W
orking directory

A process also provides a com
m

on address space and com
m

on system

resources:

��
File descriptors

��
Signal actions

��
Shared libraries

��
Inter-process com

m
unication tools (such as m

essage queues, pipes,
sem

aphores, or shared m
em

ory)

346
D

ecem
ber 2001 - version 3.1d

Threads

Thread Properties
A thread is the schedulable entity. It has only those properties that are
required to ensure its independent flow

 of control. These include the follow
ing

properties:

��
Stack

��
Scheduling properties (such as policy or priority)

��
Set of pending and blocked signals

��
Som

e thread-specific data (TSD
)

An exam
ple of thread-specific data is the error indicator, errno. In m

ulti-
threaded system

s, errno is no longer a global variable, but usually a
subroutine returning a thread-specific errno value. Som

e other system
s m

ay
provide other im

plem
entations of errno.

W
ith respect to R

O
O

T, a thread specific data is for exam
ple the gPad

pointer, w
hich is treated in a different w

ay, w
hether it is accessed from

 any
thread or the m

ain thread.

Threads w
ithin a process m

ust not be considered as a group of processes
(even though in Linux each thread receives an ow

n process id, so that it can
be scheduled by the kernel scheduler). All threads share the sam

e address
space. This m

eans that tw
o pointers having the sam

e value in tw
o threads

refer to the sam
e data. Also, if any thread changes one of the shared system

resources, all threads w

ithin the process are affected. For exam
ple, if a

thread closes a file, the file is closed for all threads.

The Initial Thread
W

hen a process is created, one thread is autom
atically created. This thread

is called the initial thread or the m
ain thread. The initial thread executes the

m
ain routine in m

ulti-threaded program
s.

N
ote: At the end of this chapter is a glossary of thread specific term

s

Im
plem

entation of Threads in R
O

O
T

The TThread class has been developed to provide a platform
 independent

interface to threads for R
O

O
T.

Installation
For the tim

e being, it is still necessary to com
pile a threaded version of

R
O

O
T to enable som

e very special treatm
ents of the canvas operations. W

e
hope that this w

ill becom
e the default later.

To com
pile R

O
O

T, just do (for exam
ple on a debian Linux):

./configure linuxdeb2 --with-thread=/usr/lib/libpthread.so
gmake depend
gmake

 Threads
D

ecem
ber 2001 - version 3.1d

347

This configures and builds R
O

O
T using /usr/lib/libpthread.so as the

Pthread library, and defines R
__TH

R
EAD

. This enables the thread specific
treatm

ent of gPad, and creates $ROOTSYS/lib/libThread.so.

N
ote: The param

eter linuxdeb2 has to be replaced w
ith the appropriate

R
O

O
T keyw

ord for your platform
.

C
lasses TThread

This class im
plem

ents threads. The platform
 dependent im

plem
entation is in

the TThreadImp class and its descendant classes (e.g. TPosixThread).
TMutex
This class im

plem
ents m

utex locks. A m
utex is a m

utually exclusive lock.
The platform

 dependent im
plem

entation is in the TMutexImp class and its
descendant classes (e.g. TPosixMutex)
TCondition
This class im

plem
ents a condition variable. U

se a condition variable to signal
threads. The platform

 dependent im
plem

entation is in the TConditionImp
class and its descendant classes (e.g. TPosixCondition).
TSemaphore
This class im

plem
ents a counting sem

aphore. U
se a sem

aphore to
synchronize threads. The platform

 dependent im
plem

entation is in the
TMutexImp and TConditionImp classes.

TThread for Pedestrians
To run a thread in R

O
O

T, follow
 these steps:

Initialization
:

Add these lines to your rootlogon.C:
 { �
 // The next line may be unnecessary on some platforms
 gSystem->Load("/usr/lib/libpthread.so");
 gSystem->Load("$ROOTSYS/lib/libThread.so");
 �
}

This loads the library w
ith the TThread class and the pthread specific

im
plem

entation file for Posix threads.

C
oding

:

D
efine a function (e.g. void* UserFun(void* UserArgs)) that should

run as a thread. The code for the exam
ples is at the w

eb site of the authors
(Jörn Adam

czew
ski, M

arc H
em

berger). After dow
nloading the code from

 this
site, you can follow

 the exam
ple below

.

w
w

w
-linux.gsi.de/~go4/H

O
W

TO
threads/how

tothreadsbody.htm
l#tth_sEc8

348
D

ecem
ber 2001 - version 3.1d

Threads

Loading:
Start an interactive R

O
O

T session

Load the shared library:

root [] gSystem->Load("mhs3.so");
O

r

root [] gSystem->Load("CalcPiThread.so");

C
reating:

C
reate a thread instance (see also exam

ple RunMhs3.C or RunPi.C) w
ith:

root [] TThread *th = new TThread(UserFun,UserArgs);

W
hen called from

 the interpreter, this gives the nam
e �UserFun� to the

thread. This nam
e can be used to retrieve the thread later. H

ow
ever, w

hen
called from

 com
piled code, this m

ethod does not give any nam
e to the

thread. So give a nam
e to the thread in com

piled use:

root [] TThread *th = new TThread("MyThread", UserFun, UserArgs);

You can pass argum
ents to the thread function using the UserArgs-pointer.

W
hen you w

ant to start a m
ethod of a class as a thread, you have to give the

pointer to the class instance as UserArgs.

R
unning:

 root [] th->Run();
root [] TThread::Ps(); // like UNIX ps c.ommand;

W
ith the mhs3 exam

ple, you should be able to see a canvas w
ith tw

o pads
on it. Both pads keep histogram

s updated and filled by three different
threads.

W
ith the CalcPi exam

ple, you should be able to see tw
o threads calculating

Pi w
ith the given num

ber of intervals as precision.

 Threads
D

ecem
ber 2001 - version 3.1d

349

TThread in M
ore D

etail
C

IN
T is not thread safe yet, and it w

ill block the execution of the threads until
it has finished executing.

Asynchronous Actions
D

ifferent threads can w
ork sim

ultaneously w
ith the sam

e object. Som
e

actions can be dangerous. For exam
ple, w

hen tw
o threads create a

histogram
 object, R

O
O

T allocates m
em

ory and puts them
 to the sam

e
collection. If it happens at the sam

e tim
e, the results are undeterm

ined. To
avoid this problem

, the user has to synchronize these actions w
ith:

TThread::Lock() // Locking the following part of code
... // Create an object, etc...
TThread::UnLock() // Unlocking

The code betw
een Lock() and UnLock() w

ill be perform
ed uninterrupted.

N
o other threads can perform

 actions or access objects/collections w
hile it is

being executed. The TThread::Lock() and TThread::UnLock()
m

ethods internally use a global TMutex instance for locking. The user m
ay

also define his ow
n TMutex MyMutex instance and m

ay locally protect his
asynchronous actions by calling MyMutex.Lock() and
MyMutex.UnLock().

Synchronous Actions: TC
ondition

To synchronize the actions of different threads you can use the TCondition
class, w

hich provides a signaling m
echanism

.

The TCondition instance m
ust be accessible by all threads that need to

use it, i.e. it should be a global object (or a m
em

ber of the class w
hich ow

ns
the threaded m

ethods, see below
). To create a TCondition object, a

TMutex instance is required for the Wait and TimedWait locking m
ethods.

O
ne can pass the address of an external m

utex to the TCondition
constructor:

TMutex MyMutex;
TCondition MyCondition(&MyMutex);

If zero is passed, TCondition creates and uses its ow
n internal m

utex:

TCondition MyCondition(0);

350
D

ecem
ber 2001 - version 3.1d

Threads

You can now
 use the follow

ing m
ethods of synchronization:

��
TCondition::Wait() w

aits until any thread sends a signal of the
sam

e condition instance: MyCondition.Wait() reacts on
MyCondition.Signal() or MyCondition.Broadcast().
MyOtherCondition.Signal() has no effect.

��
If several threads w

ait for the signal from
 the sam

e TCondition
MyCondition, at MyCondition.Signal() only one thread w

ill react;
to activate a further thread another MyCondition.Signal() is
required, etc.

��
If several threads w

ait for the signal from
 the sam

e TCondition
MyCondition, at MyCondition.Broadcast() all threads w

aiting for
MyCondition are activated at once.

In som
e tests of MyCondition using an internal m

utex, Broadcast()
activated only one thread (probably depending w

hether MyCondition had
been signaled before).

��
MyCondition.TimedWait(secs,nanosecs) w

aits for
MyCondition until the absolute tim

e in seconds and nanoseconds
since beginning of the epoch (January, 1st, 1970) is reached; to use
relative tim

eouts ``delta'', it is required to calculate the absolute tim
e at

the beginning of w
aiting ``now

''; for exam
ple:

Ulong_t now,then,delta; // seconds
TDatime myTime; // root daytime class
myTime.Set(); // myTime set to "now"
now=myTime.Convert(); // to seconds since 1970
then=now+delta; // absolute timeout
wait=MyCondition.TimedWait(then,0); // waiting

��
R

eturn value w
ait of MyCondition.TimedWait should be 0, if

MyCondition.Signal() w
as received, and should be nonzero, if

tim
eout w

as reached.

The conditions exam
ple show

s how
 three threaded functions are

synchronized using TCondition: a R
O

O
T script condstart.C starts the

threads, w
hich are defined in a shared library (conditions.cxx,

conditions.h).

Xlib connections
U

sually Xlib is not thread safe. This m
eans that calls to the X could fail,

w
hen it receives X-m

essages from
 different threads. The actual result

depends strongly on w
hich version of Xlib has been installed on your

system
. The only thing w

e can do here w
ithin R

O
O

T is calling a special
function XInitThreads() (w

hich is part of the Xlib), w
hich should (!)

prepare the Xlib for the usage w
ith threads.

To avoid further problem
s w

ithin R
O

O
T som

e redefinition of the gPad pointer
w

as done (that's the m
ain reason for the recom

pilation). W
hen a thread

creates a TCanvas, this object is actually created in the m
ain thread; this

 Threads
D

ecem
ber 2001 - version 3.1d

351

should be transparent to the user. Actions on the canvas are controlled via a
function, w

hich returns a pointer to either thread specific data (TSD
) or the

m
ain thread pointer. This m

echanism
 w

orks currently only for gPad and w
ill

soon be im
plem

ented for other global O
bjects as e.g. gVirtualX,

gDirectory, gFile.

C
anceling a TThread

C
anceling of a thread is a rather dangerous action. In TThread canceling is

forbidden by default. The user can change this default by calling
TThread::SetCancelOn(). There are tw

o cancellation m
odes:

D
eferred

Set by TThread::SetCancelDeferred() (default): W
hen the user know

s
safe places in his code w

here a thread can be canceled w
ithout risk for the

rest of the system
, he can define these points by invoking

TThread::CancelPoint(). Then, if a thread is canceled, the cancellation
is deferred up to the call of TThread::CancelPoint() and then the thread
is canceled safely. There are som

e default cancel points for pthreads
im

plem
entation, e.g. any call of TCondition::Wait(),

TCondition::TimedWait(), TThread::Join().

A
synchronous

 Set by TThread::SetCancelAsynchronous(): If the user is sure that his
application is cancel safe, he could call:

TThread::SetCancelAsynchronous();
TThread::SetCancelOn();
// Now cancelation in any point is allowed.
...
...
// Return to default
TThread::SetCancelOff();
TThread::SetCancelDeferred();

To cancel a thread TThread* th call:

Th
�
�Kill();

To cancel by thread nam
e:

TThread::Kill(name);

To cancel a thread by ID
:

TThread::Kill(tid);

To cancel a thread and delete th w
hen cancel finished:

Th
�
�Delete();

 D
eleting of the thread instance by the operator delete is dangerous. U

se
th->Delete() instead. C

++ delete is safe only if thread is not running.

352
D

ecem
ber 2001 - version 3.1d

Threads

O
ften during the canceling, som

e clean up actions m
ust be taken. To define

clean up functions use:

void UserCleanUp(void *arg){

// here the user cleanup is done

...
} TThread::CleanUpPush(&UserCleanUp,arg);
 // push user function into cleanup stack
 // �last in, first out�
 TThread::CleanUpPop(1); // pop user function out of stack
 // and execute it,
 // thread resumes after this call
 TThread::CleanUpPop(0); // pop user function out of stack
 // _without_ executing it

N
ote: CleanUpPush and CleanUpPop should be used as corresponding

pairs like brackets; unlike pthreads cleanup stack (w
hich is not

im
plem

ented here), TThread does not force this usage.

Finishing thread
W

hen a thread returns from
 a user function the thread is finished. It also can

be finished by TThread::Exit(). Then, in case of pthread-detached
m

ode, the thread vanishes com
pletely.

By default, on finishing TThread executes the m
ost recent cleanup function

(CleanUpPop(1) is called autom
atically once).

Advanced TThread: Launching a M
ethod in a

Thread
C

onsider a class Myclass w
ith a m

em
ber function void*

Myclass::Thread0((void* arg) that shall be launched as a thread. To
start Thread0 as a TThread, class Myclass m

ay provide a m
ethod:

Int_t Myclass::Threadstart(){
 if(!mTh){
 mTh= new TThread("memberfunction",
 (void(*) (void *))&Thread0,
 (void*) this);
 mTh->Run();
 return 0;
 }
 return 1;
}

H
ere mTh is a TThread* pointer w

hich is m
em

ber of Myclass and should
be initialized to 0 in the constructor. The TThread constructor is called as
w

hen w
e used a plain C

 function above, except for the follow
ing tw

o
differences.

First, the m
em

ber function Thread0 requires an explicit cast to (void(*)
(void *)). This m

ay cause an annoying but harm
less com

piler w
arning:

 Threads
D

ecem
ber 2001 - version 3.1d

353

Myclass.cxx:98: warning: converting from "void
(Myclass::*)(void *)" to "void *")

Strictly speaking, Thread0 m
ust be a static m

em
ber function to be called

from
 a thread. Som

e com
pilers, for exam

ple gcc version 2.95.2, m
ay not

allow
 the (void(*) (void*))s cast and just stop if Thread0 is not static.

O
n the other hand, if Thread0 is static, no com

piler w
arnings are generated

at all.

Because the 'this' pointer is passed in 'arg' in the call to
Thread0(void *arg), you have access to the instance of the class even
if Thread0 is static. U

sing the 'this' pointer, non static m
em

bers can still
be read and w

ritten from
 Thread0, as long as you have provided G

etter and
Setter m

ethods for these m
em

bers.

For exam
ple:

Bool_t state = arg->GetRunStatus();
arg->SetRunStatus(state);

Second, the pointer to the current instance of Myclass, i.e. (void*) this,
has to be passed as first argum

ent of the threaded function Thread0 (C
++

m
em

ber functions internally expect the this pointer as first argum
ent to have

access to class m
em

bers of the sam
e instance). pthreads are m

ade for
sim

ple C
 functions and do not know

 about Thread0 being a m
em

ber function
of a class. Thus, you have to pass this inform

ation by hand, if you w
ant to

access all m
em

bers of the Myclass instance from
 the Thread0 function.

N
ote: M

ethod Thread0 cannot be a virtual m
em

ber function, since the cast
of Thread0 to void(*) in the TThread constructor m

ay raise problem
s

w
ith C

++ virtual function table. H
ow

ever, Thread0 m
ay call another virtual

m
em

ber function virtual void Myclass::Func0() w
hich then can be

overridden in a derived class of Myclass. (See exam
ple TMhs3).

C
lass Myclass m

ay also provide a m
ethod to stop the running thread:

Int_t Myclass::Threadstop(){
 if(mTh){
 TThread::Delete(mTh);
 delete mTh;
 mTh=0;
 return 0;
 }
 return 1;
}

Exam
ple TM

hs3: C
lass TThreadframe (TThreadframe.h,

TThreadframe.cxx) is a sim
ple exam

ple of a fram
ew

ork class m
anaging

up to four threaded m
ethods. C

lass TMhs3 (TMhs3.h, TMhs3.cxx)
inherits from

 this base class, show
ing the m

hs3 exam
ple 8.1 (m

hs3.h,
m

hs3.cxx) w
ithin a class.

The Makefile of this exam
ple builds the shared libraries

libTThreadframe.so and libTMhs3.so. These are either loaded or
executed by the R

O
O

T script TMhs3demo.C, or are linked against an
executable: TMhs3run.cxx.

354
D

ecem
ber 2001 - version 3.1d

Threads

K
now

n Problem
s

Parts of the R
O

O
T fram

ew
ork, like the interpreter, are not yet thread-safe.

Therefore, you should use this package w
ith caution. If you restrict your

threads to distinct and `sim
ple' duties, you w

ill able to benefit from
 their use.

The TThread class is available on all platform
s, w

hich provide a PO
SIX

com
pliant thread im

plem
entation. O

n Linux, Xavier Leroy's Linux Threads
im

plem
entation is w

idely used, but the TThread im
plem

entation should be
usable on all platform

s that provide pthread.
Linux Xlib on SM

P m
achines is not yet thread-safe. This m

ay cause
crashes during threaded graphics operations; this problem

 is independent of
R

O
O

T.

O
bject instantiation: there is no im

plicit locking m
echanism

 for m
em

ory
allocation and global R

O
O

T lists. The user has to explicitly protect his code
w

hen using them
.

G
lossary The follow

ing glossary is adapted from
 the description of the R

ogue W
ave

Threads.h++ package.

Process
A process is a program

 that is loaded into m
em

ory and prepared for
execution. Each process has a private address space. Processes begin w

ith
a single thread.

Thread
A thread of control, or m

ore sim
ply, a thread, is a sequence of instructions

being executed in a program
. A thread has a program

 counter and a private
stack to keep track of local variables and return addresses. A m

ultithreaded
process is associated w

ith one or m
ore threads. Threads execute

independently. All threads in a given process share the private address
space of that process.

C
oncurrency

C
oncurrency exists w

hen at least tw
o threads are in progress at the sam

e
tim

e. A system
 w

ith only a single processor can support concurrency by
sw

itching execution contexts am
ong m

ultiple threads.

Parallelism

Parallelism
 arises w

hen at least tw
o threads are executing sim

ultaneously.
This requires a system

 w
ith m

ultiple processors. Parallelism
 im

plies
concurrency, but not vice-versa.

R
eentrant

A function is reentrant if it w
ill behave correctly even if a thread of execution

enters the function w
hile one or m

ore threads are already executing w
ithin

the function. These could be the sam
e thread, in the case of recursion, or

different threads, in the case of concurrency.

 Threads
D

ecem
ber 2001 - version 3.1d

355

Thread-specific data
Thread-specific data (TSD

) is also know
n as thread-local storage (TLS).

N
orm

ally, any data that has lifetim
e beyond the local variables on the thread's

private stack are shared am
ong all threads w

ithin the process. Thread-
specific data is a form

 of static or global data that is m
aintained on a per-

thread basis. That is, each thread gets its ow
n private copy of the data.

Synchronization
Left to their ow

n devices, threads execute independently. Synchronization is
the w

ork that m
ust be done w

hen there are, in fact, interdependencies that
require som

e form
 of com

m
unication am

ong threads. Synchronization tools
include m

utexes, sem
aphores, condition variables, and other variations on

locking.

C
ritical Section

A critical section is a section of code that accesses a non-sharable resource.
To ensure correct code, only one thread at a tim

e m
ay execute in a critical

section. In other w
ords, the section is not reentrant.

M
utex

A m
utex, or m

utual exclusion lock, is a synchronization object w
ith tw

o states
locked and unlocked. A m

utex is usually used to ensure that only one thread
at a tim

e executes som
e critical section of code. Before entering a critical

section, a thread w
ill attem

pt to lock the m
utex, w

hich guards that section. If
the m

utex is already locked, the thread w
ill block until the m

utex is unlocked,
at w

hich tim
e it w

ill lock the m
utex, execute the critical section, and unlock

the m
utex upon leaving the critical section.

Sem
aphore

A sem
aphore is a synchronization m

echanism
 that starts out initialized to

som
e positive value. A thread m

ay ask to w
ait on a sem

aphore in w
hich case

the thread blocks until the value of the sem
aphore is positive. At that tim

e the
sem

aphore count is decrem
ented and the thread continues. W

hen a thread
releases sem

aphore, the sem
aphore count is increm

ented. C
ounting

sem
aphores are useful for coordinating access to a lim

ited pool of som
e

resource.

R
eaders/W

riter Lock
A m

ultiple-readers, single-w
riter lock is one that allow

s sim
ultaneous read

access by m
any threads w

hile restricting w
rite access to only one thread at a

tim
e. W

hen any thread holds the lock for reading, other threads can also
acquire the lock reading. If one thread holds the lock for w

riting, or is w
aiting

to acquire the lock for w
riting, other threads m

ust w
ait to acquire the lock for

either reading or w
riting.

C
ondition Variable

U
se a condition variable in conjunction w

ith a m
utex lock to autom

atically
block threads until a particular condition is true.

356
D

ecem
ber 2001 - version 3.1d

Threads

M
ultithread safe levels

A possible classification schem
e to describe thread-safety of libraries:

��
All public and protected functions are reentrant. The library provides
protection against m

ultiple threads trying to m
odify static and global data

used w
ithin a library. The developer m

ust explicitly lock access to
objects shared betw

een threads. N
o other thread can w

rite to a locked
object unless it is unlocked. The developer needs to lock local objects.
The spirit, if not the letter of this definition requires the user of the library
only to be fam

iliar w
ith the sem

antic content of the objects in use.
Locking access to objects that are being shared due to extra-sem

antic
details of im

plem
entation (for exam

ple, copy-on-w
rite) should rem

ain the
responsibility of the library.

��
All public and protected functions are reentrant. The library provides
protection against m

ultiple threads trying to m
odify static and global data

used w
ithin the library. The preferred w

ay of providing this protection is
to use m

utex locks. The library also locks an object before w
riting to it.

The developer is not required to explicitly lock or unlock a class object
(static, global or local) to perform

 a single operation on the object. N
ote

that even m
ultithread safe level II hardly relieves the user of the library

from
 the burden of locking.

D
eadlock

A thread suffers from
 deadlock if it is blocked w

aiting for a condition that w
ill

never occur. Typically, this occurs w
hen one thread needs to access a

resource that is already locked by another thread, and that other thread is
trying to access a resource that has already been locked by the first thread.
In this situation, neither thread is able to progress; they are deadlocked.

M
ultiprocessor

A m
ultiprocessor is a hardw

are system
 w

ith m
ultiple processors or m

ultiple,
sim

ultaneous execution units.

 Threads
D

ecem
ber 2001 - version 3.1d

357

List of Exam
ple files

H
ere is a list of the exam

ples that you can find on the thread authors' w
eb

site (Jörn Adam
czew

ski, M
arc H

em
berger) at:

w
w

w
-linux.gsi.de/~go4/H

O
W

TO
threads/how

tothreadsbody.htm
l#tth_sEc8

Exam
ple m

hs3

��
M

akefile.m
hs3

��
m

hs3.h
��

m
hs3LinkD

ef.h
��

m
hs3.cxx

��
rootlogon.C

��

R
unM

hs3.C

Exam
ple conditions

��
M

akefile.conditions
��

conditions.h
��

conditionsLinkD
ef.h

��
conditions.cxx

��
condstart.C

Exam
ple TM

hs3

��
M

akefile.TM
hs3

��
TThreadfram

e.h
��

TThreadfram
eLinkD

ef.h
��

TThreadfram
e.cxx

��
TM

hs3.h
��

TM
hs3LinkD

ef.h
��

TM
hs3.cxx

��
TM

hs3run.cxx
��

TM
hs3dem

o.C

Exam
ple C

alcPiThread

��
M

akefile.C
alcPiThread

��
C

alcPiThread.h
��

C
alcPiThreadLinkD

ef.h
��

C
alcPiThread.cxx

��
rootlogon.C

��

R
unPi.C

 Appendix A: Install and B
uild R

O
O

T
D

ecem
ber 2001 - version 3.1d

359

23
A

ppendix A
: Install and

B
uild R

O
O

T

R
O

O
T C

opyright and Licensing Agreem
ent:

This is a reprint of the copyright and licensing agreem
ent of R

O
O

T:

C
opyright (C

) 1995-2000, R
ené Brun and Fons R

adem
akers.

All rights reserved.

R

O
O

T Softw
are Term

s and C
onditions

 The authors hereby grant perm
ission to use, copy, and distribute this

softw
are and its docum

entation for any purpose, provided that existing
copyright notices are retained in all copies and that this notice is
included verbatim

 in any distributions. Additionally, the authors grant
perm

ission to m
odify this softw

are and its docum
entation for any purpose,

provided that such m
odifications are not distributed w

ithout the explicit
consent of the authors and that existing copyright notices are retained in
all copies. U

sers of the softw
are are asked to feed back problem

s, benefits,
and/or suggestions about the softw

are to the R
O

O
T D

evelopm
ent Team

(rootdev@

root.cern.ch). Support for this softw
are - fixing of bugs,

incorporation of new
 features - is done on a best effort basis. All bug

fixes and enhancem
ents w

ill be m
ade available under the sam

e term
s and

conditions as the original softw
are,

 IN
 N

O
 EVEN

T SH
ALL TH

E AU
TH

O
R

S O
R

 D
ISTR

IBU
TO

R
S BE LIABLE TO

AN

Y PAR
TY FO

R
 D

IR
EC

T, IN
D

IR
EC

T, SPEC
IAL, IN

C
ID

EN
TAL, O

R

C
O

N
SEQ

U
EN

TIAL D
AM

AG
ES AR

ISIN
G

 O
U

T O
F TH

E U
SE O

F TH
IS

SO
FTW

AR
E, ITS D

O
C

U
M

EN
TATIO

N
, O

R
 AN

Y D
ER

IVATIVES TH
ER

EO
F,

EVEN
 IF TH

E AU
TH

O
R

S H
AVE BEEN

 AD
VISED

 O
F TH

E PO
SSIBILITY O

F
SU

C
H

 D
AM

AG
E.

 TH
E AU

TH
O

R
S AN

D
 D

ISTR
IBU

TO
R

S SPEC
IFIC

ALLY D
ISC

LAIM
 AN

Y
W

AR
R

AN
TIES, IN

C
LU

D
IN

G
, BU

T N
O

T LIM
ITED

 TO
, TH

E IM
PLIED

W

AR
R

AN
TIES O

F M
ER

C
H

AN
TABILITY, FITN

ESS FO
R

 A PAR
TIC

U
LAR

PU

R
PO

SE, AN
D

 N
O

N
-IN

FR
IN

G
EM

EN
T. TH

IS SO
FTW

AR
E IS PR

O
VID

ED

O
N

 AN
 "AS IS" BASIS, AN

D
 TH

E AU
TH

O
R

S AN
D

 D
ISTR

IBU
TO

R
S H

AVE
N

O
 O

BLIG
ATIO

N
 TO

 PR
O

VID
E M

AIN
TEN

AN
C

E, SU
PPO

R
T, U

PD
ATES,

EN
H

AN
C

EM
EN

TS, O
R

 M
O

D
IFIC

ATIO
N

S.

360
D

ecem
ber 2001 - version 3.1d

Appendix A: Install and B
uild R

O
O

T

Installing R
O

O
T

To install R
O

O
T you w

ill need to go to the R
O

O
T w

ebsite at:
http://root.cern.ch/root/Availability.htm

l

You have a choice to dow
nload the binaries or the source. The source is

quicker to transfer since it is only 3.4 M
B, but you w

ill need to com
pile and

link it. The binaries range from
 7.4 M

B to 11 M
B depending on the target

platform
.

C
hoosing a Version

The R
O

O
T developers follow

 the principle of "release early and release
often", how

ever a very large portion of a user base requires a stable product
therefore generally three versions of the system

 is available for dow
nload �

new
, old and pro:

��
The new

 version evolves quickly, w
ith w

eekly or bi-w
eekly releases. U

se
this to get access to the latest and greatest, but it m

ay not be stable. By
trying out the new

 version you can help us converge quickly to a stable
version that can then becom

e the new
 pro version. If you are a new

 user
w

e w
ould advice you to try the new

 version.
��

The pro (production) version is a version w
e feel com

fortable w
ith to

exposing to a large audience for serious w
ork. The change rate of this

version is m
uch low

er than for the new
 version, it is about 3 to 6 m

onths.
��

The old version is the previous pro version that people m
ight need for

som
e tim

e before sw
itching the new

 pro version. The old change rate is
the sam

e as for pro.

Supported Platform
s

For each of the three versions the full source is available for these platform
s.

Precom
piled binaries are also provided for m

ost of them
:

��
Intel x86 Linux (g++, egcs and KAI/KCC)

��
Intel Itanium Linux (g++)

��
HP HP-UX 10.x (HP CC and aCC, egcs1.1 C++ compilers)

��
IBM AIX 4.1 (xlc compiler and egcs1.2)

��
Sun Solaris for SPARC (SUN C++ compiler and egcs)

��
Sun Solaris for x86 (SUN C++ compiler)

��
Sun Solaris for x86 KAI/KCC

��
Compaq Alpha OSF1 (egcs1.2 and DEC/CXX)

��
Compaq Alpha Linux (egcs1.2)

��
SGI Irix (g++, KAI/KCC and SGI C++ compiler)

��
Windows NT and Windows95 (Visual C++ compiler)

��
Mac MkLinux and Linux PPC (g++)

��
Hitachi HI-UX (egcs)

��
LynxOS

��
MacOS (CodeWarrior, no graphics)

 Appendix A: Install and B
uild R

O
O

T
D

ecem
ber 2001 - version 3.1d

361

Installing Precom
piled B

inaries
The binaries are available for dow

nloading from

root.cern.ch/root/Availability.htm
l.

O
nce dow

nloaded you need to unzip and de-tar the file. For exam
ple, if you

have dow
nloaded R

O
O

T v2.25 for H
PU

X:

% gunzip root_v2.25.00.HP-UX.B.10.20.tar.gz
% tar xvf root_v2.25.00.HP-UX.B.10.20.tar

This w
ill create the directory root. Before getting started read the file

R
EAD

M
E/R

EAD
M

E. Also, read the Introduction chapter for an explanation of
the directory structure.

Installing the Source
You have a choice to dow

nload a com
pressed (tar ball) file containing the

source, or you can login to the source code change control (C
VS) system

and check out the m

ost recent source. The com
pressed file is a one tim

e only
choice; every tim

e you w
ould like to upgrade you w

ill need to dow
nload the

entire new
 version. C

hoosing the C
VS option w

ill allow
 you to get changes as

they are subm
itted by the developers and you can stay up to date.

Installing and B
uilding the source from

 a com
pressed file

To install the R
O

O
T source you can dow

nload the tar file containing all the
source files from

 the R
O

O
T w

ebsite. The first thing you should do is to get
the latest version as a tar file. U

npack the source tar file, this creates
directory �root�:

% tar zxvf root_v2.25.xx.source.tar.gz
Set ROOTSYS to the directory w

here you w
ant root to be installed:

% export ROOTSYS=<path>/root

N
ow

 type the build com
m

ands:

% cd root
% ./configure --help
% ./configure <target>
% gmake
% gmake install

Add $ROOTSYS/bin to PATH and $ROOTSYS/lib to LD_LIBRARY_PATH:

% export PATH=$ROOTSYS/bin:$PATH
% export LD_LIBRARY_PATH=$ROOTSYS/lib:$LD_LIBRARY_PATH

Try running root:

% root It is also possible to setup and build R
O

O
T in a fixed location. Please check

R
EAD

M
E/IN

STALL for m
ore a detailed description of this procedure.

362
D

ecem
ber 2001 - version 3.1d

Appendix A: Install and B
uild R

O
O

T

Target directory
By default, R

O
O

T w
ill be built in the $R

O
O

TSYS directory. In that case the
w

hole system
 (binaries, sources, tutorials, etc.) w

ill be located under the
$R

O
O

TSYS directory.

Makefile targets
The Makefile is docum

ented in details in the R
EAD

M
E/BU

ILD
SYSTEM

 file.
It explains the build options and targets.

M
ore B

uild O
ptions

To build the library providing thread support you need to define either the
environm

ent variable � THREAD=-lpthread � or the configure flag �--
with-thread=-lpthread� (it is the default for the linuxegcs
architecture). [N

ote: this is only tested on Linux for the tim
e being.]

To build the library providing C
ER

N
 R

FIO
 (rem

ote I/O
) support you need to

define either the environm
ent variable � RFIO=<path>/libshift.a � or

the configure flag �--with-rfio=<path>/libshift.a�. For pre-built
version of libshift.a see ftp://root.cern.ch/root/shift/)
To build the PAW

 and G
eant3 conversion program

s h2root and g2root
you need to define either the environm

ent variable
�CERNLIB=<cernlibpath>� or the configure flag �--with-cern-
libdir=<cernlibpath>�.
To build the M

ySQ
L interface library you need to install M

ySQ
L first. Visit

http://w
w

w
.m

ysql.com
/ for the latest versions.

To build the strong authentication m
odule used by rootd, you first have to

install the SR
P (Secure R

em
ote Passw

ord) system
. Visit

http://jafar.stanford.edu/srp/index.htm
l.

To use the library you have to define either the environm
ent variable �

SRP=<srpdir> � or the configure flag �--with-srp=<srpdir>�.
To build the event generator interfaces for Pythia and Pythia6, you first have
to get the pythia libraries available from

 ftp: ftp://root.cern.ch/root/pythia/.

To use the libraries you have to define either � PYTHIA=<pythiadir> � or the configure
flag �--with-pythia=<pythiadir>�. The sam

e applies for Pythia6.

Installing the Source from
 C

VS
This paragraph describes how

 to checkout and build R
O

O
T from

 C
VS for

U
nix system

s. For description of a checkout for other platform
s, please see

R
O

O
T installation w

eb page (http://root.cern.ch/root/C
VS.htm

l).

(N
ote: The syntax is for ba(sh), if you use a t(csh) then you have to

substitute export w
ith setenv.)

 Appendix A: Install and B
uild R

O
O

T
D

ecem
ber 2001 - version 3.1d

363

% export CVSROOT=:pserver:cvs@root.cern.ch:/user/cvs
% cvs login
% (Logging in to cvs@root.cern.ch)
% CVS password: cvs
% cvs �z3 checkout root
U root/�
U �
% cd root
% ./configure �-help
% ./configure <platform>
% gmake If you are a part of a collaboration, you m

ay need to use setup procedures
specific to the particular developm

ent environm
ent prior to running gmake.

You only need to run cvs login once. It w
ill rem

em
ber anonym

ous passw
ord

in your $HOME/.cvspass file. For m
ore install instructions and options, see

the file R
EAD

M
E/IN

STALL.

C
VS for W

indow
s

Although there exists a native version of C
VS for W

indow
s, w

e only support
the build process under the C

ygw
in environm

ent. You m
ust have C

VS
version 1.10 or new

er.

The checkout and build procedure is sim
ilar to that for U

nix. For detailed
install instructions, see the file R

EAM
D

E/IN
STALL.

C
onverting a tar ball to a w

orking C
VS sandbox

You m
ay w

ant to consider dow
nloading the source as a tar ball and converting it to C

VS
because it is faster to dow

nload the tar ball than checking out the entire source w
ith C

VS. O
ur

source tar ball contains C
VS inform

ation. If your tar ball is dated June 1, 2000 or later, it is
already set up to talk to our public server (root.cern.ch). You just need to dow

nload and
unpack the tar ball and then run follow

ing com
m

ands:
% cd root
% cvs -z3 update -d -P
% ./configure <platform>

Staying up-to-date
To keep your local R

O
O

T source up-to-date w
ith the C

VS repository you
should regularly run the com

m
and:

% cvs -z3 update -d �P

Setting the Environm
ent Variables

Before you can run R
O

O
T you need to set the environm

ent variable
ROOTSYS and change your path to include root/bin and library path
variables to include root/lib. Please note: The syntax is for ba(sh), if you
are running t(csh) you w

ill have to use setenv and set instead of
export.

1. D
efine the variable $R

O
O

TSYS to the directory w
here you unpacked the R

O
O

T:

364
D

ecem
ber 2001 - version 3.1d

Appendix A: Install and B
uild R

O
O

T

% export ROOTSYS=/root
2. Add R

O
O

TSYS/bin to your PATH
:

% export PATH=$PATH:$ROOTSYS/bin

3. Set the Library Path

O
n H

P-U
X, before executing the interactive m

odule, you m
ust set the library

path:
% export SHLIB_PATH=$SHLIB_PATH:$ROOTSYS/lib

O
n AIX, before executing the interactive m

odule, you m
ust set the library

path:

% [-z "$LIBPATH"] && export LIBPATH=/lib:/usr/lib
% export LIBPATH=$LIBPATH:$ROOTSYS/lib

O
n Linux, Solaris, Alpha O

SF and SG
I, before executing the interactive

m
odule, you m

ust set the library path:

% export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$ROOTSYS/lib
O

n Solaris, in case your LD
_LIBR

AR
Y_PATH

 is em
pty, you should set it like

this:

% export
LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$ROOTSYS/lib:/usr/dt/lib

ROOTSYS is an environm
ent variable pointing to the R

O
O

T directory. For
exam

ple, if you use the H
PU

X-10 AFS version you should set:

% export
ROOTSYS=/afs/cern.ch/na49/library.4/ROOT/v2.23/hp700_ux102/
root

To run the program
 just type: root

D
ocum

entation to D
ow

nload
PostScript D

ocum
entation

The follow
ing PostScript files have been generated by autom

atically scanning
the R

O
O

T H
M

TL files. This docum
entation includes page num

bers, table of
contents and an index.

��
The latest revision of the U

sers G
uide (5M

B, 350 pages):
http://root.cern.ch/root/R

ootD
oc.htm

l
��

R
O

O
T O

verview
: O

verview
 of the R

O
O

T system
 (365 KB, 81 pages)

ftp://root.cern.ch/root/R
O

O
TM

ain.ps.gz
��

R
O

O
T Tutorials: The R

O
O

T tutorials w
ith graphics exam

ples (320 KB,
81 pages) ftp://root.cern.ch/root/R

O
O

TTutorials.ps.gz
��

R
O

O
T C

lasses: D
escription of all the R

O
O

T classes (1.47 M
B, 661

pages) ftp://root.cern.ch/root/R
O

O
TC

lasses.ps.gz

 Appendix A: Install and B
uild R

O
O

T
D

ecem
ber 2001 - version 3.1d

365

H
TM

L D
ocum

entation
In case you only have access to a low

-speed connection to C
ER

N
, you can

get a copy of the com
plete R

O
O

T htm
l tree (24 M

B):

ftp://root.cern.ch/root/R
O

O
TH

tm
lD

oc.ps.gz.

 Index
D

ecem
ber 2001 - version 3.1d

367

24
Index

 A

accent sym
bols..128

A
C

LiC
.......................96, 97, 98, 265, 283, 323

active pad19, 24, 107, 112, 115, 117, 118, 121,
155, 156

adding a class
A

C
LiC

..283
shared library

...280
arc

153
arrays..222
arrow

...122, 153
angle...123
options..123

asym
m

etric errors in graphs..........................61
autom

atic class descriptions........................341
autom

atic schem
a evolution........................202

A
utosave...220

axis 136
binning

...139
label..137, 138
options..137
tick m

arks.............................36, 38, 138, 139
tim

e form
at...139

title...38, 110, 137

B

bar graph...57
batch m

ode..14
get histogram

..249
benchm

ark...318
branch

...220
brow

ser.................84, 174, 189, 216, 226, 317
byte count..222, 281

C

canvas...16, 107, 114
autom

atically created
...............................184

copy/paste..155
dividing..19, 118
list of cavases...184
m

odified
..120

print...19
transparent...120
update..120
updating...34

chain..263, 265, 268, 318, 319, 321, 322, 323,
343

nam
e..268

change directory.................................101, 187
check buttons..333
C

IN
T

..83
com

m
ands..20

debugger..7, 84, 93
dictionary...............................96, 97, 98, 276
dictonary..278
extensions..20, 95
library

..8
circles...123
class 75
class index

..11
C

lassD
ef.....111, 193, 202, 274, 275, 277, 280

C
lassV

ersionID
..274

client...329
coding conventions.......................................21
collections..285

ordered...287
sorted...287
unordered...287

color 150
color palettes..150
colum

n-w
ise ntuples.....................................26

com
bo boxes...334

com
m

and line...20, 85
history..24
m

ulti-line com
m

and.............................21, 87
quit...15
short cuts...20

com
m

and options...14

368
D

ecem
ber 2001 - version 3.1d

Index

com
pression

..208
constructor..16, 78
contact

com
m

ents...2
m

ailing list...1
context m

enu16, 110, 111, 115, 133, 143, 148,
149, 153, 155

adding...111
toggle

...111
contour..36, 37, 42, 44
copy/paste...155
core library..8
curly arc..126, 153
curly lines..125, 153
current directory.....23, 89, 101, 102, 181, 186,

187, 190, 215, 257
current style

..161
cursor..108
cut

247
C

V
S 362

cycle num
ber...182

D

data encapsulation...77
debugging

...93
default constructor......................274, 275, 280
destructor..80
diam

ond
..153

docum
entation...364

draw
 options for graphs................................55

draw
 options for histogram

s..........................36
draw

 panel
slider...18

D
raw

C
lonePad..155

draw
ing objects...107

E

ellipse..153
ellipses..123
environm

ent settings...............................24, 25
errors in graphs...60
event list..257
exam

ple...9, 313, 314
analysis...321
axis...141, 142
bar graph

..57
basic graphics...314
collection classes......................................314
copy/paste

..155
creating a file..173
creating a tree...314
creating histogram

....................................314
fitting..71, 314
fitting subranges...70
fitting w

ith user defined function...............68
graph

..55
graph w

ith contineour line
.........................56

G
U

I actions..338

G
U

I application.......................................320
G

U
I classes..336

G
U

I fram
e layout.....................................337

G
U

I w
idgets..338

latex...130, 131
lazy application..315
lazy G

U
I classes......................................314

lazy m
atrix...314

M
akeProject...203

m
athem

atical experssion
.........................129

m
atrix

..314
physics vector..312
PostScript..160, 161
rem

ote access to a file..............................210
string classes..314
tetris...314
threads...353, 357
tree read/w

rite..227
tree w

ith a struct......................................231
tree w

ith an event list...............................257
tree w

ith Event...241
tree w

ith friends.......................................237
vectors...314

exit
15

exponential...66

F fB
its 273

Feynm
an...125

file
173

close...188
com

pression...208
current directory

......................................182
cycle num

bers..182
free block...178
header..175
list of objects...................................101, 187
logical..178
logical view

...180
navigating..190
objects in m

em
ory

...................................183
objects on disk...183
out of scope

...188
physical layout...173
read m

ode..182
record...176
recovery...178
retrieving objects.....................................189
saving collections....................................188
saving histogram

s....................................185
saving objects..188
stream

er...192
subdirectories...189
subdirectory

rem
oving...191

w
rite...185, 188

File
free blocks...180

file header...175

 Index
D

ecem
ber 2001 - version 3.1d

369

files
access via w

eb server...............................211
fill attributes..149
Fit Panel..65
fitting

...............................See histogram
 fitting

draw
 options...66

exponential...66
function..66
gaussian..66
histogram

...65
initial param

eters..67
landau...66
options..66
polynom

ial...66
predefined function

....................................67
quiet...66
range...66
verbose...66

folders...165
hierarchy

..166
search

...167
fonts 145
fractions..127
fram

e...334
fram

ew
ork...3

advantages..4
com

ponents..3
organization

...6
function

derivative
...15

integral...15
num

ber of points..16
fU

niqueID
...274

G

gaussian.........................33, 48, 65, 66, 67, 173
gD

irectory..2, 23, 89, 101, 181, 182, 183, 187,
190, 191, 258, 325, 351

gEnv 21, 24, 25, 147
gFile 23, 190, 351
gH

tm
l..341

global variables...23
gPad 24, 38, 47, 113, 115, 116, 117, 118, 121,

154, 156, 346, 347, 350
gR

andom
...24, 47

graph
...55

asym
m

etric errors.......................................61
axis...56
axis titles..63
bar graph

..57
collection..62
draw

 options...55
errors..60
filling..57
fitting..62
m

arkers...58
superim

posing..59
zoom

...63
graphical cut..See

graphical editor...153
graphical objects

adding events...112
coordinate system

conversion...118
global setting

..116
pixel coordinates...................................117

m
oving...108, 109

resizing
..108

selecting...109
greek font...127, 159
gR

O
O

T
..23, 35, 42, 81, 90, 97, 129, 130, 131,

141, 150, 151, 162, 183, 184, 283, 322,
325, 337, 339

gR
O

O
T->R

eset.......................................81, 90
G

U
I actions..338

G
U

I A
pplication...320

H

h2root...26, 362
H

B
O

O
K

..26, 27
heap 78, 89, 90, 189
histogram

..29
1-D

 histogram
s..29

2-D
 histogram

s..29
3-D

 histogram
s..29

addition..33
axis title...38
batch m

ode
..249

change default directory
..........101, 102, 187

clone..48
color palette.......................................45, 152
contour...42
coordinate system

s.....................................43
division..33
draw

 options..36
draw

ing..34
draw

 options...36
setting default...................................37

refreshing..34
superim

pose..34
draw

ing sub-range.....................................46
error bars...33
filling...32

w
ith random

 num
bers.............................33

first bin
..31

Fit Panel...65
fitting...65, 66

com
bining functions...............................71

errors...73, 74
function...66
function list...71
initial param

eters....................................67
options..66
param

eter bounds....................................69
param

eters...74
range...70
statistics..74
user defined function

........................67, 68

370
D

ecem
ber 2001 - version 3.1d

Index

last bin..31
legend...157
lego plot...43
list of functions..66
log scale

...121
m

ultiplication...33
profile histogram

s......................................29
projection

...34
reading

...48
re-binning...32

autom
atic re-binning

...............................32
rem

ove from
 directory

.....................102, 187
saving to file...185
scatter plot..39
second bin

..31
second to lastf bin

......................................31
style..34
superim

pose...47
surface plot...44
variable bin sizes..31
w

riting..48
history file...24
hom

e directory..183

I I/O
 redirection...86

icons 333
IgnoreO

bjectStream
er.................................274

in m
em

ory objects.......................................185
include path...99
Inheritance

..76, 271
input/output...173
inspecting..94
install R

O
O

T
...360

interpreter..83
Introspection

...271
Iterator...290
iterators...287

K

kB
ypassStream

er..197
key

176, 179, 186, 188, 196, 197, 285
K

EY
 181

kO
verw

rite..187

L label 153
labels...132
landau..66
latex 126, 153
layout m

anagers..334
legends..157
lego plot..43
libraries...8

C
IN

T
..8

core...8
dependencies..8

licens..359
line

122, 153
line attributes..148
LinkD

ef................................10, 195, 279, 281
options...281

list boxes...334
logarithm

ic scale
..121

Lorenz vector..306

M

m
acro path..25

m
ailing list..1

M
akeProject...203

m
anual schem

a evolution...........................203
m

arker..125, 154
m

arkers...58
m

athem
atical expressions...........................126

m
athem

atical sym
bols................................128

m
enu bars...333

m
ethod overriding

..76
m

ethods..76
m

ouse
left button

..108
m

ulti-line com
m

and
.....................................21

m
ulti-pad canvas..19

m
ultiple sockets..332

m
utex...347, 349

N

N
D

C
 117

netw
orking..329

norm
alized coordinate system

....................117
ntuple..213

O

O
B

J 181, 184
object ow

nership
..101

objects in m
em

ory......................................183
objects on disk..183
ordered collections.....................................287

P

pad
153. See canvas

coordinate system
....................................116

copy/paste..155
dividing..118
find an object...115
hide an object...116
m

odified
..120

transparent...120
update..120
updating...34

palette...150
pave 153
PA

W
...1, 26, 321, 362

physics vector...299

 Index
D

ecem
ber 2001 - version 3.1d

371

pixel coordinate...117
pixel coordinate system

..............................117
point 125
poly-line..123, 153
poly-m

arker...125
polynom

ial..66
popup m

enus...333
PostScript..158
print See canvas
private...77
profile histogram

s...49
2D

 52
from

 a tree..52
PR

O
O

F
...343

public..77

R

radio buttons...333
ram

dom
 num

bers..24
rectangles..124
reset 81, 90
R

int 182
rootalias.C

...25, 26
rootcint.....7, 97, 111, 193, 195, 278, 279, 281,

282
help...281

rootd 7, 209, 210, 362
com

m
and line argum

ents.........................211
rootlogoff.C

..25
rootlogon.C

...25, 162
rootrc...................................14, 24, 25, 88, 147
rotation of TV

ector3
...................................303

row
-w

ise ntuples...26
R

TTI.........................4, 84, 271, 274, 286, 335
R

types.h
..275

S

saving collections to disk............................188
scatter plot...39
schem

a evloution
autom

atic..202
schem

a evolution
..199

m
anual..203

scope.................87, 89, 90, 187, 188, 189, 196
script...87

com
piling

...96
debugger...93
nam

ed.......................................88, 89, 90, 97
un-nam

ed
.......................................87, 88, 90

script com
piler................................See A

C
LiC

script path..25
scroll bars..334
selectors..265
sem

aphore...347
server..329
Show

M
em

bers()..278
sliders..134
socket..329

sorted collections..287
special characters..159
split-level..223, 226
square root sym

bol.....................................127
stack 78, 89, 90, 134, 188, 189, 352, 354, 355
statistics

fitting...74
STL 296
stream

er..330
turn off autom

atic creation
......................195

Stream
erInfo

array in class..200
definition

...200
in a file...176
list 176

Stream
erInfoElem

ent..........................200, 201
stream

ers..192
autom

atic...193
custom

...195
exclude TO

bject......................................197
pointers..192
prevent splitting.......................................195
TC

lonesA
rray..197

transient data m
em

bers............................194
variable length arrays..............................194
w

riting objects...196
style 161
subdirectories...189
superim

posing graphs...................................59
superscripts...126
supported platform

s................................4, 360
surfacce plot...44

T tab com
pletion..20

tasks 168
TB

row
ser..........................20, 21, 27, 174, 317

TC
hain...See chain

TC
lass...271

TC
lonesA

rray...295
kB

ypassStream
er.....................................197

TC
ondition

...347
tem

plate containers.....................................296
test

318
text attributes..143
TFolder..165
TG

raph
..55. See graph

TG
raphA

sym
m

Errors...................................61
TG

raphErrors...60
TH

1::Fit..66
thread..345
threads..354

asynchronous action
................................349

cancelling...351
concurrency

...354
condition variable....................................355
deadlock

..356
exam

ples..357
lock..355

372
D

ecem
ber 2001 - version 3.1d

Index

m
utex

...355
reentrant code...354
sem

aphore..355
synchronization..355

TH
tm

l..341
TIterator..288
TList..292
TLorentzV

ector...306
TM

essage..330
TM

ultiG
raph...62

TO
bjA

rray...294
TO

bject...22
C

lone..272
w

rite...196
W

rite..272
TPaves...132
transient data m

em
bers...............................194

treads
initialization

...347
installation..346

tree
friends..237

tree view
er..216

trees
A

utosave
..220

branches...220
array of objects......................................225
array of variables...................................222
identical nam

es......................................225
list of variables......................................221
objects...222, 226
split-level.......................................223, 226

creating...219
creating a profile histogram

.....................259
creating histogram

s..................................258
cut 247
draw

...246
draw

 options...249
prof , profs...52

event list...257

folders..220
histogram

 style
................................247, 258

inform
ation..259

M
akeC

lass...............260, 261, 264, 265, 321
selection...247
selectors...265
Show

..215
static class m

em
ebers......................223, 226

tree view
er...216

using TC
ut...248

true type fonts...147
TTask...168
tutorials...9
TV

ector3
..300

types 22

U

unordered collections.................................287
user coordinate system

...............................116

V

variable length array...................................194

W

w
eb server..211

w
eb site...11

w
idgets...333, 338

X

X
11 333

X
class'95

..333

Z zoom
...16, 18, 63

	Preface
	Table of Contents
	I
	Introduction
	The ROOT Mailing List
	Contact Information
	Conventions Used in This Book
	The Framework
	Installing ROOT
	The Organization of the ROOT Framework
	How to Find More Information

	Getting Started
	Start and Quit a ROOT Session
	First Example: Using the GUI
	Second Example: Building a Multi-pad Canvas
	The ROOT Command Line
	Conventions
	Global Variables
	History File
	Environment Setup
	Logon and Logoff Scripts
	Tracking Memory Leaks
	Converting HBOOK/PAW files

	Histograms
	The Histogram Classes
	Creating Histograms
	Fixed or Variable Bin Size
	Filling Histograms
	Random Numbers and Histograms
	Adding, Dividing, and Multiplying
	Projections
	Draw Options
	Statistics Display
	Setting Line, Fill, Marker, and Text Attributes
	Setting Tick Marks on the Axis
	Giving Titles to the X, Y and Z Axis
	The SCATter Plot Option
	The ARRow Option
	The BOX Option
	The ERRor Bars Options
	The COLor Option
	The TEXT Option
	The CONTour Options
	The LEGO Options
	The SURFace Options
	The Z Option: Display the Color Palette on the Pad
	Drawing a Sub-range of a 2-D Histogram (the [cutg] Option)
	Drawing Options for 3-D Histograms
	Superimposing Histograms with Different Scales
	Making a Copy of an Histogram
	Normalizing Histograms
	Saving/Reading Histograms to/from a file
	Miscellaneous Operations
	Profile Histograms

	Graphs
	TGraph
	Superimposing two Graphs
	TGraphErrors
	TGraphAsymmErrors
	TMultiGraph
	Fitting a Graph
	Setting the Graph's Axis Title
	Zooming a Graph

	Fitting Histograms
	The Fit Panel
	The Fit Method
	Fit with a Predefined Function
	Fit with a User- Defined Function
	Fixing and Setting Bounds for Parameters
	Fitting Sub Ranges
	Example: Fitting Multiple Sub Ranges
	Adding Functions to The List
	Combining Functions
	Associated Function
	Access to the Fit Parameters and Results
	Associated Errors
	Fit Statistics

	A Little C++
	Classes, Methods and Constructors
	Inheritance and Data Encapsulation
	Creating Objects on the Stack and Heap

	CINT the C++ Interpreter
	What is CINT?
	The ROOT Command Line Interface
	The ROOT Script Processor
	Resetting the Interpreter Environment
	A Script Containing a Class Definition
	Debugging Scripts
	Inspecting Objects
	ROOT/CINT Extensions to C++
	ACLiC - The Automatic Compiler of Libraries for CINT

	Object Ownership
	Ownership by Current Directory (gDirectory)
	Ownership by the Master TROOT Object (gROOT)
	Ownership by Other Objects
	Ownership by the User

	Graphics and the Graphical User Interface
	Drawing Objects
	Interacting with Graphical Objects
	Graphical Containers: Canvas and Pad
	Graphical Objects
	Axis
	Graphical Objects Attributes
	The Graphical Editor
	Copy/Paste With DrawClone
	Legends
	The PostScript Interface
	Create or Modify a Style

	Folders And Tasks
	Folders
	Why Use Folders?
	How to Use Folders
	Tasks
	Execute and Debug Tasks

	Input/Output
	The Physical Layout of ROOT Files
	The Logical ROOT File: TFile and TKey
	Streamers
	Schema Evolution
	Migrating to ROOT 3
	Compression and Performance
	Accessing ROOT Files Remotely via a rootd
	Reading ROOT Files via Apache Web Server

	Trees
	Why should you Use a Tree?
	A Simple TTree
	Show An Entry with TTree::Show
	Print the tree structure with TTree::Print
	Scan a Variable the tree with TTree::Scan
	The Tree Viewer
	Creating and Saving Trees
	Branches
	Adding a Branch to hold a List of Variables
	Adding a TBranch to hold an Object
	Adding a Branch with a Folder
	Adding a Branch with a TList
	Examples For Writing and Reading Trees
	Example 1: A Tree with Simple Variables
	Example 2: A Tree with a C Structure
	Example 3: Adding Friends to Trees
	Example 4: A Tree with an Event Class
	Trees in Analysis
	Simple Analysis using TTree::Draw
	Using TTree::MakeClass
	Using TTree::MakeSelector
	Performance Benchmarks
	Impact of Compression on I/O
	Chains

	Adding a Class
	The Role of TObject
	Motivation
	The Default Constructor
	rootcint: The CINT Dictionary Generator
	Adding a Class with a Shared Library
	Adding a Class with ACLiC

	Collection Classes
	Understanding Collections
	General Characteristics
	Determining the Class of Contained Objects
	Iterators: Processing a Collection
	Foundation Classes
	A Collectable Class
	The TIter Generic Iterator
	The TList Collection
	Iterating over a TList
	The TObjArray Collection
	TClonesArray – An Array of Identical Objects
	Template Containers and STL

	Physics Vectors
	The Physics Vector Classes
	TVector3
	TRotation
	TLorentzVector
	TLorentzRotation
	Physics Vector Example

	The Tutorials and Tests
	$ROOTSYS/tutorials
	$ROOTSYS/test

	Example Analysis
	Explanation
	Script

	Networking
	Setting up a Connection
	Sending Objects over the Network
	Closing the Connection
	A Server with Multiple Sockets

	Writing a Graphical User Interface
	The New ROOT GUI Classes
	XClass'95
	ROOT Integration
	A Simple Example
	The Widgets in Detail
	Example: Widgets and the Interpreter
	RQuant Example
	References

	Automatic HTML Documentation
	PROOF: Parallel Processing
	Threads
	Threads and Processes
	Implementation of Threads in ROOT
	Classes
	TThread for Pedestrians
	TThread in More Detail
	Advanced TThread: Launching a Method in a Thread
	Known Problems
	Glossary
	List of Example files

	Appendix A: Install and Build ROOT
	ROOT Copyright and Licensing Agreement:
	Installing ROOT
	Choosing a Version
	Installing Precompiled Binaries
	Installing the Source
	Setting the Environment Variables
	Documentation to Download

	Index

