//*CMZ : 2.24/03 03/05/2000 19.56.29 by Rene Brun
//*CMZ : 2.23/12 27/01/2000 12.11.15 by Fons Rademakers
//*CMZ : 2.23/09 14/11/99 15.53.52 by Rene Brun
//*CMZ : 2.23/07 12/11/99 16.31.00 by Rene Brun
//*CMZ : 2.23/04 11/10/99 12.13.01 by Fons Rademakers
//*CMZ : 2.23/00 30/07/99 19.28.04 by Fons Rademakers
//*CMZ : 2.22/08 06/07/99 19.17.41 by Fons Rademakers
//*CMZ : 2.22/05 10/06/99 17.00.38 by Fons Rademakers
//*CMZ : 2.22/03 31/05/99 09.10.45 by Fons Rademakers
//*-- Author : Fons Rademakers 04/05/96
//*KEEP,CopyRight,T=C.
/*************************************************************************
* Copyright (C) 1995-2000, Rene Brun and Fons Rademakers. *
* All rights reserved. *
* *
* For the licensing terms see $ROOTSYS/LICENSE. *
* For the list of contributors see $ROOTSYS/README/CREDITS. *
*************************************************************************/
//*KEND.
//////////////////////////////////////////////////////////////////////////
// //
// TBuffer //
// //
// Buffer base class used for serializing objects. //
// //
//////////////////////////////////////////////////////////////////////////
#include <string.h>
//*KEEP,TBuffer.
#include "TBuffer.h"
//*KEEP,TExMap.
#include "TExMap.h"
//*KEEP,TObjPtr.
#include "TObjPtr.h"
//*KEEP,TClass.
#include "TClass.h"
//*KEEP,TStorage.
#include "TStorage.h"
//*KEEP,TMath.
#include "TMath.h"
//*KEEP,TError.
#include "TError.h"
//*KEND.
#if defined(__linux) && defined(__i386__)
// #define USE_BSWAPCPY
#endif
#ifdef USE_BSWAPCPY
//*KEEP,Bswapcpy,T=C++.
#include "Bswapcpy.h"
//*KEND.
#endif
const UInt_t kNullTag = 0;
const UInt_t kNewClassTag = 0xFFFFFFFF;
const UInt_t kClassMask = 0x80000000; // OR the class index with this
const UInt_t kByteCountMask = 0x40000000; // OR the byte count with this
const UInt_t kMaxMapCount = 0x3FFFFFFE; // last valid fMapCount and byte count
const Version_t kByteCountVMask = 0x4000; // OR the version byte count with this
const Version_t kMaxVersion = 0x3FFF; // highest possible version number
const Int_t kExtraSpace = 8; // extra space at end of buffer (used for free block count)
const Int_t kMapOffset = 2; // first 2 map entries are taken by null obj and self obj
Int_t TBuffer::fgMapSize = kMapSize;
ClassImp(TBuffer)
//______________________________________________________________________________
TBuffer::TBuffer(EMode mode, Int_t bufsiz, void *buf)
{
// Create an I/O buffer object. Mode should be either TBuffer::kRead or
// TBuffer::kWrite. By default the I/O buffer has a size of
// TBuffer::kInitialSize (1024) bytes.
// Before using the buffer make sure some assumptions are true
Assert(sizeof(Short_t) == 2);
Assert(sizeof(Int_t) == 4);
#ifdef R__B64
Assert(sizeof(Long_t) == 8);
#else
Assert(sizeof(Long_t) == 4);
#endif
Assert(sizeof(Float_t) == 4);
Assert(sizeof(Double_t) == 8);
if (bufsiz < kMinimalSize) bufsiz = kMinimalSize;
fBufSize = bufsiz;
fMode = mode;
fVersion = 0;
fMapCount = 0;
fMapSize = fgMapSize;
fReadMap = 0;
fDisplacement = 0;
if (buf)
fBuffer = (char *)buf;
else
fBuffer = new char[fBufSize+kExtraSpace];
fBufCur = fBuffer;
fBufMax = fBuffer + fBufSize;
}
//______________________________________________________________________________
TBuffer::~TBuffer()
{
// Delete an I/O buffer object.
delete [] fBuffer;
fBuffer = 0;
if (IsReading())
delete fReadMap;
else
delete fWriteMap;
fReadMap = 0;
}
//______________________________________________________________________________
void TBuffer::SetBuffer(void *buf, UInt_t newsiz)
{
// Set buffer address
fBuffer = (char *)buf;
fBufCur = fBuffer;
if (newsiz > 0) fBufSize = newsiz;
fBufMax = fBuffer + fBufSize;
}
//______________________________________________________________________________
void TBuffer::CheckCount(UInt_t offset)
{
// Check if offset is not too large (< kMaxMapCount) when writing.
if (IsWriting()) {
if (offset >= kMaxMapCount) {
Error("CheckCount", "buffer offset too large (larger than %d)", kMaxMapCount);
// exception
}
}
}
//______________________________________________________________________________
UInt_t TBuffer::CheckObject(UInt_t offset, const TClass *cl, Bool_t readClass)
{
// Check for object in the read map. If the object is 0 it still has to be
// read. Try to read it from the buffer starting at location offset. If the
// object is -1 then it really does not exist and we return 0. If the object
// exists just return the offset.
// in position 0 we always have the reference to the null object
if (!offset) return offset;
Long_t cli;
if (readClass) {
if ((cli = fReadMap->GetValue(offset)) == 0) {
// No class found at this location in map. It might have been skipped
// as part of a skipped object. Try to explicitely read the class.
// save fBufCur and set to place specified by offset (-kMapOffset-sizeof(bytecount))
char *bufsav = fBufCur;
fBufCur = (char *)(fBuffer + offset-kMapOffset-sizeof(UInt_t));
TClass *c = ReadClass(cl);
if (c == (TClass*) -1) {
// mark class as really not available
fReadMap->Remove(offset);
fReadMap->Add(offset, -1);
offset = 0;
Warning("CheckObject", "reference to unavailable class %s,"
" pointers of this type will be 0", cl ? cl->GetName() : "TObject");
}
fBufCur = bufsav;
} else if (cli == -1) {
// class really does not exist
return 0;
}
} else {
if ((cli = fReadMap->GetValue(offset)) == 0) {
// No object found at this location in map. It might have been skipped
// as part of a skipped object. Try to explicitely read the object.
// save fBufCur and set to place specified by offset (-kMapOffset)
char *bufsav = fBufCur;
fBufCur = (char *)(fBuffer + offset-kMapOffset);
TObject *obj = ReadObject(cl);
if (!obj) {
// mark object as really not available
fReadMap->Remove(offset);
fReadMap->Add(offset, -1);
offset = 0;
Warning("CheckObject", "reference to object of unavailable class %s,"
" pointer will be 0", cl ? cl->GetName() : "TObject");
}
fBufCur = bufsav;
} else if (cli == -1) {
// object really does not exist
return 0;
}
}
return offset;
}
//______________________________________________________________________________
void TBuffer::Expand(Int_t newsize)
{
// Expand the I/O buffer to newsize bytes.
Int_t l = Length();
fBuffer = (char *) TStorage::ReAlloc(fBuffer,
(newsize+kExtraSpace) * sizeof(char),
(fBufSize+kExtraSpace) * sizeof(char));
fBufSize = newsize;
fBufCur = fBuffer + l;
fBufMax = fBuffer + fBufSize;
}
//______________________________________________________________________________
void TBuffer::MapObject(const TObject *obj, UInt_t offset)
{
// Add object to the fWriteMap or fReadMap containers (depending on the mode).
// If obj is not 0 add object to the map (in read mode also add 0 objects to
// the map). This method may only be called outside this class just before
// calling obj->Streamer() to prevent self reference of obj, in case obj
// contains (via via) a pointer to itself. In that case offset must be 1
// (default value for offset).
if (IsWriting()) {
if (!fWriteMap)
InitMap();
if (obj) {
CheckCount(offset);
fWriteMap->Add(((TObject*)obj)->TObject::Hash(), (Long_t)obj, offset);
fMapCount++;
}
} else {
if (!fReadMap)
InitMap();
fReadMap->Add(offset, (Long_t)obj);
fMapCount++;
}
}
//______________________________________________________________________________
void TBuffer::SetReadParam(Int_t mapsize)
{
// Set the initial size of the map used to store object and class
// references during reading. The default size is kMapSize=503.
// Increasing the default has the benefit that when reading many
// small objects the map does not need to be resized too often
// (the system is always dynamic, even with the default everything
// will work, only the initial resizing will cost some time).
// This method can only be called directly after the creation of
// the TBuffer, before any reading is done. Globally this option
// can be changed using SetGlobalReadParam().
Assert(IsReading());
Assert(fReadMap == 0);
fMapSize = mapsize;
}
//______________________________________________________________________________
void TBuffer::SetWriteParam(Int_t mapsize)
{
// Set the initial size of the hashtable used to store object and class
// references during writing. The default size is kMapSize=503.
// Increasing the default has the benefit that when writing many
// small objects the hashtable does not get too many collisions
// (the system is always dynamic, even with the default everything
// will work, only a large number of collisions will cost performance).
// For optimal performance hashsize should always be a prime.
// This method can only be called directly after the creation of
// the TBuffer, before any writing is done. Globally this option
// can be changed using SetGlobalWriteParam().
Assert(IsWriting());
Assert(fWriteMap == 0);
fMapSize = mapsize;
}
//______________________________________________________________________________
void TBuffer::InitMap()
{
// Create the fWriteMap or fReadMap containers and initialize them
// with the null object.
if (IsWriting()) {
if (!fWriteMap) {
fWriteMap = new TExMap(fMapSize);
fMapCount = 0;
}
} else {
if (!fReadMap) {
fReadMap = new TExMap(fMapSize);
fReadMap->Add(0, kNullTag); // put kNullTag in slot 0
fMapCount = 1;
}
}
}
//______________________________________________________________________________
void TBuffer::ResetMap()
{
// Delete existing fWriteMap or fReadMap and reset map counter.
if (IsWriting()) {
delete fWriteMap;
fWriteMap = 0;
} else {
delete fReadMap;
fReadMap = 0;
}
fMapCount = 0;
fDisplacement = 0;
}
//______________________________________________________________________________
void TBuffer::SetByteCount(UInt_t cntpos, Bool_t packInVersion)
{
// Set byte count at position cntpos in the buffer. Generate warning if
// count larger than kMaxMapCount. The count is excluded its own size.
UInt_t cnt = UInt_t(fBufCur - fBuffer) - cntpos - sizeof(UInt_t);
char *buf = (char *)(fBuffer + cntpos);
// if true, pack byte count in two consecutive shorts, so it can
// be read by ReadVersion()
if (packInVersion) {
union {
UInt_t cnt;
Version_t vers[2];
} v;
v.cnt = cnt;
#ifdef R__BYTESWAP
tobuf(buf, Version_t(v.vers[1] | kByteCountVMask));
tobuf(buf, v.vers[0]);
#else
tobuf(buf, Version_t(v.vers[0] | kByteCountVMask));
tobuf(buf, v.vers[1]);
#endif
} else
tobuf(buf, cnt | kByteCountMask);
if (cnt >= kMaxMapCount) {
Error("WriteByteCount", "bytecount too large (more than %d)", kMaxMapCount);
// exception
}
}
//______________________________________________________________________________
Int_t TBuffer::CheckByteCount(UInt_t startpos, UInt_t bcnt, const TClass *clss)
{
// Check byte count with current buffer position. They should
// match. If not print warning and position buffer in correct
// place determined by the byte count. Startpos is position of
// first byte where the byte count is written in buffer.
// Returns 0 if everything is ok, otherwise the bytecount offset
// (< 0 when read too little, >0 when read too much).
if (!bcnt) return 0;
Int_t offset = 0;
Long_t endpos = Long_t(fBuffer) + startpos + bcnt + sizeof(UInt_t);
if (Long_t(fBufCur) != endpos) {
if (clss) {
if (Long_t(fBufCur) < endpos)
Error("CheckByteCount", "object of class %s read too few bytes",
clss->GetName());
if (Long_t(fBufCur) > endpos)
Error("CheckByteCount", "object of class %s read too many bytes",
clss->GetName());
Printf("*** %s::Streamer() not in sync with data on file, fix Streamer()",
clss->GetName());
}
offset = Int_t(Long_t(fBufCur) - endpos);
//gROOT->Message(1005, this);
fBufCur = (char *) endpos;
}
return offset;
}
//______________________________________________________________________________
Int_t TBuffer::ReadBuf(void *buf, Int_t max)
{
// Read max bytes from the I/O buffer into buf. The function returns
// the actual number of bytes read.
Assert(IsReading());
if (max == 0) return 0;
Int_t n = TMath::Min(max, (Int_t)(fBufMax - fBufCur));
memcpy(buf, fBufCur, n);
fBufCur += n;
return n;
}
//______________________________________________________________________________
void TBuffer::WriteBuf(const void *buf, Int_t max)
{
// Write max bytes from buf into the I/O buffer.
Assert(IsWriting());
if (max == 0) return;
if (fBufCur + max > fBufMax) Expand(TMath::Max(2*fBufSize, fBufSize+max));
memcpy(fBufCur, buf, max);
fBufCur += max;
}
//______________________________________________________________________________
Text_t *TBuffer::ReadString(Text_t *s, Int_t max)
{
// Read string from I/O buffer. String is read till 0 character is
// found or till max-1 characters are read (i.e. string s has max
// bytes allocated). If max = -1 no check on number of character is
// made, reading continues till 0 character is found.
Assert(IsReading());
char ch;
Int_t nr = 0;
if (max == -1) max = kMaxInt;
while (nr < max-1) {
*this >> ch;
// stop when 0 read
if (ch == 0) break;
s[nr++] = ch;
}
s[nr] = 0;
return s;
}
//______________________________________________________________________________
void TBuffer::WriteString(const Text_t *s)
{
// Write string to I/O buffer. Writes string upto and including the
// terminating 0.
WriteBuf(s, (strlen(s)+1)*sizeof(Text_t));
}
//______________________________________________________________________________
Int_t TBuffer::ReadArray(Char_t *&c)
{
// Read array of characters from the I/O buffer. Returns the number of
// characters read. If argument is a 0 pointer then space will be
// allocated for the array.
Assert(IsReading());
Int_t n;
*this >> n;
if (!n) return n;
if (!c) c = new Char_t[n];
Int_t l = sizeof(Char_t)*n;
memcpy(c, fBufCur, l);
fBufCur += l;
return n;
}
//______________________________________________________________________________
Int_t TBuffer::ReadArray(Short_t *&h)
{
// Read array of shorts from the I/O buffer. Returns the number of shorts
// read. If argument is a 0 pointer then space will be allocated for the
// array.
Assert(IsReading());
Int_t n;
*this >> n;
if (!n) return n;
if (!h) h = new Short_t[n];
#ifdef R__BYTESWAP
# ifdef USE_BSWAPCPY
bswapcpy16(h, fBufCur, n);
fBufCur += sizeof(Short_t)*n;
# else
for (int i = 0; i < n; i++)
frombuf(fBufCur, &h[i]);
# endif
#else
Int_t l = sizeof(Short_t)*n;
memcpy(h, fBufCur, l);
fBufCur += l;
#endif
return n;
}
//______________________________________________________________________________
Int_t TBuffer::ReadArray(Int_t *&ii)
{
// Read array of ints from the I/O buffer. Returns the number of ints
// read. If argument is a 0 pointer then space will be allocated for the
// array.
Assert(IsReading());
Int_t n;
*this >> n;
if (!n) return n;
if (!ii) ii = new Int_t[n];
#ifdef R__BYTESWAP
# ifdef USE_BSWAPCPY
bswapcpy32(ii, fBufCur, n);
fBufCur += sizeof(Int_t)*n;
# else
for (int i = 0; i < n; i++)
frombuf(fBufCur, &ii[i]);
# endif
#else
Int_t l = sizeof(Int_t)*n;
memcpy(ii, fBufCur, l);
fBufCur += l;
#endif
return n;
}
//______________________________________________________________________________
Int_t TBuffer::ReadArray(Long_t *&ll)
{
// Read array of longs from the I/O buffer. Returns the number of longs
// read. If argument is a 0 pointer then space will be allocated for the
// array.
Assert(IsReading());
Int_t n;
*this >> n;
if (!n) return n;
if (!ll) ll = new Long_t[n];
#ifdef R__BYTESWAP
# if defined(USE_BSWAPCPY) && !defined(R__B64)
bswapcpy32(ll, fBufCur, n);
fBufCur += sizeof(Long_t)*n;
# else
for (int i = 0; i < n; i++)
frombuf(fBufCur, &ll[i]);
# endif
#else
Int_t l = sizeof(Long_t)*n;
memcpy(ll, fBufCur, l);
fBufCur += l;
#endif
return n;
}
//______________________________________________________________________________
Int_t TBuffer::ReadArray(Float_t *&f)
{
// Read array of floats from the I/O buffer. Returns the number of floats
// read. If argument is a 0 pointer then space will be allocated for the
// array.
Assert(IsReading());
Int_t n;
*this >> n;
if (!n) return n;
if (!f) f = new Float_t[n];
#ifdef R__BYTESWAP
# ifdef USE_BSWAPCPY
bswapcpy32(f, fBufCur, n);
fBufCur += sizeof(Float_t)*n;
# else
for (int i = 0; i < n; i++)
frombuf(fBufCur, &f[i]);
# endif
#else
Int_t l = sizeof(Float_t)*n;
memcpy(f, fBufCur, l);
fBufCur += l;
#endif
return n;
}
//______________________________________________________________________________
Int_t TBuffer::ReadArray(Double_t *&d)
{
// Read array of doubles from the I/O buffer. Returns the number of doubles
// read. If argument is a 0 pointer then space will be allocated for the
// array.
Assert(IsReading());
Int_t n;
*this >> n;
if (!n) return n;
if (!d) d = new Double_t[n];
#ifdef R__BYTESWAP
for (int i = 0; i < n; i++)
frombuf(fBufCur, &d[i]);
#else
Int_t l = sizeof(Double_t)*n;
memcpy(d, fBufCur, l);
fBufCur += l;
#endif
return n;
}
//______________________________________________________________________________
Int_t TBuffer::ReadStaticArray(Char_t *c)
{
// Read array of characters from the I/O buffer. Returns the number of
// characters read.
Assert(IsReading());
Int_t n;
*this >> n;
if (!n) return n;
if (!c) return 0;
Int_t l = sizeof(Char_t)*n;
memcpy(c, fBufCur, l);
fBufCur += l;
return n;
}
//______________________________________________________________________________
Int_t TBuffer::ReadStaticArray(Short_t *h)
{
// Read array of shorts from the I/O buffer. Returns the number of shorts
// read.
Assert(IsReading());
Int_t n;
*this >> n;
if (!n) return n;
if (!h) return 0;
#ifdef R__BYTESWAP
# ifdef USE_BSWAPCPY
bswapcpy16(h, fBufCur, n);
fBufCur += sizeof(Short_t)*n;
# else
for (int i = 0; i < n; i++)
frombuf(fBufCur, &h[i]);
# endif
#else
Int_t l = sizeof(Short_t)*n;
memcpy(h, fBufCur, l);
fBufCur += l;
#endif
return n;
}
//______________________________________________________________________________
Int_t TBuffer::ReadStaticArray(Int_t *ii)
{
// Read array of ints from the I/O buffer. Returns the number of ints
// read.
Assert(IsReading());
Int_t n;
*this >> n;
if (!n) return n;
if (!ii) return 0;
#ifdef R__BYTESWAP
# ifdef USE_BSWAPCPY
bswapcpy32(ii, fBufCur, n);
fBufCur += sizeof(Int_t)*n;
# else
for (int i = 0; i < n; i++)
frombuf(fBufCur, &ii[i]);
# endif
#else
Int_t l = sizeof(Int_t)*n;
memcpy(ii, fBufCur, l);
fBufCur += l;
#endif
return n;
}
//______________________________________________________________________________
Int_t TBuffer::ReadStaticArray(Long_t *ll)
{
// Read array of longs from the I/O buffer. Returns the number of longs
// read.
Assert(IsReading());
Int_t n;
*this >> n;
if (!n) return n;
if (!ll) return 0;
#ifdef R__BYTESWAP
# if defined(USE_BSWAPCPY) && !defined(R__B64)
bswapcpy32(ll, fBufCur, n);
fBufCur += sizeof(Long_t)*n;
# else
for (int i = 0; i < n; i++)
frombuf(fBufCur, &ll[i]);
# endif
#else
Int_t l = sizeof(Long_t)*n;
memcpy(ll, fBufCur, l);
fBufCur += l;
#endif
return n;
}
//______________________________________________________________________________
Int_t TBuffer::ReadStaticArray(Float_t *f)
{
// Read array of floats from the I/O buffer. Returns the number of floats
// read.
Assert(IsReading());
Int_t n;
*this >> n;
if (!n) return n;
if (!f) return 0;
#ifdef R__BYTESWAP
# ifdef USE_BSWAPCPY
bswapcpy32(f, fBufCur, n);
fBufCur += sizeof(Float_t)*n;
# else
for (int i = 0; i < n; i++)
frombuf(fBufCur, &f[i]);
# endif
#else
Int_t l = sizeof(Float_t)*n;
memcpy(f, fBufCur, l);
fBufCur += l;
#endif
return n;
}
//______________________________________________________________________________
Int_t TBuffer::ReadStaticArray(Double_t *d)
{
// Read array of doubles from the I/O buffer. Returns the number of doubles
// read.
Assert(IsReading());
Int_t n;
*this >> n;
if (!n) return n;
if (!d) return 0;
#ifdef R__BYTESWAP
for (int i = 0; i < n; i++)
frombuf(fBufCur, &d[i]);
#else
Int_t l = sizeof(Double_t)*n;
memcpy(d, fBufCur, l);
fBufCur += l;
#endif
return n;
}
//______________________________________________________________________________
void TBuffer::ReadFastArray(Char_t *c, Int_t n)
{
// Read array of n characters from the I/O buffer.
if (!n) return;
Int_t l = sizeof(Char_t)*n;
memcpy(c, fBufCur, l);
fBufCur += l;
}
//______________________________________________________________________________
void TBuffer::ReadFastArray(Short_t *h, Int_t n)
{
// Read array of n shorts from the I/O buffer.
if (!n) return;
#ifdef R__BYTESWAP
# ifdef USE_BSWAPCPY
bswapcpy16(h, fBufCur, n);
fBufCur += sizeof(Short_t)*n;
# else
for (int i = 0; i < n; i++)
frombuf(fBufCur, &h[i]);
# endif
#else
Int_t l = sizeof(Short_t)*n;
memcpy(h, fBufCur, l);
fBufCur += l;
#endif
}
//______________________________________________________________________________
void TBuffer::ReadFastArray(Int_t *ii, Int_t n)
{
// Read array of n ints from the I/O buffer.
if (!n) return;
#ifdef R__BYTESWAP
# ifdef USE_BSWAPCPY
bswapcpy32(ii, fBufCur, n);
fBufCur += sizeof(Int_t)*n;
# else
char *sw = (char*)ii;
for (int i = 0; i < n; i++) {
// frombuf(fBufCur, &ii[i]);
sw[0] = fBufCur[3];
sw[1] = fBufCur[2];
sw[2] = fBufCur[1];
sw[3] = fBufCur[0];
fBufCur += 4;
sw += 4;
}
# endif
#else
Int_t l = sizeof(Int_t)*n;
memcpy(ii, fBufCur, l);
fBufCur += l;
#endif
}
//______________________________________________________________________________
void TBuffer::ReadFastArray(Long_t *ll, Int_t n)
{
// Read array of n longs from the I/O buffer.
if (!n) return;
#ifdef R__BYTESWAP
# if defined(USE_BSWAPCPY) && !defined(R__B64)
bswapcpy32(ll, fBufCur, n);
fBufCur += sizeof(Long_t)*n;
# else
for (int i = 0; i < n; i++)
frombuf(fBufCur, &ll[i]);
# endif
#else
Int_t l = sizeof(Long_t)*n;
memcpy(ll, fBufCur, l);
fBufCur += l;
#endif
}
//______________________________________________________________________________
void TBuffer::ReadFastArray(Float_t *f, Int_t n)
{
// Read array of n floats from the I/O buffer.
if (!n) return;
#ifdef R__BYTESWAP
# ifdef USE_BSWAPCPY
bswapcpy32(f, fBufCur, n);
fBufCur += sizeof(Float_t)*n;
# else
char *sw = (char*)f;
for (int i = 0; i < n; i++) {
// frombuf(fBufCur, &f[i]);
sw[0] = fBufCur[3];
sw[1] = fBufCur[2];
sw[2] = fBufCur[1];
sw[3] = fBufCur[0];
fBufCur += 4;
sw += 4;
}
# endif
#else
Int_t l = sizeof(Float_t)*n;
memcpy(f, fBufCur, l);
fBufCur += l;
#endif
}
//______________________________________________________________________________
void TBuffer::ReadFastArray(Double_t *d, Int_t n)
{
// Read array of n doubles from the I/O buffer.
if (!n) return;
#ifdef R__BYTESWAP
for (int i = 0; i < n; i++)
frombuf(fBufCur, &d[i]);
#else
Int_t l = sizeof(Double_t)*n;
memcpy(d, fBufCur, l);
fBufCur += l;
#endif
}
//______________________________________________________________________________
void TBuffer::WriteArray(const Char_t *c, Int_t n)
{
// Write array of n characters into the I/O buffer.
Assert(IsWriting());
*this << n;
if (!n) return;
Assert(c);
Int_t l = sizeof(Char_t)*n;
if (fBufCur + l > fBufMax) Expand(TMath::Max(2*fBufSize, fBufSize+l));
memcpy(fBufCur, c, l);
fBufCur += l;
}
//______________________________________________________________________________
void TBuffer::WriteArray(const Short_t *h, Int_t n)
{
// Write array of n shorts into the I/O buffer.
Assert(IsWriting());
*this << n;
if (!n) return;
Assert(h);
Int_t l = sizeof(Short_t)*n;
if (fBufCur + l > fBufMax) Expand(TMath::Max(2*fBufSize, fBufSize+l));
#ifdef R__BYTESWAP
# ifdef USE_BSWAPCPY
bswapcpy16(fBufCur, h, n);
fBufCur += l;
# else
for (int i = 0; i < n; i++)
tobuf(fBufCur, h[i]);
# endif
#else
memcpy(fBufCur, h, l);
fBufCur += l;
#endif
}
//______________________________________________________________________________
void TBuffer::WriteArray(const Int_t *ii, Int_t n)
{
// Write array of n ints into the I/O buffer.
Assert(IsWriting());
*this << n;
if (!n) return;
Assert(ii);
Int_t l = sizeof(Int_t)*n;
if (fBufCur + l > fBufMax) Expand(TMath::Max(2*fBufSize, fBufSize+l));
#ifdef R__BYTESWAP
# ifdef USE_BSWAPCPY
bswapcpy32(fBufCur, ii, n);
fBufCur += l;
# else
for (int i = 0; i < n; i++)
tobuf(fBufCur, ii[i]);
# endif
#else
memcpy(fBufCur, ii, l);
fBufCur += l;
#endif
}
//______________________________________________________________________________
void TBuffer::WriteArray(const Long_t *ll, Int_t n)
{
// Write array of n longs into the I/O buffer.
Assert(IsWriting());
*this << n;
if (!n) return;
Assert(ll);
Int_t l = sizeof(Long_t)*n;
if (fBufCur + l > fBufMax) Expand(TMath::Max(2*fBufSize, fBufSize+l));
#ifdef R__BYTESWAP
# if defined(USE_BSWAPCPY) && !defined(R__B64)
bswapcpy32(fBufCur, ll, n);
fBufCur += l;
# else
for (int i = 0; i < n; i++)
tobuf(fBufCur, ll[i]);
# endif
#else
memcpy(fBufCur, ll, l);
fBufCur += l;
#endif
}
//______________________________________________________________________________
void TBuffer::WriteArray(const Float_t *f, Int_t n)
{
// Write array of n floats into the I/O buffer.
Assert(IsWriting());
*this << n;
if (!n) return;
Assert(f);
Int_t l = sizeof(Float_t)*n;
if (fBufCur + l > fBufMax) Expand(TMath::Max(2*fBufSize, fBufSize+l));
#ifdef R__BYTESWAP
# ifdef USE_BSWAPCPY
bswapcpy32(fBufCur, f, n);
fBufCur += l;
# else
for (int i = 0; i < n; i++)
tobuf(fBufCur, f[i]);
# endif
#else
memcpy(fBufCur, f, l);
fBufCur += l;
#endif
}
//______________________________________________________________________________
void TBuffer::WriteArray(const Double_t *d, Int_t n)
{
// Write array of n doubles into the I/O buffer.
Assert(IsWriting());
*this << n;
if (!n) return;
Assert(d);
Int_t l = sizeof(Double_t)*n;
if (fBufCur + l > fBufMax) Expand(TMath::Max(2*fBufSize, fBufSize+l));
#ifdef R__BYTESWAP
for (int i = 0; i < n; i++)
tobuf(fBufCur, d[i]);
#else
memcpy(fBufCur, d, l);
fBufCur += l;
#endif
}
//______________________________________________________________________________
void TBuffer::WriteFastArray(const Char_t *c, Int_t n)
{
// Write array of n characters into the I/O buffer.
if (!n) return;
Int_t l = sizeof(Char_t)*n;
if (fBufCur + l > fBufMax) Expand(TMath::Max(2*fBufSize, fBufSize+l));
memcpy(fBufCur, c, l);
fBufCur += l;
}
//______________________________________________________________________________
void TBuffer::WriteFastArray(const Short_t *h, Int_t n)
{
// Write array of n shorts into the I/O buffer.
if (!n) return;
Int_t l = sizeof(Short_t)*n;
if (fBufCur + l > fBufMax) Expand(TMath::Max(2*fBufSize, fBufSize+l));
#ifdef R__BYTESWAP
# ifdef USE_BSWAPCPY
bswapcpy16(fBufCur, h, n);
fBufCur += l;
# else
for (int i = 0; i < n; i++)
tobuf(fBufCur, h[i]);
# endif
#else
memcpy(fBufCur, h, l);
fBufCur += l;
#endif
}
//______________________________________________________________________________
void TBuffer::WriteFastArray(const Int_t *ii, Int_t n)
{
// Write array of n ints into the I/O buffer.
if (!n) return;
Int_t l = sizeof(Int_t)*n;
if (fBufCur + l > fBufMax) Expand(TMath::Max(2*fBufSize, fBufSize+l));
#ifdef R__BYTESWAP
# ifdef USE_BSWAPCPY
bswapcpy32(fBufCur, ii, n);
fBufCur += l;
# else
for (int i = 0; i < n; i++)
tobuf(fBufCur, ii[i]);
# endif
#else
memcpy(fBufCur, ii, l);
fBufCur += l;
#endif
}
//______________________________________________________________________________
void TBuffer::WriteFastArray(const Long_t *ll, Int_t n)
{
// Write array of n longs into the I/O buffer.
if (!n) return;
Int_t l = sizeof(Long_t)*n;
if (fBufCur + l > fBufMax) Expand(TMath::Max(2*fBufSize, fBufSize+l));
#ifdef R__BYTESWAP
# if defined(USE_BSWAPCPY) && !defined(R__B64)
bswapcpy32(fBufCur, ll, n);
fBufCur += l;
# else
for (int i = 0; i < n; i++)
tobuf(fBufCur, ll[i]);
# endif
#else
memcpy(fBufCur, ll, l);
fBufCur += l;
#endif
}
//______________________________________________________________________________
void TBuffer::WriteFastArray(const Float_t *f, Int_t n)
{
// Write array of n floats into the I/O buffer.
if (!n) return;
Int_t l = sizeof(Float_t)*n;
if (fBufCur + l > fBufMax) Expand(TMath::Max(2*fBufSize, fBufSize+l));
#ifdef R__BYTESWAP
# ifdef USE_BSWAPCPY
bswapcpy32(fBufCur, f, n);
fBufCur += l;
# else
for (int i = 0; i < n; i++)
tobuf(fBufCur, f[i]);
# endif
#else
memcpy(fBufCur, f, l);
fBufCur += l;
#endif
}
//______________________________________________________________________________
void TBuffer::WriteFastArray(const Double_t *d, Int_t n)
{
// Write array of n doubles into the I/O buffer.
if (!n) return;
Int_t l = sizeof(Double_t)*n;
if (fBufCur + l > fBufMax) Expand(TMath::Max(2*fBufSize, fBufSize+l));
#ifdef R__BYTESWAP
for (int i = 0; i < n; i++)
tobuf(fBufCur, d[i]);
#else
memcpy(fBufCur, d, l);
fBufCur += l;
#endif
}
//______________________________________________________________________________
TObject *TBuffer::ReadObject(const TClass *clReq)
{
// Read object from I/O buffer. clReq can be used to cross check
// if the actually read object is of the requested class.
Assert(IsReading());
// make sure fReadMap is initialized
InitMap();
// before reading object save start position
UInt_t startpos = UInt_t(fBufCur-fBuffer);
// attempt to load next object as TClass clReq
UInt_t tag; // either tag or byte count
TClass *clRef = ReadClass(clReq, &tag);
// check if object has not already been read
// (this can only happen when called via CheckObject())
TObject *obj;
if (fVersion > 0) {
obj = (TObject *) fReadMap->GetValue(startpos+kMapOffset);
if (obj) {
if (obj == (TObject*) -1)
obj = 0;
else if (clReq && !obj->IsA()->InheritsFrom(clReq)) {
Error("ReadObject", "got object of wrong class");
// exception
}
CheckByteCount(startpos, tag, 0);
return obj;
}
}
// unknown class, skip to next object and return 0 obj
if (clRef == (TClass*) -1) {
if (fVersion > 0)
MapObject((TObject*) -1, startpos+kMapOffset);
else
MapObject(0, fMapCount);
CheckByteCount(startpos, tag, 0);
return 0;
}
if (!clRef) {
// got a reference to an already read object
if (fVersion > 0) {
tag += fDisplacement;
tag = CheckObject(tag, clReq);
} else {
if (tag > (UInt_t)fReadMap->GetSize()) {
Error("ReadObject", "object tag too large, I/O buffer corrupted");
// exception
}
}
obj = (TObject *) fReadMap->GetValue(tag);
if (obj && clReq && !obj->IsA()->InheritsFrom(clReq)) {
Error("ReadObject", "got object of wrong class");
// exception
}
} else {
// allocate a new object based on the class found
obj = (TObject *)clRef->New();
if (!obj) {
Error("ReadObject", "could not create object of class %s", clRef->GetName());
// exception
return 0;
}
// add to fReadMap before reading rest of object
if (fVersion > 0)
MapObject(obj, startpos+kMapOffset);
else
MapObject(obj, fMapCount);
// let the object read itself
obj->Streamer(*this);
CheckByteCount(startpos, tag, clRef);
}
return obj;
}
//______________________________________________________________________________
void TBuffer::WriteObject(const TObject *obj)
{
// Write object to I/O buffer.
Assert(IsWriting());
// make sure fWriteMap is initialized
InitMap();
ULong_t idx;
if (!obj) {
// save kNullTag to represent NULL pointer
*this << kNullTag;
} else if ((idx = (ULong_t)fWriteMap->GetValue(((TObject*)obj)->TObject::Hash(), (Long_t)obj)) != 0) {
// truncation is OK the value we did put in the map is an 30-bit offset
// and not a pointer
UInt_t objIdx = UInt_t(idx);
// save index of already stored object
*this << objIdx;
} else {
// reserve space for leading byte count
UInt_t cntpos = UInt_t(fBufCur-fBuffer);
fBufCur += sizeof(UInt_t);
// write class of object first
TClass *cl = obj->IsA();
WriteClass(cl);
// add to map before writing rest of object (to handle self reference)
// (+kMapOffset so it's != kNullTag)
MapObject(obj, cntpos+kMapOffset);
// let the object write itself (cast const away)
((TObject *)obj)->Streamer(*this);
// write byte count
SetByteCount(cntpos);
}
}
//______________________________________________________________________________
TClass *TBuffer::ReadClass(const TClass *clReq, UInt_t *objTag)
{
// Read class definition from I/O buffer. clReq can be used to cross check
// if the actually read object is of the requested class. objTag is
// set in case the object is a reference to an already read object.
Assert(IsReading());
// read byte count and/or tag (older files don't have byte count)
UInt_t bcnt, tag, startpos = 0;
*this >> bcnt;
if (!(bcnt & kByteCountMask) || bcnt == kNewClassTag) {
tag = bcnt;
bcnt = 0;
} else {
fVersion = 1;
startpos = UInt_t(fBufCur-fBuffer);
*this >> tag;
}
// in case tag is object tag return tag
if (!(tag & kClassMask)) {
if (objTag) *objTag = tag;
return 0;
}
TClass *cl;
if (tag == kNewClassTag) {
// got a new class description followed by a new object
// (class can be 0 if class dictionary is not found, in that
// case object of this class must be skipped)
cl = TClass::Load(*this);
// add class to fReadMap for later reference
if (fVersion > 0) {
// check if class was already read
TClass *cl1 = (TClass *)fReadMap->GetValue(startpos+kMapOffset);
if (cl1 != cl)
MapObject(cl ? cl : (TObject*) -1, startpos+kMapOffset);
} else
MapObject(cl, fMapCount);
} else {
// got a tag to an already seen class
UInt_t clTag = (tag & ~kClassMask);
if (fVersion > 0) {
clTag += fDisplacement;
clTag = CheckObject(clTag, clReq, kTRUE);
} else {
if (clTag == 0 || clTag > (UInt_t)fReadMap->GetSize()) {
Error("ReadClass", "illegal class tag=%d (0<tag<=%d), I/O buffer corrupted",
clTag, fReadMap->GetSize());
// exception
}
}
// class can be 0 if dictionary was not found
cl = (TClass *)fReadMap->GetValue(clTag);
}
if (cl && clReq && !cl->InheritsFrom(clReq)) {
Error("ReadClass", "got wrong class");
// exception
}
// return bytecount in objTag
if (objTag) *objTag = (bcnt & ~kByteCountMask);
// case of unknown class
if (!cl) cl = (TClass*)-1;
return cl;
}
//______________________________________________________________________________
void TBuffer::WriteClass(const TClass *cl)
{
// Write class description to I/O buffer.
Assert(IsWriting());
ULong_t idx;
if ((idx = (ULong_t)fWriteMap->GetValue(((TObject *)cl)->TObject::Hash(), (Long_t)cl)) != 0) {
// truncation is OK the value we did put in the map is an 30-bit offset
// and not a pointer
UInt_t clIdx = UInt_t(idx);
// save index of already stored class
*this << (clIdx | kClassMask);
} else {
// offset in buffer where class info is written
UInt_t offset = UInt_t(fBufCur-fBuffer);
// save new class tag
*this << kNewClassTag;
// write class name
cl->Store(*this);
// store new class reference in fWriteMap (+kMapOffset so it's != kNullTag)
MapObject(cl, offset+kMapOffset);
}
}
//______________________________________________________________________________
Version_t TBuffer::ReadVersion(UInt_t *startpos, UInt_t *bcnt)
{
// Read class version from I/O buffer.
Version_t version;
if (startpos && bcnt) {
// before reading object save start position
*startpos = UInt_t(fBufCur-fBuffer);
// read byte count (older files don't have byte count)
// byte count is packed in two individual shorts, this to be
// backward compatible with old files that have at this location
// only a single short (i.e. the version)
union {
UInt_t cnt;
Version_t vers[2];
} v;
#ifdef R__BYTESWAP
*this >> v.vers[1];
*this >> v.vers[0];
#else
*this >> v.vers[0];
*this >> v.vers[1];
#endif
// no bytecount, backup and read version
if (!(v.cnt & kByteCountMask)) {
fBufCur -= sizeof(UInt_t);
v.cnt = 0;
}
*bcnt = (v.cnt & ~kByteCountMask);
*this >> version;
} else {
// not interested in byte count
*this >> version;
// if this is a byte count, then skip next short and read version
if (version & kByteCountVMask) {
*this >> version;
*this >> version;
}
}
return version;
}
//______________________________________________________________________________
UInt_t TBuffer::WriteVersion(const TClass *cl, Bool_t useBcnt)
{
// Write class version to I/O buffer.
UInt_t cntpos = 0;
if (useBcnt) {
// reserve space for leading byte count
cntpos = UInt_t(fBufCur-fBuffer);
fBufCur += sizeof(UInt_t);
}
Version_t version = cl->GetClassVersion();
if (version > kMaxVersion) {
Error("WriteVersion", "version number cannot be larger than %hd)",
kMaxVersion);
version = kMaxVersion;
}
*this << version;
// return position where to store possible byte count
return cntpos;
}
//---- Static functions --------------------------------------------------------
//______________________________________________________________________________
void TBuffer::SetGlobalReadParam(Int_t mapsize)
{
// Set the initial size of the map used to store object and class
// references during reading. The default size is kMapSize=503.
// Increasing the default has the benefit that when reading many
// small objects the array does not need to be resized too often
// (the system is always dynamic, even with the default everything
// will work, only the initial resizing will cost some time).
// Per TBuffer object this option can be changed using SetReadParam().
fgMapSize = mapsize;
}
//______________________________________________________________________________
void TBuffer::SetGlobalWriteParam(Int_t mapsize)
{
// Set the initial size of the hashtable used to store object and class
// references during writing. The default size is kMapSize=503.
// Increasing the default has the benefit that when writing many
// small objects the hashtable does not get too many collisions
// (the system is always dynamic, even with the default everything
// will work, only a large number of collisions will cost performance).
// For optimal performance hashsize should always be a prime.
// Per TBuffer object this option can be changed using SetWriteParam().
fgMapSize = mapsize;
}
//______________________________________________________________________________
Int_t TBuffer::GetGlobalReadParam()
{
// Get default read map size.
return fgMapSize;
}
//______________________________________________________________________________
Int_t TBuffer::GetGlobalWriteParam()
{
// Get default write map size.
return fgMapSize;
}
//______________________________________________________________________________
void TBuffer::SetReadMode()
{
// Set buffer in read mode.
fMode = kRead;
}
//______________________________________________________________________________
void TBuffer::SetWriteMode()
{
// Set buffer in write mode.
fMode = kWrite;
}
ROOT page - Class index - Top of the page
This page has been automatically generated. If you have any comments or suggestions about the page layout send a mail to ROOT support, or contact the developers with any questions or problems regarding ROOT.