// @(#)root/geom:$Name: $:$Id: TGeoCone.cxx,v 1.3 2002/07/15 15:32:25 brun Exp $
// Author: Andrei Gheata 31/01/02
// TGeoCone::Contains() and DistToOut() implemented by Mihaela Gheata
/*************************************************************************
* Copyright (C) 1995-2000, Rene Brun and Fons Rademakers. *
* All rights reserved. *
* *
* For the licensing terms see $ROOTSYS/LICENSE. *
* For the list of contributors see $ROOTSYS/README/CREDITS. *
*************************************************************************/
#include "TROOT.h"
#include "TGeoManager.h"
#include "TGeoVolume.h"
#include "TVirtualGeoPainter.h"
#include "TGeoCone.h"
/*************************************************************************
* TGeoCone - conical tube class. It has 5 parameters :
* dz - half length in z
* Rmin1, Rmax1 - inside and outside radii at -dz
* Rmin2, Rmax2 - inside and outside radii at +dz
*
*************************************************************************/
//
/*
*/
//
/*************************************************************************
* TGeoConeSeg - a phi segment of a conical tube. Has 7 parameters :
* - the same 5 as a cone;
* - first phi limit (in degrees)
* - second phi limit
*
*************************************************************************/
//
/*
*/
//
ClassImp(TGeoCone)
//-----------------------------------------------------------------------------
TGeoCone::TGeoCone()
{
// Default constructor
SetBit(TGeoShape::kGeoCone);
fDz = 0.0;
fRmin1 = 0.0;
fRmax1 = 0.0;
fRmin2 = 0.0;
fRmax2 = 0.0;
}
//-----------------------------------------------------------------------------
TGeoCone::TGeoCone(Double_t dz, Double_t rmin1, Double_t rmax1,
Double_t rmin2, Double_t rmax2)
:TGeoBBox(0, 0, 0)
{
// Default constructor specifying minimum and maximum radius
SetBit(TGeoShape::kGeoCone);
SetConeDimensions(dz, rmin1, rmax1, rmin2, rmax2);
if ((dz<0) || (rmin1<0) || (rmax1<0) || (rmin2<0) || (rmax2<0)) {
SetBit(kGeoRunTimeShape);
// printf("cone : dz=%f, rmin1=%f, rmin2=%f, rmax1=%f, rmax2=%fn",
// dz, rmin1, rmax1, rmin2, rmax2);
}
else ComputeBBox();
}
//-----------------------------------------------------------------------------
TGeoCone::TGeoCone(Double_t *param)
{
// Default constructor specifying minimum and maximum radius
// param[0] = dz
// param[1] = Rmin1
// param[2] = Rmax1
// param[3] = Rmin2
// param[4] = Rmax2
SetBit(TGeoShape::kGeoCone);
SetDimensions(param);
if ((fDz<0) || (fRmin1<0) || (fRmax1<0) || (fRmin2<0) || (fRmax2<0))
SetBit(kGeoRunTimeShape);
else ComputeBBox();
}
//-----------------------------------------------------------------------------
TGeoCone::~TGeoCone()
{
// destructor
}
//-----------------------------------------------------------------------------
void TGeoCone::ComputeBBox()
{
// compute bounding box of the sphere
TGeoBBox *box = (TGeoBBox*)this;
box->SetBoxDimensions(TMath::Max(fRmax1, fRmax2), TMath::Max(fRmax1, fRmax2), fDz);
memset(fOrigin, 0, 3*sizeof(Double_t));
}
//-----------------------------------------------------------------------------
Bool_t TGeoCone::Contains(Double_t *point) const
{
// test if point is inside this cone
if (TMath::Abs(point[2]) > fDz) return kFALSE;
Double_t r2 = point[0]*point[0]+point[1]*point[1];
Double_t rl = 0.5*(fRmin2*(point[2]+fDz)+fRmin1*(fDz-point[2]))/fDz;
Double_t rh = 0.5*(fRmax2*(point[2]+fDz)+fRmax1*(fDz-point[2]))/fDz;
if ((r2<rl*rl) || (r2>rh*rh)) return kFALSE;
return kTRUE;
}
//-----------------------------------------------------------------------------
Double_t TGeoCone::DistToOutS(Double_t *point, Double_t *dir, Int_t iact, Double_t step, Double_t *safe,
Double_t dz, Double_t rmin1, Double_t rmax1, Double_t rmin2, Double_t rmax2)
{
// compute distance from inside point to surface of the cone (static)
Double_t saf[3];
Double_t ro1 = 0.5*(rmin1+rmin2);
Double_t tg1 = 0.5*(rmin2-rmin1)/dz;
Double_t cr1 = 1./TMath::Sqrt(1.+tg1*tg1);
Double_t ro2 = 0.5*(rmax1+rmax2);
Double_t tg2 = 0.5*(rmax2-rmax1)/dz;
Double_t cr2 = 1./TMath::Sqrt(1.+tg2*tg2);
Double_t r=TMath::Sqrt(point[0]*point[0]+point[1]*point[1]);
Double_t rin = tg1*point[2]+ro1;
Double_t rout = tg2*point[2]+ro2;
if (iact<3 && safe) {
if (ro1>1E-10) saf[0] = (r-rin)*cr1;
else saf[0] = kBig;
saf[1] = (rout-r)*cr2;
saf[2] = dz-TMath::Abs(point[2]);
*safe = TMath::Min(saf[0], TMath::Min(saf[1],saf[2]));
if (iact==0) return kBig;
if ((iact==1) && (*safe>step)) return step;
}
// compute distance to surface
// Do Z
Double_t sz = kBig;
if (dir[2]>1E-20)
sz = (dz-point[2])/dir[2];
else
if (dir[2]<-1E-20) sz = -(dz+point[2])/dir[2];
// Do Rmin
Double_t t1=dir[0]*dir[0]+dir[1]*dir[1];
Double_t t2=point[0]*dir[0]+point[1]*dir[1];
Double_t t3=point[0]*point[0]+point[1]*point[1];
Double_t sr1 = kBig;
Double_t ds=0;
Double_t b=0, c=0, d=0;
Double_t u=0, v=0, w=0;
if (ro1>0) {
u=t1-tg1*tg1*dir[2]*dir[2];
v=t2-tg1*dir[1]*rin;
w=t3-rin*rin;
if (u!=0) {
b=v/u;
c=w/u;
d=b*b-c;
if (d>=0) {
ds = TMath::Sqrt(d);
if (ds>=TMath::Abs(b)) sr1=ds-b;
else if (b<=0) sr1=-ds-b;
}
} else if (v<0) sr1=-0.5*w/v;
}
// Do Rmax
Double_t sr2=kBig;
u=t1-tg2*tg2*dir[2]*dir[2];
v=t2-tg2*dir[2]*rout;
w=t3-rout*rout;
if (u!=0) {
b=v/u;
c=w/u;
d=b*b-c;
if (d>=0) {
ds = TMath::Sqrt(d);
if (ds>=TMath::Abs(b)) sr2=ds-b;
else if (b<=0) sr2 = -ds-b;
}
} else if (v>0) sr2=-0.5*w/v;
return TMath::Min(TMath::Min(sr1, sr2), sz);
}
//-----------------------------------------------------------------------------
Double_t TGeoCone::DistToOut(Double_t *point, Double_t *dir, Int_t iact, Double_t step, Double_t *safe) const
{
// compute distance from inside point to surface of the cone
Double_t saf[3];
Double_t ro1 = 0.5*(fRmin1+fRmin2);
Double_t tg1 = 0.5*(fRmin2-fRmin1)/fDz;
Double_t cr1 = 1./TMath::Sqrt(1.+tg1*tg1);
Double_t ro2 = 0.5*(fRmax1+fRmax2);
Double_t tg2 = 0.5*(fRmax2-fRmax1)/fDz;
Double_t cr2 = 1./TMath::Sqrt(1.+tg2*tg2);
Double_t r=TMath::Sqrt(point[0]*point[0]+point[1]*point[1]);
Double_t rin = tg1*point[2]+ro1;
Double_t rout = tg2*point[2]+ro2;
if (iact<3 && safe) {
if (ro1>1E-10) saf[0] = (r-rin)*cr1;
else saf[0] = kBig;
saf[1] = (rout-r)*cr2;
saf[2] = fDz-TMath::Abs(point[2]);
*safe = TMath::Min(saf[0], TMath::Min(saf[1],saf[2]));
if (iact==0) return kBig;
if ((iact==1) && (*safe>step)) return step;
}
// compute distance to surface
// Do Z
Double_t sz = kBig;
if (dir[2]>1E-20)
sz = (fDz-point[2])/dir[2];
else
if (dir[2]<-1E-20) sz = -(fDz+point[2])/dir[2];
// Do Rmin
Double_t t1=dir[0]*dir[0]+dir[1]*dir[1];
Double_t t2=point[0]*dir[0]+point[1]*dir[1];
Double_t t3=point[0]*point[0]+point[1]*point[1];
Double_t sr1 = kBig;
Double_t ds=0;
Double_t b=0, c=0, d=0;
Double_t u=0, v=0, w=0;
if (ro1>0) {
u=t1-tg1*tg1*dir[2]*dir[2];
v=t2-tg1*dir[1]*rin;
w=t3-rin*rin;
if (u!=0) {
b=v/u;
c=w/u;
d=b*b-c;
if (d>=0) {
ds = TMath::Sqrt(d);
if (ds>=TMath::Abs(b)) sr1=ds-b;
else if (b<=0) sr1=-ds-b;
}
} else if (v<0) sr1=-0.5*w/v;
}
// Do Rmax
Double_t sr2=kBig;
u=t1-tg2*tg2*dir[2]*dir[2];
v=t2-tg2*dir[2]*rout;
w=t3-rout*rout;
if (u!=0) {
b=v/u;
c=w/u;
d=b*b-c;
if (d>=0) {
ds = TMath::Sqrt(d);
if (ds>=TMath::Abs(b)) sr2=ds-b;
else if (b<=0) sr2 = -ds-b;
}
} else if (v>0) sr2=-0.5*w/v;
return TMath::Min(TMath::Min(sr1, sr2), sz);
}
//-----------------------------------------------------------------------------
Double_t TGeoCone::DistToInS(Double_t *point, Double_t *dir, Double_t rmin1, Double_t rmax1, Double_t rmin2, Double_t rmax2,
Double_t dz, Double_t ro1, Double_t tg1, Double_t cr1, Double_t zv1,
Double_t ro2, Double_t tg2, Double_t cr2, Double_t zv2,
Double_t r2, Double_t rin, Double_t rout)
{
// compute distance to arbitrary cone from outside point
Double_t snxt=kBig;
// intersection with Z planes
Double_t s, xi, yi, zi, riq, r1q, r2q;
Double_t *norm=gGeoManager->GetNormalChecked();
if (TMath::Abs(point[2])>dz) {
if ((point[2]*dir[2])<0) {
s=(TMath::Abs(point[2])-dz)/TMath::Abs(dir[2]);
xi=point[0]+s*dir[0];
yi=point[1]+s*dir[1];
riq=xi*xi+yi*yi;
norm[0]=norm[1]=0;
if (point[2]<0) {
r1q=rmin1*rmin1;
r2q=rmax1*rmax1;
norm[2]=-1;
} else {
r1q=rmin2*rmin2;
r2q=rmax2*rmax2;
norm[2]=1;
}
if ((r1q<=riq) && (riq<=r2q)) return s;
}
}
// intersection with cones
Double_t t1=dir[0]*dir[0]+dir[1]*dir[1];
Double_t t2=point[0]*dir[0]+point[1]*dir[1];
Double_t t3=r2;
// outer cone
Double_t u,v,w,b,c,d,fn;
if ((zv2*point[2]>zv2*zv2) || (r2>rout*rout)) {
u=t1-(tg2*tg2*dir[2]*dir[2]);
v=t2-tg2*dir[2]*(tg2*point[2]+ro2);
w=t3-rout*rout;
// track parallel to cone ?
if (u!=0) {
b=v/u;
c=w/u;
d=b*b-c;
if (d>=0) {
s=-b-TMath::Sqrt(d);
if (s>=0) {
zi=point[2]+s*dir[2];
if (TMath::Abs(zi)<dz) {
xi=point[0]+s*dir[0];
yi=point[1]+s*dir[1];
norm[2]=-cr1*tg1;
fn=TMath::Sqrt((xi*xi+yi*yi)/(1.0-norm[2]*norm[2]));
norm[0]=xi/fn;
norm[1]=yi/fn;
snxt=s;
}
}
if (snxt>(-b)) {
s=-b+TMath::Sqrt(d);
if (s>=0) {
zi=point[2]+s*dir[2];
if (TMath::Abs(zi)<dz) {
xi=point[0]+s*dir[0];
yi=point[1]+s*dir[1];
norm[2]=-cr1*tg1;
fn=TMath::Sqrt((xi*xi+yi*yi)/(1.0-norm[2]*norm[2]));
norm[0]=xi/fn;
norm[1]=yi/fn;
snxt=s;
}
}
}
}
} else {
if (v!=0) {
s=-0.5*w/v;
if (s>=0) {
zi=point[2]+s*dir[2];
if (TMath::Abs(zi)<=dz) {
xi=point[0]+s*dir[0];
yi=point[1]+s*dir[1];
norm[2]=-cr1*tg1;
fn=TMath::Sqrt((xi*xi+yi*yi)/(1.0-norm[2]*norm[2]));
norm[0]=xi/fn;
norm[1]=yi/fn;
snxt = s;
}
}
}
}
}
// test inner cone
if (ro1>0) {
u=t1-(tg1*tg1*dir[2]*dir[2]);
v=t2-tg1*dir[2]*(tg1*point[2]+ro1);
w=t3-rin*rin;
// track parallel to cone ?
if (u!=0) {
b=v/u;
c=w/u;
d=b*b-c;
if (d>=0) {
s=-b-TMath::Sqrt(d);
if ((s>=0) && (s<snxt)) {
zi=point[2]+s*dir[2];
if (TMath::Abs(zi)<dz) {
xi=point[0]+s*dir[0];
yi=point[1]+s*dir[1];
norm[2]=cr2*tg2;
fn=TMath::Sqrt((xi*xi+yi*yi)/(1.0-norm[2]*norm[2]));
norm[0]=-xi/fn;
norm[1]=-yi/fn;
return s;
}
}
s=-b+TMath::Sqrt(d);
if ((s>=0) && (s<snxt)) {
zi=point[2]+s*dir[2];
if (TMath::Abs(zi)<dz) {
xi=point[0]+s*dir[0];
yi=point[1]+s*dir[1];
norm[2]=cr2*tg2;
fn=TMath::Sqrt((xi*xi+yi*yi)/(1.0-norm[2]*norm[2]));
norm[0]=-xi/fn;
norm[1]=-yi/fn;
return s;
}
}
}
} else {
if (v!=0) {
s=-0.5*w/v;
if ((s>=0) && (s<snxt)) {
zi=point[2]+s*dir[2];
if (TMath::Abs(zi)<=dz) {
xi=point[0]+s*dir[0];
yi=point[1]+s*dir[1];
norm[2]=cr2*tg2;
fn=TMath::Sqrt((xi*xi+yi*yi)/(1.0-norm[2]*norm[2]));
norm[0]=-xi/fn;
norm[1]=-yi/fn;
return s;
}
}
}
}
}
return snxt;
}
//-----------------------------------------------------------------------------
Double_t TGeoCone::DistToIn(Double_t *point, Double_t *dir, Int_t iact, Double_t step, Double_t *safe) const
{
// compute distance from outside point to surface of the tube
Double_t saf[3];
Double_t ro1=0.5*(fRmin1+fRmin2);
Double_t tg1=0.5*(fRmin2-fRmin1)/fDz;
Double_t cr1=1./TMath::Sqrt(1.0+tg1*tg1);
Double_t zv1=kBig;
if (fRmin1!=fRmin2) zv1=-ro1/tg1;
Double_t ro2=0.5*(fRmax1+fRmax2);
Double_t tg2=0.5*(fRmax2-fRmax1)/fDz;
Double_t cr2=1./TMath::Sqrt(1.0+tg2*tg2);
Double_t zv2=kBig;
if (fRmax1!=fRmax2) zv2=-ro2/tg2;
Double_t r2=point[0]*point[0]+point[1]*point[1];
Double_t r=TMath::Sqrt(r2);
Double_t rin=TMath::Abs(tg1*point[2]+ro1);
Double_t rout=TMath::Abs(tg2*point[2]+ro2);
// conmpute safe radius
if (iact<3 && safe) {
saf[0]=(rin-r)*cr1;
saf[1]=(r-rout)*cr2;
saf[2]=TMath::Abs(point[2])-fDz;
*safe = saf[TMath::LocMax(3, &saf[0])];
if (iact==0) return kBig;
if ((iact==1) && (*safe>step)) return step;
}
return TGeoCone::DistToInS(point, dir,fRmin1,fRmax1,fRmin2,fRmax2,fDz,
ro1,tg1,cr1,zv1,ro2,tg2,cr2,zv2,r2,rin,rout);
}
//-----------------------------------------------------------------------------
Int_t TGeoCone::DistancetoPrimitive(Int_t px, Int_t py)
{
// compute closest distance from point px,py to each corner
Int_t n = gGeoManager->GetNsegments();
const Int_t numPoints = 4*n;
return ShapeDistancetoPrimitive(numPoints, px, py);
}
//-----------------------------------------------------------------------------
Double_t TGeoCone::DistToSurf(Double_t *point, Double_t *dir) const
{
// computes the distance to next surface of the sphere along a ray
// starting from given point to the given direction.
return kBig;
}
//-----------------------------------------------------------------------------
TGeoVolume *TGeoCone::Divide(TGeoVolume *voldiv, const char *divname, Int_t iaxis, Int_t ndiv,
Double_t start, Double_t step)
{
//--- Divide this cone shape belonging to volume "voldiv" into ndiv volumes
// called divname, from start position with the given step. Returns pointer
// to created division cell volume in case of Z divisions. For Z division
// creates all volumes with different shapes and returns pointer to volume that
// was divided. In case a wrong division axis is supplied, returns pointer to
// volume that was divided.
TGeoShape *shape; //--- shape to be created
TGeoVolume *vol; //--- division volume to be created
TGeoPatternFinder *finder; //--- finder to be attached
TString opt = ""; //--- option to be attached
Int_t id;
switch (iaxis) {
case 1: //--- R division
Error("Divide","division of a cone on R not implemented");
return voldiv;
case 2: // --- Phi division
if (step<=0) step=360./ndiv;
finder = new TGeoPatternCylPhi(voldiv, ndiv, start, start+ndiv*step);
voldiv->SetFinder(finder);
finder->SetDivIndex(voldiv->GetNdaughters());
shape = new TGeoConeSeg(fDz, fRmin1, fRmax1, fRmin2, fRmax2, -step/2, step/2);
vol = new TGeoVolume(divname, shape, voldiv->GetMaterial());
opt = "Phi";
for (id=0; id<ndiv; id++) {
voldiv->AddNodeOffset(vol, id, start+id*step+step/2, opt.Data());
((TGeoNodeOffset*)voldiv->GetNodes()->At(voldiv->GetNdaughters()-1))->SetFinder(finder);
}
return vol;
case 3: //--- Z division
if (step<=0) {step=2*fDz/ndiv; start=-fDz;}
if (((start+fDz)<-1E-4) || ((start+ndiv*step-fDz)>1E-4)) {
Warning("Divide", "cone Z division exceed shape range");
printf(" volume was %sn", voldiv->GetName());
}
finder = new TGeoPatternZ(voldiv, ndiv, start, start+ndiv*step);
voldiv->SetFinder(finder);
finder->SetDivIndex(voldiv->GetNdaughters());
for (id=0; id<ndiv; id++) {
Double_t z1 = start+id*step;
Double_t z2 = start+(id+1)*step;
Double_t rmin1n = 0.5*(fRmin1*(fDz-z1)+fRmin2*(fDz+z1))/fDz;
Double_t rmax1n = 0.5*(fRmax1*(fDz-z1)+fRmax2*(fDz+z1))/fDz;
Double_t rmin2n = 0.5*(fRmin1*(fDz-z2)+fRmin2*(fDz+z2))/fDz;
Double_t rmax2n = 0.5*(fRmax1*(fDz-z2)+fRmax2*(fDz+z2))/fDz;
shape = new TGeoCone(rmin1n, rmax1n, rmin2n, rmax2n, step/2);
vol = new TGeoVolume(divname, shape, voldiv->GetMaterial());
opt = "Z";
voldiv->AddNodeOffset(vol, id, start+id*step+step/2, opt.Data());
((TGeoNodeOffset*)voldiv->GetNodes()->At(voldiv->GetNdaughters()-1))->SetFinder(finder);
}
return voldiv;
default:
Error("Divide", "Wrong axis type for division");
return voldiv;
}
}
//-----------------------------------------------------------------------------
TGeoVolume *TGeoCone::Divide(TGeoVolume *voldiv, const char *divname, Int_t iaxis, Double_t step)
{
// Divide all range of iaxis in range/step cells
Error("Divide", "Division in all range not implemented");
return voldiv;
}
//-----------------------------------------------------------------------------
TGeoShape *TGeoCone::GetMakeRuntimeShape(TGeoShape *mother) const
{
// in case shape has some negative parameters, these has to be computed
// in order to fit the mother
if (!TestBit(kGeoRunTimeShape)) return 0;
if (mother->IsRunTimeShape() || !mother->TestBit(kGeoCone)) {
Error("GetMakeRuntimeShape", "invalid mother");
return 0;
}
Double_t rmin1, rmax1, rmin2, rmax2, dz;
rmin1 = fRmin1;
rmax1 = fRmax1;
rmin2 = fRmin2;
rmax2 = fRmax2;
dz = fDz;
if (fDz<0) dz=((TGeoCone*)mother)->GetDz();
if (fRmin1<0)
rmin1 = ((TGeoCone*)mother)->GetRmin1();
if (fRmax1<0)
rmax1 = ((TGeoCone*)mother)->GetRmax1();
if (fRmin2<0)
rmin2 = ((TGeoCone*)mother)->GetRmin2();
if (fRmax2<0)
rmax2 = ((TGeoCone*)mother)->GetRmax2();
return (new TGeoCone(rmin1, rmax1, rmin2, rmax2, dz));
}
//-----------------------------------------------------------------------------
void TGeoCone::InspectShape() const
{
// print shape parameters
printf("*** TGeoCone parameters ***n");
printf(" dz = %11.5fn", fDz);
printf(" Rmin1 = %11.5fn", fRmin1);
printf(" Rmax1 = %11.5fn", fRmax1);
printf(" Rmin2 = %11.5fn", fRmin2);
printf(" Rmax2 = %11.5fn", fRmax2);
TGeoBBox::InspectShape();
}
//-----------------------------------------------------------------------------
void TGeoCone::Paint(Option_t *option)
{
// paint this shape according to option
TVirtualGeoPainter *painter = gGeoManager->GetGeomPainter();
if (!painter) return;
TGeoVolume *vol = gGeoManager->GetCurrentVolume();
if (vol->GetShape() != (TGeoShape*)this) return;
painter->PaintTube(vol, option);
}
//-----------------------------------------------------------------------------
void TGeoCone::NextCrossing(TGeoParamCurve *c, Double_t *point) const
{
// computes next intersection point of curve c with this shape
}
//-----------------------------------------------------------------------------
Double_t TGeoCone::Safety(Double_t *point, Double_t *spoint, Option_t *option) const
{
// computes the closest distance from given point to this shape, according
// to option. The matching point on the shape is stored in spoint.
return kBig;
}
//-----------------------------------------------------------------------------
void TGeoCone::SetConeDimensions(Double_t dz, Double_t rmin1, Double_t rmax1,
Double_t rmin2, Double_t rmax2)
{
if (rmin1>=0) {
if (rmax1>0) {
if (rmin1<rmax1) {
// normal rmin/rmax
fRmin1 = rmin1;
fRmax1 = rmax1;
} else {
fRmin1 = rmax1;
fRmax1 = rmin1;
Warning("SetConeDimensions", "rmin1>rmax1 Switch rmin1<->rmax1");
}
} else {
// run-time
fRmin1 = rmin1;
fRmax1 = rmax1;
}
} else {
// run-time
fRmin1 = rmin1;
fRmax1 = rmax1;
}
if (rmin2>=0) {
if (rmax2>0) {
if (rmin2<rmax2) {
// normal rmin/rmax
fRmin2 = rmin2;
fRmax2 = rmax2;
} else {
fRmin2 = rmax2;
fRmax2 = rmin2;
Warning("SetConeDimensions", "rmin2>rmax2 Switch rmin2<->rmax2");
}
} else {
// run-time
fRmin2 = rmin2;
fRmax2 = rmax2;
}
} else {
// run-time
fRmin2 = rmin2;
fRmax2 = rmax2;
}
fDz = dz;
}
//-----------------------------------------------------------------------------
void TGeoCone::SetDimensions(Double_t *param)
{
Double_t dz = param[0];
Double_t rmin1 = param[1];
Double_t rmax1 = param[2];
Double_t rmin2 = param[3];
Double_t rmax2 = param[4];
SetConeDimensions(dz, rmin1, rmax1, rmin2, rmax2);
}
//-----------------------------------------------------------------------------
void TGeoCone::SetPoints(Double_t *buff) const
{
// create cone mesh points
Double_t dz, phi, dphi;
Int_t j, n;
n = gGeoManager->GetNsegments();
dphi = 360./n;
dz = fDz;
Int_t indx = 0;
if (buff) {
for (j = 0; j < n; j++) {
phi = j*dphi*kDegRad;
buff[indx++] = fRmin1 * TMath::Cos(phi);
buff[indx++] = fRmin1 * TMath::Sin(phi);
buff[indx++] = -dz;
}
for (j = 0; j < n; j++) {
phi = j*dphi*kDegRad;
buff[indx++] = fRmax1 * TMath::Cos(phi);
buff[indx++] = fRmax1 * TMath::Sin(phi);
buff[indx++] = -dz;
}
for (j = 0; j < n; j++) {
phi = j*dphi*kDegRad;
buff[indx++] = fRmin2 * TMath::Cos(phi);
buff[indx++] = fRmin2 * TMath::Sin(phi);
buff[indx++] = dz;
}
for (j = 0; j < n; j++) {
phi = j*dphi*kDegRad;
buff[indx++] = fRmax2 * TMath::Cos(phi);
buff[indx++] = fRmax2 * TMath::Sin(phi);
buff[indx++] = dz;
}
}
}
//-----------------------------------------------------------------------------
void TGeoCone::SetPoints(Float_t *buff) const
{
// create cone mesh points
Double_t dz, phi, dphi;
Int_t j, n;
n = gGeoManager->GetNsegments();
dphi = 360./n;
dz = fDz;
Int_t indx = 0;
if (buff) {
for (j = 0; j < n; j++) {
phi = j*dphi*kDegRad;
buff[indx++] = fRmin1 * TMath::Cos(phi);
buff[indx++] = fRmin1 * TMath::Sin(phi);
buff[indx++] = -dz;
}
for (j = 0; j < n; j++) {
phi = j*dphi*kDegRad;
buff[indx++] = fRmax1 * TMath::Cos(phi);
buff[indx++] = fRmax1 * TMath::Sin(phi);
buff[indx++] = -dz;
}
for (j = 0; j < n; j++) {
phi = j*dphi*kDegRad;
buff[indx++] = fRmin2 * TMath::Cos(phi);
buff[indx++] = fRmin2 * TMath::Sin(phi);
buff[indx++] = dz;
}
for (j = 0; j < n; j++) {
phi = j*dphi*kDegRad;
buff[indx++] = fRmax2 * TMath::Cos(phi);
buff[indx++] = fRmax2 * TMath::Sin(phi);
buff[indx++] = dz;
}
}
}
//-----------------------------------------------------------------------------
void TGeoCone::Sizeof3D() const
{
// fill size of this 3-D object
TVirtualGeoPainter *painter = gGeoManager->GetGeomPainter();
if (!painter) return;
Int_t n = gGeoManager->GetNsegments();
Int_t numPoints = n*4;
Int_t numSegs = n*8;
Int_t numPolys = n*4;
painter->AddSize3D(numPoints, numSegs, numPolys);
}
ClassImp(TGeoConeSeg)
//-----------------------------------------------------------------------------
TGeoConeSeg::TGeoConeSeg()
{
// Default constructor
SetBit(TGeoShape::kGeoConeSeg);
fPhi1 = fPhi2 = 0.0;
}
//-----------------------------------------------------------------------------
TGeoConeSeg::TGeoConeSeg(Double_t dz, Double_t rmin1, Double_t rmax1,
Double_t rmin2, Double_t rmax2, Double_t phi1, Double_t phi2)
:TGeoCone(dz, rmin1, rmax1, rmin2, rmax2)
{
// Default constructor specifying minimum and maximum radius
SetBit(TGeoShape::kGeoConeSeg);
SetConsDimensions(dz, rmin1, rmax1, rmin2, rmax2, phi1, phi2);
ComputeBBox();
}
//-----------------------------------------------------------------------------
TGeoConeSeg::TGeoConeSeg(Double_t *param)
{
// Default constructor specifying minimum and maximum radius
// param[0] = dz
// param[1] = Rmin1
// param[2] = Rmax1
// param[3] = Rmin2
// param[4] = Rmax2
// param[5] = phi1
// param[6] = phi2
SetBit(TGeoShape::kGeoConeSeg);
SetDimensions(param);
ComputeBBox();
}
//-----------------------------------------------------------------------------
TGeoConeSeg::~TGeoConeSeg()
{
// destructor
}
//-----------------------------------------------------------------------------
void TGeoConeSeg::ComputeBBox()
{
// compute bounding box of the tube segment
Double_t rmin, rmax;
rmin = TMath::Min(fRmin1, fRmin2);
rmax = TMath::Max(fRmax1, fRmax2);
Double_t xc[4];
Double_t yc[4];
xc[0] = rmax*TMath::Cos(fPhi1*kDegRad);
yc[0] = rmax*TMath::Sin(fPhi1*kDegRad);
xc[1] = rmax*TMath::Cos(fPhi2*kDegRad);
yc[1] = rmax*TMath::Sin(fPhi2*kDegRad);
xc[2] = rmin*TMath::Cos(fPhi1*kDegRad);
yc[2] = rmin*TMath::Sin(fPhi1*kDegRad);
xc[3] = rmin*TMath::Cos(fPhi2*kDegRad);
yc[3] = rmin*TMath::Sin(fPhi2*kDegRad);
Double_t xmin = xc[TMath::LocMin(4, &xc[0])];
Double_t xmax = xc[TMath::LocMax(4, &xc[0])];
Double_t ymin = yc[TMath::LocMin(4, &yc[0])];
Double_t ymax = yc[TMath::LocMax(4, &yc[0])];
Double_t dp = fPhi2-fPhi1;
if (dp<0) dp+=360;
Double_t ddp = -fPhi1;
if (ddp<0) ddp+= 360;
if (ddp>360) ddp-=360;
if (ddp<=dp) xmax = rmax;
ddp = 90-fPhi1;
if (ddp<0) ddp+= 360;
if (ddp>360) ddp-=360;
if (ddp<=dp) ymax = rmax;
ddp = 180-fPhi1;
if (ddp<0) ddp+= 360;
if (ddp>360) ddp-=360;
if (ddp<=dp) xmin = -rmax;
ddp = 270-fPhi1;
if (ddp<0) ddp+= 360;
if (ddp>360) ddp-=360;
if (ddp<=dp) ymin = -rmax;
fOrigin[0] = (xmax+xmin)/2;
fOrigin[1] = (ymax+ymin)/2;
fOrigin[2] = 0;
fDX = (xmax-xmin)/2;
fDY = (ymax-ymin)/2;
fDZ = fDz;
}
//-----------------------------------------------------------------------------
Bool_t TGeoConeSeg::Contains(Double_t *point) const
{
// test if point is inside this sphere
if (!TGeoCone::Contains(point)) return kFALSE;
Double_t phi = TMath::ATan2(point[1], point[0]) * kRadDeg;
if (phi < 0 ) phi+=360.;
Double_t dphi = fPhi2 - fPhi1;
if (dphi < 0) dphi+=360.;
Double_t ddp = phi-fPhi1;
if (ddp < 0) ddp+=360.;
// if (ddp > 360) ddp-=360;
if (ddp > dphi) return kFALSE;
return kTRUE;
}
//-----------------------------------------------------------------------------
Double_t TGeoConeSeg::DistToPhiMin(Double_t *point, Double_t *dir, Double_t s1, Double_t c1,
Double_t s2, Double_t c2, Double_t sm, Double_t cm)
{
// compute distance from poin to both phi planes. Return minimum.
Double_t sfi1=kBig;
Double_t sfi2=kBig;
Double_t s=0;
Double_t un = dir[0]*s1-dir[1]*c1;
if (un!=0) {
s=(point[1]*c1-point[0]*s1)/un;
if (s>=0) {
if (((point[1]+s*dir[1])*cm-(point[0]+s*dir[0])*sm)<=0) sfi1=s;
}
}
un = dir[0]*s2-dir[1]*c2;
if (un!=0) {
s=(point[1]*c2-point[0]*s2)/un;
if (s>=0) {
if (((point[1]+s*dir[1])*cm-(point[0]+s*dir[0])*sm)>=0) sfi2=s;
}
}
return TMath::Min(sfi1, sfi2);
}
//-----------------------------------------------------------------------------
Double_t TGeoConeSeg::DistToOutS(Double_t *point, Double_t *dir, Int_t iact, Double_t step, Double_t *safe,
Double_t dz, Double_t rmin1, Double_t rmax1, Double_t rmin2, Double_t rmax2, Double_t phi1, Double_t phi2)
{
// compute distance from inside point to surface of the cone segment (static)
Double_t saf[4];
Double_t ph1 = phi1*kDegRad;
Double_t ph2 = phi2*kDegRad;
if (ph2<ph1) ph2+=2.*TMath::Pi();
Double_t phim = 0.5*(ph1+ph2);
Double_t c1 = TMath::Cos(ph1);
Double_t c2 = TMath::Cos(ph2);
Double_t s1 = TMath::Sin(ph1);
Double_t s2 = TMath::Sin(ph2);
Double_t cm = TMath::Cos(phim);
Double_t sm = TMath::Sin(phim);
Double_t ro1 = 0.5*(rmin1+rmin2);
Double_t tg1 = 0.5*(rmin2-rmin1)/dz;
Double_t cr1 = 1./TMath::Sqrt(1.+tg1*tg1);
Double_t ro2 = 0.5*(rmax1+rmax2);
Double_t tg2 = 0.5*(rmax2-rmax1)/dz;
Double_t cr2 = 1./TMath::Sqrt(1.+tg2*tg2);
Double_t r=TMath::Sqrt(point[0]*point[0]+point[1]*point[1]);
Double_t rin = tg1*point[2]+ro1;
Double_t rout = tg2*point[2]+ro2;
if (iact<3 && safe) {
if (ro1>1E-10) saf[0] = (r-rin)*cr1;
else saf[0] = kBig;
saf[1] = (rout-r)*cr2;
saf[2] = dz-TMath::Abs(point[2]);
if ((point[1]*cm-point[0]*sm)<=0) saf[3]=TMath::Abs(point[0]*s1-point[1]*c1);
else saf[3]=TMath::Abs(point[0]*s2-point[1]*c2);
*safe = saf[TMath::LocMin(4, &saf[0])];
if (iact==0) return kBig;
if ((iact==1) && (*safe>step)) return step;
}
// compute distance to surface
// Do Z
Double_t sz = kBig;
if (dir[2]>1E-20)
sz = (dz-point[2])/dir[2];
else
if (dir[2]<-1E-20) sz = -(dz+point[2])/dir[2];
// Do Rmin
Double_t t1=dir[0]*dir[0]+dir[1]*dir[1];
Double_t t2=point[0]*dir[0]+point[1]*dir[1];
Double_t t3=point[0]*point[0]+point[1]*point[1];
Double_t sr1 = kBig;
Double_t b=0, c=0, d=0;
Double_t u=0, v=0, w=0;
Double_t ds=0;
if (ro1>0) {
u=t1-tg1*tg1*dir[2]*dir[2];
v=t2-tg1*dir[2]*rin;
w=t3-rin*rin;
if (u!=0) {
b=v/u;
c=w/u;
d=b*b-c;
if (d>=0) {
ds = TMath::Sqrt(d);
if (ds>=TMath::Abs(b)) sr1=ds-b;
else if (b<=0) sr1=-ds-b;
}
} else if (v<0) sr1=-0.5*w/v;
}
// Do Rmax
Double_t sr2=kBig;
u=t1-tg2*tg2*dir[2]*dir[2];
v=t2-tg2*dir[2]*rout;
w=t3-rout*rout;
if (u!=0) {
b=v/u;
c=w/u;
d=b*b-c;
if (d>=0) {
ds = TMath::Sqrt(d);
if (ds>=TMath::Abs(b)) sr2=ds-b;
else if (b<=0) sr2 = -ds-b;
}
} else if (v>0) sr2=-0.5*w/v;
Double_t sr = TMath::Min(sr1, sr2);
// phi planes
Double_t sfmin=TGeoConeSeg::DistToPhiMin(point, dir, s1, c1, s2, c2, sm, cm);
return TMath::Min(TMath::Min(sz,sr), sfmin);
}
//-----------------------------------------------------------------------------
Double_t TGeoConeSeg::DistToOut(Double_t *point, Double_t *dir, Int_t iact, Double_t step, Double_t *safe) const
{
// compute distance from inside point to surface of the tube segment
Double_t saf[4];
Double_t phi1 = fPhi1*kDegRad;
Double_t phi2 = fPhi2*kDegRad;
if (phi2<phi1) phi2+=2.*TMath::Pi();
Double_t phim = 0.5*(phi1+phi2);
Double_t c1 = TMath::Cos(phi1);
Double_t c2 = TMath::Cos(phi2);
Double_t s1 = TMath::Sin(phi1);
Double_t s2 = TMath::Sin(phi2);
Double_t cm = TMath::Cos(phim);
Double_t sm = TMath::Sin(phim);
Double_t ro1 = 0.5*(fRmin1+fRmin2);
Double_t tg1 = 0.5*(fRmin2-fRmin1)/fDz;
Double_t cr1 = 1./TMath::Sqrt(1.+tg1*tg1);
Double_t ro2 = 0.5*(fRmax1+fRmax2);
Double_t tg2 = 0.5*(fRmax2-fRmax1)/fDz;
Double_t cr2 = 1./TMath::Sqrt(1.+tg2*tg2);
Double_t r=TMath::Sqrt(point[0]*point[0]+point[1]*point[1]);
Double_t rin = tg1*point[2]+ro1;
Double_t rout = tg2*point[2]+ro2;
if (iact<3 && safe) {
if (ro1>1E-10) saf[0] = (r-rin)*cr1;
else saf[0] = kBig;
saf[1] = (rout-r)*cr2;
saf[2] = fDz-TMath::Abs(point[2]);
if ((point[1]*cm-point[0]*sm)<=0) saf[3]=TMath::Abs(point[0]*s1-point[1]*c1);
else saf[3]=TMath::Abs(point[0]*s2-point[1]*c2);
*safe = saf[TMath::LocMin(4, &saf[0])];
if (iact==0) return kBig;
if ((iact==1) && (*safe>step)) return step;
}
// compute distance to surface
// Do Z
Double_t sz = kBig;
if (dir[2]>1E-20)
sz = (fDz-point[2])/dir[2];
else
if (dir[2]<-1E-20) sz = -(fDz+point[2])/dir[2];
// Do Rmin
Double_t t1=dir[0]*dir[0]+dir[1]*dir[1];
Double_t t2=point[0]*dir[0]+point[1]*dir[1];
Double_t t3=point[0]*point[0]+point[1]*point[1];
Double_t sr1 = kBig;
Double_t b=0, c=0, d=0;
Double_t u=0, v=0, w=0;
Double_t ds=0;
if (ro1>0) {
u=t1-tg1*tg1*dir[2]*dir[2];
v=t2-tg1*dir[2]*rin;
w=t3-rin*rin;
if (u!=0) {
b=v/u;
c=w/u;
d=b*b-c;
if (d>=0) {
ds = TMath::Sqrt(d);
if (ds>=TMath::Abs(b)) sr1=ds-b;
else if (b<=0) sr1=-ds-b;
}
} else if (v<0) sr1=-0.5*w/v;
}
// Do Rmax
Double_t sr2=kBig;
u=t1-tg2*tg2*dir[2]*dir[2];
v=t2-tg2*dir[2]*rout;
w=t3-rout*rout;
if (u!=0) {
b=v/u;
c=w/u;
d=b*b-c;
if (d>=0) {
ds = TMath::Sqrt(d);
if (ds>=TMath::Abs(b)) sr2=ds-b;
else if (b<=0) sr2 = -ds-b;
}
} else if (v>0) sr2=-0.5*w/v;
Double_t sr = TMath::Min(sr1, sr2);
// phi planes
Double_t sfmin=DistToPhiMin(point, dir, s1, c1, s2, c2, sm, cm);
return TMath::Min(TMath::Min(sz,sr), sfmin);
}
//-----------------------------------------------------------------------------
Double_t TGeoConeSeg::DistToInS(Double_t *point, Double_t *dir, Double_t rmin1, Double_t rmax1, Double_t rmin2, Double_t rmax2,
Double_t dz, Double_t ro1, Double_t tg1, Double_t cr1, Double_t zv1,
Double_t ro2, Double_t tg2, Double_t cr2, Double_t zv2,
Double_t r2, Double_t rin, Double_t rout, Double_t c1, Double_t s1,
Double_t c2, Double_t s2, Double_t cfio, Double_t sfio, Double_t cdfi)
{
// compute distance from outside point to surface of arbitrary tube
Double_t snxt=kBig;
Double_t cpsi=kBig;
if (r2>0) cpsi=(point[0]*cfio-point[1]*sfio)/TMath::Sqrt(r2);
// intersection with Z planes
Double_t s, xi, yi, zi, riq, r1q, r2q, ri;
Double_t *norm=gGeoManager->GetNormalChecked();
if (TMath::Abs(point[2])>dz) {
if ((point[2]*dir[2])<0) {
s=(TMath::Abs(point[2])-dz)/TMath::Abs(dir[2]);
xi=point[0]+s*dir[0];
yi=point[1]+s*dir[1];
riq=xi*xi+yi*yi;
norm[0]=norm[1]=0;
if (point[2]<0) {
r1q=rmin1*rmin1;
r2q=rmax1*rmax1;
norm[2]=-1;
} else {
r1q=rmin2*rmin2;
r2q=rmax2*rmax2;
norm[2]=1;
}
if ((r1q<=riq) && (riq<=r2q)) {
if (riq==0) return s;
cpsi=(xi*cfio+yi*sfio)/TMath::Sqrt(riq);
if (cpsi>=cdfi) return s;
}
}
}
// intersection with cones
Double_t t1=dir[0]*dir[0]+dir[1]*dir[1];
Double_t t2=point[0]*dir[0]+point[1]*dir[1];
Double_t t3=r2;
// outer cone
Double_t u,v,w,b,c,d,fn;
if ((zv2*point[2]>zv2*zv2) || (r2>rout*rout)) {
u=t1-(tg2*tg2*dir[2]*dir[2]);
v=t2-tg2*dir[2]*(tg2*point[2]+ro2);
w=t3-rout*rout;
// track parallel to cone ?
if (u!=0) {
b=v/u;
c=w/u;
d=b*b-c;
if (d>=0) {
s=-b-TMath::Sqrt(d);
if (s>=0) {
zi=point[2]+s*dir[2];
if (TMath::Abs(zi)<dz) {
xi=point[0]+s*dir[0];
yi=point[1]+s*dir[1];
norm[2]=-cr1*tg1;
fn=TMath::Sqrt((xi*xi+yi*yi)/(1.0-norm[2]*norm[2]));
norm[0]=xi/fn;
norm[1]=yi/fn;
if (zi==zv2) snxt=s;
else {
ri=tg2*zi+ro2;
cpsi=(xi*cfio+yi*sfio)/ri;
if (cpsi>=cdfi) snxt=s;
}
}
}
if (snxt>(-b)) {
s=-b+TMath::Sqrt(d);
if (s>=0) {
zi=point[2]+s*dir[2];
if (TMath::Abs(zi)<dz) {
xi=point[0]+s*dir[0];
yi=point[1]+s*dir[1];
norm[2]=-cr1*tg1;
fn=TMath::Sqrt((xi*xi+yi*yi)/(1.0-norm[2]*norm[2]));
norm[0]=xi/fn;
norm[1]=yi/fn;
if (zi==zv2) snxt=s;
else {
ri=tg2*zi+ro2;
cpsi=(xi*cfio+yi*sfio)/ri;
if (cpsi>=cdfi) snxt=s;
}
}
}
}
}
} else {
if (v!=0) {
s=-0.5*w/v;
if (s>=0) {
zi=point[2]+s*dir[2];
if (TMath::Abs(zi)<=dz) {
xi=point[0]+s*dir[0];
yi=point[1]+s*dir[1];
norm[2]=-cr1*tg1;
fn=TMath::Sqrt((xi*xi+yi*yi)/(1.0-norm[2]*norm[2]));
norm[0]=xi/fn;
norm[1]=yi/fn;
if (zi==zv2) snxt=s;
else {
ri=tg2*zi+ro2;
cpsi=(xi*cfio+yi*sfio)/ri;
if (cpsi>=cdfi) snxt=s;
}
}
}
}
}
}
// test inner cone
if (ro1>0) {
u=t1-(tg1*tg1*dir[2]*dir[2]);
v=t2-tg1*dir[2]*(tg1*point[2]+ro1);
w=t3-rin*rin;
// track parallel to cone ?
if (u!=0) {
b=v/u;
c=w/u;
d=b*b-c;
if (d>=0) {
s=-b-TMath::Sqrt(d);
if ((s>=0) && (s<snxt)) {
zi=point[2]+s*dir[2];
if (TMath::Abs(zi)<dz) {
xi=point[0]+s*dir[0];
yi=point[1]+s*dir[1];
norm[2]=cr2*tg2;
fn=TMath::Sqrt((xi*xi+yi*yi)/(1.0-norm[2]*norm[2]));
norm[0]=-xi/fn;
norm[1]=-yi/fn;
if (zi==zv1) snxt=s;
else {
ri=tg1*zi+ro1;
cpsi=(xi*cfio+yi*sfio)/ri;
if (cpsi>=cdfi) snxt=s;
}
}
}
s=-b+TMath::Sqrt(d);
if ((s>=0) && (s<snxt)) {
zi=point[2]+s*dir[2];
if (TMath::Abs(zi)<dz) {
xi=point[0]+s*dir[0];
yi=point[1]+s*dir[1];
norm[2]=cr2*tg2;
fn=TMath::Sqrt((xi*xi+yi*yi)/(1.0-norm[2]*norm[2]));
norm[0]=-xi/fn;
norm[1]=-yi/fn;
if (zi==zv1) snxt=s;
else {
ri=tg1*zi+ro1;
cpsi=(xi*cfio+yi*sfio)/ri;
if (cpsi>=cdfi) snxt=s;
}
}
}
}
} else {
if (v!=0) {
s=-0.5*w/v;
if ((s>=0) && (s<snxt)) {
zi=point[2]+s*dir[2];
if (TMath::Abs(zi)<=dz) {
xi=point[0]+s*dir[0];
yi=point[1]+s*dir[1];
norm[2]=cr2*tg2;
fn=TMath::Sqrt((xi*xi+yi*yi)/(1.0-norm[2]*norm[2]));
norm[0]=-xi/fn;
norm[1]=-yi/fn;
if (zi==zv1) snxt=s;
else {
ri=tg1*zi+ro1;
cpsi=(xi*cfio+yi*sfio)/ri;
if (cpsi>=cdfi) snxt=s;
}
}
}
}
}
}
// check phi planes
Double_t un;
un=dir[0]*s1-dir[1]*c1;
if (un!=0) {
s=(point[1]*c1-point[0]*s1)/un;
if ((s>=0) && (s<snxt)) {
zi=point[2]+s*dir[2];
if (TMath::Abs(zi)<=dz) {
xi=point[0]+s*dir[0];
yi=point[1]+s*dir[1];
riq=xi*xi+yi*yi;
r1q=(tg1*zi+ro1)*(tg1*zi+ro1);
r2q=(tg2*zi+ro2)*(tg2*zi+ro2);
if ((r1q<=riq) && (riq<=r2q)) {
if ((yi*cfio-xi*sfio)<=0) {
norm[0] = s1;
norm[1] = -c1;
norm[2] = 0;
snxt = s;
}
}
}
}
}
un=dir[0]*s2-dir[1]*c2;
if (un!=0) {
s=(point[1]*c2-point[0]*s2)/un;
if ((s>=0) && (s<snxt)) {
zi=point[2]+s*dir[2];
if (TMath::Abs(zi)<=dz) {
xi=point[0]+s*dir[0];
yi=point[1]+s*dir[1];
riq=xi*xi+yi*yi;
r1q=(tg1*zi+ro1)*(tg1*zi+ro1);
r2q=(tg2*zi+ro2)*(tg2*zi+ro2);
if ((r1q<=riq) && (riq<=r2q)) {
if ((yi*cfio-xi*sfio)>=0) {
norm[0] = -s2;
norm[1] = c2;
norm[2] = 0;
snxt = s;
}
}
}
}
}
return snxt;
}
//-----------------------------------------------------------------------------
Double_t TGeoConeSeg::DistToIn(Double_t *point, Double_t *dir, Int_t iact, Double_t step, Double_t *safe) const
{
// compute distance from outside point to surface of the tube
Double_t saf[4];
Double_t ro1=0.5*(fRmin1+fRmin2);
Double_t tg1=0.5*(fRmin2-fRmin1)/fDz;
Double_t cr1=1./TMath::Sqrt(1.0+tg1*tg1);
Double_t zv1=kBig;
if (fRmin1!=fRmin2) zv1=-ro1/tg1;
Double_t ro2=0.5*(fRmax1+fRmax2);
Double_t tg2=0.5*(fRmax2-fRmax1)/fDz;
Double_t cr2=1./TMath::Sqrt(1.0+tg2*tg2);
Double_t zv2=kBig;
if (fRmax1!=fRmax2) zv2=-ro2/tg2;
Double_t phi1 = fPhi1*kDegRad;
Double_t phi2 = fPhi2*kDegRad;
if (phi2<phi1) phi2+=2.*TMath::Pi();
Double_t c1 = TMath::Cos(phi1);
Double_t s1 = TMath::Sin(phi1);
Double_t c2 = TMath::Cos(phi2);
Double_t s2 = TMath::Sin(phi2);
Double_t fio = 0.5*(phi1+phi2);
Double_t cfio = TMath::Cos(fio);
Double_t sfio = TMath::Sin(fio);
Double_t dfi = 0.5*(phi2-phi1);
Double_t cdfi = TMath::Cos(dfi);
Double_t cpsi;
Double_t r2=point[0]*point[0]+point[1]*point[1];
Double_t r=TMath::Sqrt(r2);
Double_t rin=TMath::Abs(tg1*point[2]+ro1);
Double_t rout=TMath::Abs(tg2*point[2]+ro2);
// compute safe radius
if (iact<3 && safe) {
saf[0]=(rin-r)*cr1;
saf[1]=(r-rout)*cr2;
saf[2]=TMath::Abs(point[2])-fDz;
saf[3] = 0;
if (r>0) {
cpsi=(point[0]*cfio-point[1]*sfio)/r;
if (cpsi<cdfi) saf[3]=TMath::Abs(point[0]*s1-point[1]*c1);
else saf[3]=TMath::Abs(point[0]*s2-point[1]*c2);
}
*safe = saf[TMath::LocMax(4, &saf[0])];
if (iact==0) return kBig;
if ((iact==1) && (*safe>step)) return step;
}
return TGeoConeSeg::DistToInS(point, dir,fRmin1,fRmax1,fRmin2,fRmax2,fDz,
ro1,tg1,cr1,zv1,ro2,tg2,cr2,zv2,r2,rin,rout,c1,s1,c2,s2,cfio,sfio,cdfi);
}
//-----------------------------------------------------------------------------
Int_t TGeoConeSeg::DistancetoPrimitive(Int_t px, Int_t py)
{
// compute closest distance from point px,py to each corner
Int_t n = gGeoManager->GetNsegments()+1;
const Int_t numPoints = 4*n;
return ShapeDistancetoPrimitive(numPoints, px, py);
}
//-----------------------------------------------------------------------------
Double_t TGeoConeSeg::DistToSurf(Double_t *point, Double_t *dir) const
{
// computes the distance to next surface of the sphere along a ray
// starting from given point to the given direction.
return kBig;
}
//-----------------------------------------------------------------------------
TGeoVolume *TGeoConeSeg::Divide(TGeoVolume *voldiv, const char *divname, Int_t iaxis, Int_t ndiv,
Double_t start, Double_t step)
{
//--- Divide this cone segment shape belonging to volume "voldiv" into ndiv volumes
// called divname, from start position with the given step. Returns pointer
// to created division cell volume in case of Z divisions. For Z division
// creates all volumes with different shapes and returns pointer to volume that
// was divided. In case a wrong division axis is supplied, returns pointer to
// volume that was divided.
TGeoShape *shape; //--- shape to be created
TGeoVolume *vol; //--- division volume to be created
TGeoPatternFinder *finder; //--- finder to be attached
TString opt = ""; //--- option to be attached
Double_t dphi;
Int_t id;
switch (iaxis) {
case 1: //--- R division
Error("Divide","division of a cone segment on R not implemented");
return voldiv;
case 2: //--- Phi division
dphi = fPhi2-fPhi1;
if (dphi<0) dphi+=360.;
if (step<=0) {step=dphi/ndiv; start=fPhi1;}
finder = new TGeoPatternCylPhi(voldiv, ndiv, start, start+ndiv*step);
voldiv->SetFinder(finder);
finder->SetDivIndex(voldiv->GetNdaughters());
shape = new TGeoConeSeg(fDz, fRmin1, fRmax1, fRmin2, fRmax2, -step/2, step/2);
vol = new TGeoVolume(divname, shape, voldiv->GetMaterial());
opt = "Phi";
for (id=0; id<ndiv; id++) {
voldiv->AddNodeOffset(vol, id, start+id*step+step/2, opt.Data());
((TGeoNodeOffset*)voldiv->GetNodes()->At(voldiv->GetNdaughters()-1))->SetFinder(finder);
}
return vol;
case 3: //--- Z division
if (step<=0) {step=2*fDz/ndiv; start=-fDz;}
if (((start+fDz)<-1E-4) || ((start+ndiv*step-fDz)>1E-4)) {
Warning("Divide", "cone seg Z division exceed shape range");
printf(" volume was %sn", voldiv->GetName());
}
finder = new TGeoPatternZ(voldiv, ndiv, start, start+ndiv*step);
voldiv->SetFinder(finder);
finder->SetDivIndex(voldiv->GetNdaughters());
for (id=0; id<ndiv; id++) {
Double_t z1 = start+id*step;
Double_t z2 = start+(id+1)*step;
Double_t rmin1n = 0.5*(fRmin1*(fDz-z1)+fRmin2*(fDz+z1))/fDz;
Double_t rmax1n = 0.5*(fRmax1*(fDz-z1)+fRmax2*(fDz+z1))/fDz;
Double_t rmin2n = 0.5*(fRmin1*(fDz-z2)+fRmin2*(fDz+z2))/fDz;
Double_t rmax2n = 0.5*(fRmax1*(fDz-z2)+fRmax2*(fDz+z2))/fDz;
shape = new TGeoConeSeg(step/2, rmin1n, rmax1n, rmin2n, rmax2n, fPhi1, fPhi2);
vol = new TGeoVolume(divname, shape, voldiv->GetMaterial());
opt = "Z";
voldiv->AddNodeOffset(vol, id, start+id*step+step/2, opt.Data());
((TGeoNodeOffset*)voldiv->GetNodes()->At(voldiv->GetNdaughters()-1))->SetFinder(finder);
}
return voldiv;
default:
Error("Divide", "Wrong axis type for division");
return voldiv;
}
}
//-----------------------------------------------------------------------------
TGeoVolume *TGeoConeSeg::Divide(TGeoVolume *voldiv, const char *divname, Int_t iaxis, Double_t step)
{
// Divide all range of iaxis in range/step cells
Error("Divide", "Division in all range not implemented");
return voldiv;
}
//-----------------------------------------------------------------------------
TGeoShape *TGeoConeSeg::GetMakeRuntimeShape(TGeoShape *mother) const
{
// in case shape has some negative parameters, these has to be computed
// in order to fit the mother
if (!TestBit(kGeoRunTimeShape)) return 0;
if (mother->IsRunTimeShape() || !mother->TestBit(kGeoConeSeg)) {
Error("GetMakeRuntimeShape", "invalid mother");
return 0;
}
Double_t rmin1, rmax1, rmin2, rmax2, dz;
rmin1 = fRmin1;
rmax1 = fRmax1;
rmin2 = fRmin2;
rmax2 = fRmax2;
dz = fDz;
if (fDz<0) dz=((TGeoCone*)mother)->GetDz();
if (fRmin1<0)
rmin1 = ((TGeoCone*)mother)->GetRmin1();
if ((fRmax1<0) || (fRmax1<fRmin1))
rmax1 = ((TGeoCone*)mother)->GetRmax1();
if (fRmin2<0)
rmin2 = ((TGeoCone*)mother)->GetRmin2();
if ((fRmax2<0) || (fRmax2<fRmin2))
rmax2 = ((TGeoCone*)mother)->GetRmax2();
return (new TGeoConeSeg(rmin1, rmax1, rmin2, rmax2, dz, fPhi1, fPhi2));
}
//-----------------------------------------------------------------------------
void TGeoConeSeg::InspectShape() const
{
// print shape parameters
printf("*** TGeoConeSeg parameters ***n");
printf(" dz = %11.5fn", fDz);
printf(" Rmin1 = %11.5fn", fRmin1);
printf(" Rmax1 = %11.5fn", fRmax1);
printf(" Rmin2 = %11.5fn", fRmin2);
printf(" Rmax2 = %11.5fn", fRmax2);
printf(" phi1 = %11.5fn", fPhi1);
printf(" phi2 = %11.5fn", fPhi2);
TGeoBBox::InspectShape();
}
//-----------------------------------------------------------------------------
void TGeoConeSeg::Paint(Option_t *option)
{
// paint this shape according to option
TVirtualGeoPainter *painter = gGeoManager->GetGeomPainter();
if (!painter) return;
TGeoVolume *vol = gGeoManager->GetCurrentVolume();
if (vol->GetShape() != (TGeoShape*)this) return;
painter->PaintTubs(vol, option);
}
//-----------------------------------------------------------------------------
void TGeoConeSeg::NextCrossing(TGeoParamCurve *c, Double_t *point) const
{
// computes next intersection point of curve c with this shape
}
//-----------------------------------------------------------------------------
Double_t TGeoConeSeg::Safety(Double_t *point, Double_t *spoint, Option_t *option) const
{
// computes the closest distance from given point to this shape, according
// to option. The matching point on the shape is stored in spoint.
return kBig;
}
//-----------------------------------------------------------------------------
void TGeoConeSeg::SetConsDimensions(Double_t dz, Double_t rmin1, Double_t rmax1,
Double_t rmin2, Double_t rmax2, Double_t phi1, Double_t phi2)
{
fDz = dz;
fRmin1 = rmin1;
fRmax1 = rmax1;
fRmin2 = rmin2;
fRmax2 = rmax2;
fPhi1 = phi1;
if (fPhi1<0) fPhi1+=360.;
fPhi2 = phi2;
if (fPhi2<0) fPhi2+=360.;
}
//-----------------------------------------------------------------------------
void TGeoConeSeg::SetDimensions(Double_t *param)
{
Double_t dz = param[0];
Double_t rmin1 = param[1];
Double_t rmax1 = param[2];
Double_t rmin2 = param[3];
Double_t rmax2 = param[4];
Double_t phi1 = param[5];
Double_t phi2 = param[6];
SetConsDimensions(dz, rmin1, rmax1,rmin2, rmax2, phi1, phi2);
}
//-----------------------------------------------------------------------------
void TGeoConeSeg::SetPoints(Double_t *buff) const
{
// create cone segment mesh points
Int_t j, n;
Float_t dphi,phi,phi1, phi2,dz;
n = gGeoManager->GetNsegments()+1;
dz = fDz;
phi1 = fPhi1;
phi2 = fPhi2;
if (phi2<phi1) phi2+=360.;
dphi = (phi2-phi1)/(n-1);
Int_t indx = 0;
if (buff) {
for (j = 0; j < n; j++) {
phi = (fPhi1+j*dphi)*kDegRad;
buff[indx++] = fRmin1 * TMath::Cos(phi);
buff[indx++] = fRmin1 * TMath::Sin(phi);
buff[indx++] = -dz;
}
for (j = 0; j < n; j++) {
phi = (fPhi1+j*dphi)*kDegRad;
buff[indx++] = fRmax1 * TMath::Cos(phi);
buff[indx++] = fRmax1 * TMath::Sin(phi);
buff[indx++] = -dz;
}
for (j = 0; j < n; j++) {
phi = (fPhi1+j*dphi)*kDegRad;
buff[indx++] = fRmin2 * TMath::Cos(phi);
buff[indx++] = fRmin2 * TMath::Sin(phi);
buff[indx++] = dz;
}
for (j = 0; j < n; j++) {
phi = (fPhi1+j*dphi)*kDegRad;
buff[indx++] = fRmax2 * TMath::Cos(phi);
buff[indx++] = fRmax2 * TMath::Sin(phi);
buff[indx++] = dz;
}
}
}
//-----------------------------------------------------------------------------
void TGeoConeSeg::SetPoints(Float_t *buff) const
{
// create cone segment mesh points
Int_t j, n;
Float_t dphi,phi,phi1, phi2,dz;
n = gGeoManager->GetNsegments()+1;
dz = fDz;
phi1 = fPhi1;
phi2 = fPhi2;
if (phi2<phi1) phi2+=360.;
dphi = (phi2-phi1)/(n-1);
Int_t indx = 0;
if (buff) {
for (j = 0; j < n; j++) {
phi = (fPhi1+j*dphi)*kDegRad;
buff[indx++] = fRmin1 * TMath::Cos(phi);
buff[indx++] = fRmin1 * TMath::Sin(phi);
buff[indx++] = -dz;
}
for (j = 0; j < n; j++) {
phi = (fPhi1+j*dphi)*kDegRad;
buff[indx++] = fRmax1 * TMath::Cos(phi);
buff[indx++] = fRmax1 * TMath::Sin(phi);
buff[indx++] = -dz;
}
for (j = 0; j < n; j++) {
phi = (fPhi1+j*dphi)*kDegRad;
buff[indx++] = fRmin2 * TMath::Cos(phi);
buff[indx++] = fRmin2 * TMath::Sin(phi);
buff[indx++] = dz;
}
for (j = 0; j < n; j++) {
phi = (fPhi1+j*dphi)*kDegRad;
buff[indx++] = fRmax2 * TMath::Cos(phi);
buff[indx++] = fRmax2 * TMath::Sin(phi);
buff[indx++] = dz;
}
}
}
//-----------------------------------------------------------------------------
void TGeoConeSeg::Sizeof3D() const
{
// fill size of this 3-D object
TVirtualGeoPainter *painter = gGeoManager->GetGeomPainter();
if (!painter) return;
Int_t n = gGeoManager->GetNsegments()+1;
Int_t numPoints = n*4;
Int_t numSegs = n*8;
Int_t numPolys = n*4-2;
painter->AddSize3D(numPoints, numSegs, numPolys);
}
ROOT page - Class index - Top of the page
This page has been automatically generated. If you have any comments or suggestions about the page layout send a mail to ROOT support, or contact the developers with any questions or problems regarding ROOT.