// @(#)root/matrix:$Name: $:$Id: TMatrixD.h,v 1.25 2003/09/05 09:21:54 brun Exp $ // Authors: Oleg E. Kiselyov, Fons Rademakers 03/11/97 /************************************************************************* * Copyright (C) 1995-2000, Rene Brun and Fons Rademakers. * * All rights reserved. * * * * For the licensing terms see $ROOTSYS/LICENSE. * * For the list of contributors see $ROOTSYS/README/CREDITS. * *************************************************************************/ #ifndef ROOT_TMatrixD #define ROOT_TMatrixD ////////////////////////////////////////////////////////////////////////// // // // Linear Algebra Package // // // // The present package implements all the basic algorithms dealing // // with vectors, matrices, matrix columns, rows, diagonals, etc. // // // // Matrix elements are arranged in memory in a COLUMN-wise // // fashion (in FORTRAN's spirit). In fact, it makes it very easy to // // feed the matrices to FORTRAN procedures, which implement more // // elaborate algorithms. // // // // Unless otherwise specified, matrix and vector indices always start // // with 0, spanning up to the specified limit-1. // // // // The present package provides all facilities to completely AVOID // // returning matrices. Use "TMatrixD A(TMatrixD::kTransposed,B);" and // // other fancy constructors as much as possible. If one really needs // // to return a matrix, return a TLazyMatrixD object instead. The // // conversion is completely transparent to the end user, e.g. // // "TMatrixD m = THaarMatrixD(5);" and _is_ efficient. // // // // For usage examples see $ROOTSYS/test/vmatrix.cxx and vvector.cxx // // and also: // // http://root.cern.ch/root/html/TMatrixD.html#TMatrixD:description // // // // The implementation is based on original code by // // Oleg E. Kiselyov (oleg@pobox.com). // // Several additions/optimisations by Eddy Offermann // // // ////////////////////////////////////////////////////////////////////////// #ifndef ROOT_TVectorD #include "TVectorD.h" #endif class TMatrixD; class TLazyMatrixD; class TMatrixDRow; class TMatrixDColumn; class TMatrixDDiag; class TMatrixDFlat; class TMatrixDPivoting; TMatrixD &operator+=(TMatrixD &target, const TMatrixD &source); TMatrixD &operator-=(TMatrixD &target, const TMatrixD &source); TMatrixD operator+(const TMatrixD &source1, const TMatrixD &source2); TMatrixD operator-(const TMatrixD &source1, const TMatrixD &source2); TMatrixD operator*(const TMatrixD &source1, const TMatrixD &source2); TMatrixD &Add(TMatrixD &target, Double_t scalar, const TMatrixD &source); TMatrixD &ElementMult(TMatrixD &target, const TMatrixD &source); TMatrixD &ElementDiv(TMatrixD &target, const TMatrixD &source); Bool_t operator==(const TMatrixD &im1, const TMatrixD &im2); void Compare(const TMatrixD &im1, const TMatrixD &im2); Bool_t AreCompatible(const TMatrixD &im1, const TMatrixD &im2); Double_t E2Norm(const TMatrixD &m1, const TMatrixD &m2); class TMatrixD : public TObject { friend class TVectorD; friend class TMatrixDRow; friend class TMatrixDColumn; friend class TMatrixDDiag; friend class TMatrixDFlat; friend class TMatrixDPivoting; protected: Int_t fNrows; // number of rows Int_t fNcols; // number of columns Int_t fNelems; // number of elements in matrix Int_t fRowLwb; // lower bound of the row index Int_t fColLwb; // lower bound of the col index Double_t *fElements; //[fNelems] elements themselves Double_t **fIndex; //! index[i] = &matrix(0,i) (col index) void Allocate(Int_t nrows, Int_t ncols, Int_t row_lwb = 0, Int_t col_lwb = 0); void Invalidate() { fNrows = fNcols = fNelems = -1; fElements = 0; fIndex = 0; } static Int_t Pdcholesky(const Double_t *a, Double_t *u, const Int_t n); static void MakeTridiagonal(TMatrixD &a,TVectorD &d,TVectorD &e); static void MakeEigenVectors(TVectorD &d,TVectorD &e,TMatrixD &z); static void EigenSort(TMatrixD &eigenVectors,TVectorD &eigenValues); // Elementary constructors void Transpose(const TMatrixD &m); void Invert(const TMatrixD &m); void InvertPosDef(const TMatrixD &m); void AMultB(const TMatrixD &a, const TMatrixD &b); void AtMultB(const TMatrixD &a, const TMatrixD &b); friend void MakeHaarMatrixD(TMatrixD &m); friend void MakeHilbertMatrixD(TMatrixD &m); public: enum EMatrixCreatorsOp1 { kZero, kUnit, kTransposed, kInverted, kInvertedPosDef }; enum EMatrixCreatorsOp2 { kMult, kTransposeMult, kInvMult, kInvPosDefMult, kAtBA }; TMatrixD() { Invalidate(); } TMatrixD(Int_t nrows, Int_t ncols); TMatrixD(Int_t row_lwb, Int_t row_upb, Int_t col_lwb, Int_t col_upb); TMatrixD(Int_t nrows, Int_t ncols, const Double_t *elements, Option_t *option=""); TMatrixD(Int_t row_lwb, Int_t row_upb, Int_t col_lwb, Int_t col_upb, const Double_t *elements, Option_t *option=""); TMatrixD(const TMatrixD &another); TMatrixD(EMatrixCreatorsOp1 op, const TMatrixD &prototype); TMatrixD(const TMatrixD &a, EMatrixCreatorsOp2 op, const TMatrixD &b); TMatrixD(const TLazyMatrixD &lazy_constructor); virtual ~TMatrixD(); void Clear(Option_t *option=""); void Draw(Option_t *option=""); // *MENU* void ResizeTo(Int_t nrows, Int_t ncols); void ResizeTo(Int_t row_lwb, Int_t row_upb, Int_t col_lwb, Int_t col_upb); void ResizeTo(const TMatrixD &m); Bool_t IsValid() const; Bool_t IsSymmetric() const; Int_t GetRowLwb() const { return fRowLwb; } Int_t GetRowUpb() const { return fNrows+fRowLwb-1; } Int_t GetNrows() const { return fNrows; } Int_t GetColLwb() const { return fColLwb; } Int_t GetColUpb() const { return fNcols+fColLwb-1; } Int_t GetNcols() const { return fNcols; } Int_t GetNoElements() const { return fNelems; } const Double_t *GetElements() const { return fElements; } Double_t *GetElements() { return fElements; } void GetElements(Double_t *elements, Option_t *option="") const; void SetElements(const Double_t *elements, Option_t *option=""); const Double_t &operator()(Int_t rown, Int_t coln) const; Double_t &operator()(Int_t rown, Int_t coln); const TMatrixDRow operator[](Int_t rown) const; TMatrixDRow operator[](Int_t rown); TMatrixD &operator=(const TMatrixD &source); TMatrixD &operator=(const TLazyMatrixD &source); TMatrixD &operator=(Double_t val); TMatrixD &operator-=(Double_t val); TMatrixD &operator+=(Double_t val); TMatrixD &operator*=(Double_t val); Bool_t operator==(Double_t val) const; Bool_t operator!=(Double_t val) const; Bool_t operator<(Double_t val) const; Bool_t operator<=(Double_t val) const; Bool_t operator>(Double_t val) const; Bool_t operator>=(Double_t val) const; TMatrixD &Zero(); TMatrixD &Abs(); TMatrixD &Sqr(); TMatrixD &Sqrt(); TMatrixD &Apply(const TElementActionD &action); TMatrixD &Apply(const TElementPosActionD &action); TMatrixD &Invert(Double_t *determ_ptr = 0); TMatrixD &InvertPosDef(); const TMatrixD EigenVectors(TVectorD &eigenValues) const; TMatrixD &MakeSymmetric(); TMatrixD &UnitMatrix(); TMatrixD &operator*=(const TMatrixD &source); TMatrixD &operator*=(const TMatrixDDiag &diag); TMatrixD &operator/=(const TMatrixDDiag &diag); TMatrixD &operator*=(const TMatrixDRow &row); TMatrixD &operator/=(const TMatrixDRow &row); TMatrixD &operator*=(const TMatrixDColumn &col); TMatrixD &operator/=(const TMatrixDColumn &col); void Mult(const TMatrixD &a, const TMatrixD &b); Double_t RowNorm() const; Double_t NormInf() const { return RowNorm(); } Double_t ColNorm() const; Double_t Norm1() const { return ColNorm(); } Double_t E2Norm() const; TMatrixD &NormByDiag(const TVectorD &v, Option_t *option="D"); TMatrixD &NormByColumn(const TVectorD &v, Option_t *option="D"); TMatrixD &NormByRow(const TVectorD &v, Option_t *option="D"); Double_t Determinant() const; void Print(Option_t *option="") const; // *MENU* friend TMatrixD &operator+=(TMatrixD &target, const TMatrixD &source); friend TMatrixD &operator-=(TMatrixD &target, const TMatrixD &source); friend TMatrixD &Add(TMatrixD &target, Double_t scalar, const TMatrixD &source); friend TMatrixD &ElementMult(TMatrixD &target, const TMatrixD &source); friend TMatrixD &ElementDiv(TMatrixD &target, const TMatrixD &source); friend TMatrixD operator+(const TMatrixD &source1, const TMatrixD &source2); friend TMatrixD operator-(const TMatrixD &source1, const TMatrixD &source2); friend TMatrixD operator*(const TMatrixD &source1, const TMatrixD &source2); friend Bool_t operator==(const TMatrixD &im1, const TMatrixD &im2); friend void Compare(const TMatrixD &im1, const TMatrixD &im2); friend Bool_t AreCompatible(const TMatrixD &im1, const TMatrixD &im2); friend Double_t E2Norm(const TMatrixD &m1, const TMatrixD &m2); ClassDef(TMatrixD,2) // Matrix class (double precision) }; // Service functions (useful in the verification code). // They print some detail info if the validation condition fails void VerifyElementValue(const TMatrixD &m, Double_t val); void VerifyMatrixIdentity(const TMatrixD &m1, const TMatrixD &m2); inline Bool_t TMatrixD::IsValid() const { if (fNrows == -1) return kFALSE; return kTRUE; } #ifndef ROOT_TMatrixDUtils #include "TMatrixDUtils.h" #endif #endif